Skip to main content

Expression QTLs Mapping and Analysis: A Bayesian Perspective

  • Protocol
  • First Online:
Systems Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1488))

Abstract

The aim of expression Quantitative Trait Locus (eQTL) mapping is the identification of DNA sequence variants that explain variation in gene expression. Given the recent yield of trait-associated genetic variants identified by large-scale genome-wide association analyses (GWAS), eQTL mapping has become a useful tool to understand the functional context where these variants operate and eventually narrow down functional gene targets for disease. Despite its extensive application to complex (polygenic) traits and disease, the majority of eQTL studies still rely on univariate data modeling strategies, i.e., testing for association of all transcript-marker pairs. However these “one at-a-time” strategies are (1) unable to control the number of false-positives when an intricate Linkage Disequilibrium structure is present and (2) are often underpowered to detect the full spectrum of trans-acting regulatory effects. Here we present our viewpoint on the most recent advances on eQTL mapping approaches, with a focus on Bayesian methodology. We review the advantages of the Bayesian approach over frequentist methods and provide an empirical example of polygenic eQTL mapping to illustrate the different properties of frequentist and Bayesian methods. Finally, we discuss how multivariate eQTL mapping approaches have distinctive features with respect to detection of polygenic effects, accuracy, and interpretability of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo H, Fortune MD, Burren OS et al (2015) Integration of disease association and eQTL data using a Bayesian colocalisation approach highlights six candidate causal genes in immune-mediated diseases. Hum Mol Genet 24:3305–3313. doi:10.1093/hmg/ddv077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pierce BL, Tong L, Chen LS et al (2014) Mediation analysis demonstrates that trans-eQTLs are often explained by cis-mediation: a genome-wide analysis among 1,800 South Asians. PLoS Genet 10:e1004818. doi:10.1371/journal.pgen.1004818

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kang H, Kerloc’h A, Rotival M et al (2014) Kcnn4 is a regulator of macrophage multinucleation in bone homeostasis and inflammatory disease. Cell Rep 8:1210–1224. doi:10.1016/j.celrep.2014.07.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rotival M, Zeller T, Wild PS et al (2011) Integrating genome-wide genetic variations and monocyte expression data reveals trans-regulated gene modules in humans. PLoS Genet 7:e1002367. doi:10.1371/journal.pgen.1002367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fehrmann RSN, Jansen RC, Veldink JH et al (2011) Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet 7:e1002197. doi:10.1371/journal.pgen.1002197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Small KS, Hedman AK, Grundberg E et al (2011) Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet 43:561–564. doi:10.1038/ng.833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shabalin AA (2012) Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28:1353–1358. doi:10.1093/bioinformatics/bts163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. MacDonald JH (2009) Kruskal-Wallis test. Biol Handb Stat 165–172. doi: 10.1002/9780470479216.corpsy0491

  9. Yang T-P, Beazley C, Montgomery SB et al (2010) Genevar: a database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies. Bioinformatics 26:2474–2476. doi:10.1093/bioinformatics/btq452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  11. Clayton D, Leung H-T (2007) An R package for analysis of whole-genome association studies. Hum Hered 64:45–51. doi:10.1159/000101422

    Article  PubMed  Google Scholar 

  12. Sun W (2009) eQTL analysis by Linear Model. In: http://www.bios.unc.edu/~weisun/software/eMap.pdf. Accessed 20 Oct 2015

  13. Qi J, Asl HF, Björkegren J, Michoel T (2014) kruX: matrix-based non-parametric eQTL discovery. BMC Bioinformatics 15:11. doi:10.1186/1471-2105-15-11

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gao C, Tignor NL, Salit J et al (2014) HEFT: eQTL analysis of many thousands of expressed genes while simultaneously controlling for hidden factors. Bioinformatics 30:369–376. doi:10.1093/bioinformatics/btt690

    Article  CAS  PubMed  Google Scholar 

  15. Marchini J, Howie B, Myers S et al (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39:906–913. doi:10.1038/ng2088

