Skip to main content

Structural Studies of ERK2 Protein Complexes

  • Protocol
  • First Online:
Book cover ERK Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1487))

Abstract

ERK1 and ERK2 (ERK1/2) are the primary effector kinases of the RAS-RAF-MEK-ERK signaling pathway. A variety of substrates and regulatory partners associate with ERK1/2 through distinct D-peptide- and DEF-docking sites on their kinase domains. While understanding of D-peptides that bind to ERK1/2 has become increasingly clear over the last decade, only more recently have structures of proteins interacting with other binding sites on ERK1/2 become available. PEA-15 is a 130-residue ERK1/2 regulator that engages both the D-peptide- and DEF-docking sites of ERK kinases, and directly sequesters the ERK2 activation loop in various different phosphorylation states. Here we describe the methods used to derive crystallization-grade complexes of ERK2-PEA-15, which may also be adapted for other regulators that associate with the activation loop of ERK1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912

    Article  CAS  PubMed  Google Scholar 

  2. Plotnikov A, Zehorai E, Procaccia S et al (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 1813:1619–1633

    Article  CAS  PubMed  Google Scholar 

  3. Kan Z, Jaiswal BS, Stinson J et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466:869–873

    Article  CAS  PubMed  Google Scholar 

  4. Gray-Schopfer V, Wellbrock C, Marais R (2007) Melanoma biology and new targeted therapy. Nature 445:851–857

    Article  CAS  PubMed  Google Scholar 

  5. Roskoski R (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66:105–143

    Article  CAS  PubMed  Google Scholar 

  6. Kim EK, Choi E-J (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802:396–405

    Article  CAS  PubMed  Google Scholar 

  7. Tidyman WE, Rauen KA (2009) The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev 19:230–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chico LK, Van Eldik LJ, Watterson DM (2009) Targeting protein kinases in central nervous system disorders. Nat Rev Drug Discov 8:892–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Good MC, Zalatan JG, Lim WA (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:680–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Y-Y, Wu J-W, Wang Z-X (2011) Mitogen-activated protein kinase (MAPK) phosphatase 3-mediated cross-talk between MAPKs ERK2 and p38alpha. J Biol Chem 286:16150–16162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caunt CJ, Keyse SM (2013) Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of MAP kinase signalling. FEBS J 280:489–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yao Y, Li W, Wu J et al (2003) Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proc Natl Acad Sci U S A 100:12759–12764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kornev AP, Taylor SS (2010) Defining the conserved internal architecture of a protein kinase. Biochim Biophys Acta 1804:440–444

    Article  CAS  PubMed  Google Scholar 

  14. Taylor SS, Kornev AP (2011) Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci 36:65–77

    Article  CAS  PubMed  Google Scholar 

  15. Haystead TA, Dent P, Wu J et al (1992) Ordered phosphorylation of p42mapk by MAP kinase kinase. FEBS Lett 306:17–22

    Article  CAS  PubMed  Google Scholar 

  16. Burack WR, Sturgill TW (1997) The activating dual phosphorylation of MAPK by MEK is nonprocessive. Biochemistry 36:5929–5933

    Article  CAS  PubMed  Google Scholar 

  17. Ferrell JE, Bhatt RR (1997) Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase. J Biol Chem 272:19008–19016

    Article  CAS  PubMed  Google Scholar 

  18. Prowse CN, Lew J (2001) Mechanism of activation of ERK2 by dual phosphorylation. J Biol Chem 276:99–103

    Article  CAS  PubMed  Google Scholar 

  19. Canagarajah BJ, Khokhlatchev A, Cobb MH et al (1997) Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90:859–869

    Article  CAS  PubMed  Google Scholar 

  20. Casar B, Pinto A, Crespo P (2009) ERK dimers and scaffold proteins: unexpected partners for a forgotten (cytoplasmic) task. Cell Cycle 8:1007–1013

    Article  CAS  PubMed  Google Scholar 

  21. Casar B, Pinto A, Crespo P (2008) Essential role of ERK dimers in the activation of cytoplasmic but not nuclear substrates by ERK-scaffold complexes. Mol Cell 31:708–721

    Article  CAS  PubMed  Google Scholar 

  22. Khokhlatchev AV, Canagarajah B, Wilsbacher J et al (1998) Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93:605–615

    Article  CAS  PubMed  Google Scholar 

  23. Herrero A, Pinto A, Colón-Bolea P et al (2015) Small molecule inhibition of ERK dimerization prevents tumorigenesis by RAS-ERK pathway oncogenes. Cancer Cell 28:170–182

    Article  CAS  PubMed  Google Scholar 

  24. Zhou T, Sun L, Humphreys J et al (2006) Docking interactions induce exposure of activation loop in the MAP kinase ERK2. Structure 14:1011–1019

    Article  CAS  PubMed  Google Scholar 

  25. Ma W, Shang Y, Wei Z et al (2010) Phosphorylation of DCC by ERK2 is facilitated by direct docking of the receptor P1 domain to the kinase. Structure 18:1502–1511

    Article  CAS  PubMed