    Article  CAS  PubMed  Google Scholar 

  16. Bottolo L, Chadeau-hyam M, Hastie DI et al (2011) ESS++: a C++ objected-oriented algorithm for Bayesian stochastic search model exploration. Bioinformatics 27:587–588. doi:10.1093/bioinformatics/btq684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guan Y, Stephens M (2011) Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann Appl Stat 5:1780–1815

    Article  Google Scholar 

  18. Scott-Boyer MP, Imholte GC, Tayeb A et al (2012) An integrated hierarchical Bayesian model for multivariate eQTL mapping. Stat Appl Genet Mol Biol. doi: 10.1515/1544-6115.1760

  19. He X, Fuller CK, Song Y et al (2013) Sherlock: detecting gene-disease associations by matching patterns of expression QTL and GWAS. Am J Hum Genet 92:667–680. doi:10.1016/j.ajhg.2013.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Flutre T, Wen X, Pritchard J, Stephens M (2013) A statistical framework for joint eQTL analysis in multiple tissues. PLoS Genet 9:e1003486. doi:10.1371/journal.pgen.1003486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petretto E, Bottolo L, Langley SR et al (2010) New insights into the genetic control of gene expression using a Bayesian multi-tissue approach. PLoS Comput Biol 6:e1000737. doi:10.1371/journal.pcbi.1000737

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sul JH, Han B, Ye C et al (2013) Effectively identifying eQTLs from multiple tissues by combining mixed model and meta-analytic approaches. PLoS Genet 9:e1003491. doi:10.1371/journal.pgen.1003491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296:752–755. doi:10.1126/science.1069516

    Article  CAS  PubMed  Google Scholar 

  24. Dudoit S, Yang YH, Callow MJ, Speed TP (2002) Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat Sin 12:111–139. doi:10.1146/annurev.psych.53.100901.135153

    Google Scholar 

  25. Gerrits A, Li Y, Tesson BM et al (2009) Expression quantitative trait loci are highly sensitive to cellular differentiation state. PLoS Genet 5:e1000692. doi:10.1371/journal.pgen.1000692

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhou X, Stephens M (2014) Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat Methods 11:407–409. doi:10.1038/nmeth.2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Narahara M, Higasa K, Nakamura S et al (2014) Large-scale East-Asian eQTL mapping reveals novel candidate genes for LD mapping and the genomic landscape of transcriptional effects of sequence variants. PLoS One 9:e100924. doi:10.1371/journal.pone.0100924

    Article  PubMed  PubMed Central  Google Scholar 

  28. Duggal G, Wang H, Kingsford C (2014) Higher-order chromatin domains link eQTLs with the expression of far-away genes. Nucleic Acids Res 42:87–96. doi:10.1093/nar/gkt857

    Article  CAS  PubMed  Google Scholar 

  29. Gatti DM, Shabalin AA, Lam T-C et al (2009) FastMap: fast eQTL mapping in homozygous populations. Bioinformatics 25:482–489. doi:10.1093/bioinformatics/btn648

    Article  CAS  PubMed  Google Scholar 

  30. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300. doi:10.2307/2346101

    Google Scholar 

  31. GTEx Consortium (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45:580–585. doi:10.1038/ng.2653

    Article  Google Scholar 

  32. Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55–67. doi:10.1080/00401706.1970.10488634

    Article  Google Scholar 

  33. Tibshirani R (2011) Regression shrinkage and selection via the lasso: a retrospective. J R Stat Soc Ser B Stat Methodol 73:273–282. doi:10.1111/j.1467-9868.2011.00771.x

    Article  Google Scholar 

  34. Wu TT, Chen YF, Hastie T et al (2009) Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 25:714–721. doi:10.1093/bioinformatics/btp041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101:1418–1429. doi:10.1198/016214506000000735

    Article  CAS  Google Scholar 

  36. Tibshirani R, Saunders M, Rosset S et al (2005) Sparsity and smoothness via the fused lasso. J R Stat Soc Ser B Stat Methodol 67:91–108. doi:10.1111/j.1467-9868.2005.00490.x

    Article  Google Scholar 

  37. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol 67:301–320. doi:10.1111/j.1467-9868.2005.00503.x

    Article  Google Scholar 

  38. Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B 68:49–67. doi:10.1111/j.1467-9868.2005.00532.x

    Article  Google Scholar 

  39. Kim S, Xing EP (2009) Statistical estimation of correlated genome associations to a quantitative trait network. PLoS Genet 5:e1000587. doi:10.1371/journal.pgen.1000587

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang W, Zhang X (2011) Network-based group variable selection for detecting expression quantitative trait loci (eQTL). BMC Bioinformatics 12:269

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lee S, Xing EP (2012) Structured input-output Lasso, with application to eQTL mapping, and a thresholding algorithm for fast estimation. Available at: https://arxiv.org/abs/1205.1989

  42. Cheng W, Zhang X, Guo Z et al (2014) Graph-regularized dual Lasso for robust eQTL mapping. Bioinformatics 30:139–148. doi:10.1093/bioinformatics/btu293

    Article  Google Scholar 

  43. Kim S, Xing EP (2012) Tree-guided group lasso for multi-response regression with structured sparsity, with an application to eQTL mapping. Ann Appl Stat 6:1095–1117. doi:10.1214/12-AOAS549

    Article  Google Scholar 

  44. Leng C, Lin Y, Wahba G (2006) A note on the lasso and related procedures in model selection. Stat Sin 16:1273–1284

    Google Scholar 

  45. Rakitsch B, Lippert C, Stegle O, Borgwardt K (2013) A Lasso multi-marker mixed model for association mapping with population structure correction. Bioinformatics 29:206–214. doi:10.1093/bioinformatics/bts669

    Article  CAS  PubMed  Google Scholar 

  46. Brown AA, Richardson S, Whittaker J (2011) Application of the Lasso to expression quantitative trait loci mapping. Stat Appl Genet Mol Biol 10:1–35. doi:10.2202/1544-6115

    Google Scholar 

  47. Meinshausen N, Bühlmann P (2010) Stability selection. J R Stat Soc Ser B 72:417–473. doi:10.1111/j.1467-9868.2010.00740.x

    Article  Google Scholar 

  48. Shah RD, Samworth RJ (2013) Variable selection with error control: another look at stability selection. J R Stat Soc Ser B 75:55–80. doi:10.1111/j.1467-9868.2011.01034.x

    Article  Google Scholar 

  49. Waldmann P, Mészáros G, Gredler B et al (2013) Evaluation of the lasso and the elastic net in genome-wide association studies. Front Genet 4:270. doi:10.3389/fgene.2013.00270

    Article  PubMed  PubMed Central  Google Scholar 

  50. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22. doi:10.18637/jss.v033.i01

    Article  PubMed  PubMed Central  Google Scholar 

  51. Beaumont MA, Rannala B (2004) The Bayesian revolution in genetics. Nat Rev Genet 5:251–261. doi:10.1038/nrg1318

    Article  CAS  PubMed  Google Scholar 

  52. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795. doi:10.2307/2291091

    Article  Google Scholar 

  53. O’Hara RB, Sillanpää MJ (2009) A review of Bayesian variable selection methods: what, how and which. Bayesian Anal 4:85–117

    Article  Google Scholar 

  54. Servin B, Stephens M (2007) Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet 3:1296–1308. doi:10.1371/journal.pgen.0030114

    Article  CAS  Google Scholar 

  55. Stephens M, Balding DJ (2009) Bayesian statistical methods for genetic association studies. Nat Rev Genet 10:681–690. doi:10.1038/nrg2615

    Article  CAS  PubMed  Google Scholar 

  56. Lee S-I, Dudley AM, Drubin D et al (2009) Learning a prior on regulatory potential from eQTL data. PLoS Genet 5:e1000358. doi:10.1371/journal.pgen.1000358

    Article  PubMed  PubMed Central  Google Scholar 

  57. Das A, Morley M, Moravec CS et al (2015) Bayesian integration of genetics and epigenetics detects causal regulatory SNPs underlying expression variability. Nat Commun 6:8555. doi:10.1038/ncomms9555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7:781–791. doi:10.1038/nrg1916

    Article  CAS  PubMed  Google Scholar 

  59. Kendziorski CM, Chen M, Yuan M et al (2006) Statistical methods for expression quantitative trait loci (eQTL) mapping. Biometrics 62:19–27. doi:10.1111/j.1541-0420.2005.00437.x

    Article  CAS  PubMed  Google Scholar 

  60. Bottolo L, Richardsony S (2010) Evolutionary stochastic search for bayesian model exploration. Bayesian Anal 5:583–618. doi:10.1214/10-BA523

    Article  Google Scholar 

  61. Zhang M, Montooth KL, Wells MT et al (2005) Mapping multiple quantitative trait loci by Bayesian classification. Genetics 169:2305–2318. doi:10.1534/genetics.104.034181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang M, Zhang D, Wells MT (2008) Variable selection for large p small n regression models with incomplete data: mapping QTL with epistases. BMC Bioinformatics 9:251. doi:10.1186/1471-2105-9-251

    Article  PubMed  PubMed Central  Google Scholar 

  63. Liu J, Liu Y, Liu X, Deng H-W (2007) Bayesian mapping of quantitative trait loci for multiple complex traits with the use of variance components. Am J Hum Genet 81:304–320. doi:10.1086/519495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chun H (2009) Expression quantitative trait loci mapping with multivariate sparse partial least squares regression. Genetics 182:79–90. doi:10.1534/genetics.109.100362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen W, Ghosh D, Raghunathan TE, Sargent DJ (2009) Bayesian variable selection with joint modeling of categorical and survival outcomes: an application to individualizing chemotherapy treatment in advanced colorectal cancer. Biometrics 65:1030–1040. doi:10.1111/j.1541-0420.2008.01181.x

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chipman H, George EI, McCulloch RE (2001) The practical implementation of Bayesian model selection. Institute of Mathematical Statistics, Beachwood, OH, pp 65–116

    Google Scholar 

  67. Brown PJ, Vannucci M, Fearn T (2002) Bayes model averaging with selection of regressors. J R Stat Soc Ser B 64:519–536. doi:10.1111/1467-9868.00348

    Article  Google Scholar 

  68. Park T, Casella G (2008) The Bayesian Lasso. J Am Stat Assoc 103:681–686. doi:10.1198/016214508000000337

    Article  CAS  Google Scholar 

  69. Carvalho CM, Polson NG, Scott JG (2010) The horseshoe estimator for sparse signals. Biometrika 97:465–480. doi:10.1093/biomet/asq017

    Article  Google Scholar 

  70. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38, 10.1.1.133.4884

    Google Scholar 

  71. Ročková V, George EI (2014) EMVS: the EM approach to Bayesian variable selection. J Am Stat Assoc 109:828–846. doi:10.1080/01621459.2013.869223

  72. Gelfand AE, Smith AFM (2012) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85:398–409. doi: 10.1080/01621459.1990.10476213

  73. Hans C, Dobra A, West M (2007) Shotgun stochastic search for “Large p ” regression. J Am Stat Assoc 102:507–516. doi:10.1198/016214507000000121

    Article  CAS  Google Scholar 

  74. Bottolo L, Petretto E, Blankenberg S et al (2011) Bayesian detection of expression quantitative trait loci hot spots. Genetics 189:1449–1459. doi:10.1534/genetics.111.131425

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bottolo L, Chadeau-Hyam M, Hastie DI et al (2013) GUESS-ing polygenic associations with multiple phenotypes using a GPU-based evolutionary stochastic search algorithm. PLoS Genet 9:e1003657. doi:10.1371/journal.pgen.1003657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Barbieri MM, Berger JO (2015) Optimal predictive model selection. Ann Stat 32:870–897

    Google Scholar 

  77. Broët P, Lewin A, Richardson S et al (2004) A mixture model-based strategy for selecting sets of genes in multiclass response microarray experiments. Bioinformatics 20:2562–2571. doi:10.1093/bioinformatics/bth285

    Article  PubMed  Google Scholar 

  78. Efron B (2008) Microarrays, empirical bayes and the two-groups model. Stat Sci 23:1–22. doi:10.1214/08-STS236REJ

    Article  Google Scholar 

  79. Strimmer K (2008) fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 24:1461–1462. doi:10.1093/bioinformatics/btn209

    Article  CAS  PubMed  Google Scholar 

  80. Zellner A, Siow A (1980) Posterior odds ratios for selected regression hypotheses. Trab Estad Y Investig Oper 31:585–603. doi:10.1007/BF02888369

    Article  Google Scholar 

  81. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109. doi:10.2307/2334940

    Article  Google Scholar 

  82. Eiben AE, Raué PE, Ruttkay Z (1994) Genetic algorithms with multi-parent recombination. In: Parallel problem solving from nature — PPSN III. Springer, Heidelberg, pp 78–87

    Chapter  Google Scholar 

  83. Lewin A, Saadi H, Peters JE et al (2016) MT-HESS: an efficient Bayesian approach for simultaneous association detection in OMICS datasets, with application to eQTL mapping in multiple tissues. Bioinformatics 32:523–32. doi:10.1093/bioinformatics/btv568

    Article  CAS  PubMed  Google Scholar 

  84. Ardlie KG, Deluca DS, Segre AV et al (2015) The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648–660. doi:10.1126/science.1262110

    Article  Google Scholar 

  85. Todorov V, Filzmoser P (2010) Robust statistic for the one-way MANOVA. Comput Stat Data Anal 54:37–48. doi:10.1016/j.csda.2009.08.015

    Article  Google Scholar 

  86. Kim S, Becker J, Bechheim M et al (2014) Characterizing the genetic basis of innate immune response in TLR4-activated human monocytes. Nat Commun 5:5236. doi:10.1038/ncomms6236

    Article  CAS  PubMed  Google Scholar 

  87. Chen X, Shi X, Xu X et al (2012) A two-graph guided multi-task Lasso approach for eQTL mapping. ece.ubc.ca XX:208–217

    Google Scholar 

  88. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188. doi:10.1214/aos/1013699998

    Article  Google Scholar 

  89. Hofner B, Boccuto L, Göker M (2015) Controlling false discoveries in high-dimensional situations: boosting with stability selection. BMC Bioinformatics 16:144

    Article  PubMed  PubMed Central  Google Scholar 

  90. Heinig M, Petretto E, Wallace C et al (2010) A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature 467:460–464. doi:10.1038/nature09386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Grundberg E, Small KS, Hedman ÅK et al (2012) Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat Genet 44:1084–1089. doi:10.1038/ng.2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu TT, Lange K (2008) Coordinate descent algorithms for lasso penalized regression. Ann Appl Stat 2:224–244

    Article  Google Scholar 

  93. Gelfond JAL, Ibrahim JG, Zou F (2007) Proximity model for expression quantitative trait loci (eQTL) detection. Biometrics 63:1108–1116. doi:10.1111/j.1541-0420.2007.00778.x

    Article  CAS  PubMed  Google Scholar 

  94. Wakefield J (2009) Bayes factors for genome-wide association studies: comparison with P-values. Genet Epidemiol 33:79–86. doi:10.1002/gepi.20359

    Article  PubMed  Google Scholar 

  95. Emilsson V, Thorleifsson G, Zhang B et al (2008) Genetics of gene expression and its effect on disease. Nature 452:423–428. doi:10.1038/nature06758

    Article  CAS  PubMed  Google Scholar 

  96. Westra H-J, Peters MJ, Esko T et al (2013) Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 45:1238–1243. doi:10.1038/ng.2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from Medical Research Council Grant G 1002319 (L.B.), MR/M013138/1 (L.B.), MR/M004716/1 (M.I. and E.P.) and Duke-NUS Graduate Medical School Singapore (E.P.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enrico Petretto or Leonardo Bottolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Imprialou, M., Petretto, E., Bottolo, L. (2017). Expression QTLs Mapping and Analysis: A Bayesian Perspective. In: Schughart, K., Williams, R. (eds) Systems Genetics. Methods in Molecular Biology, vol 1488. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6427-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6427-7_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6425-3

  • Online ISBN: 978-1-4939-6427-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics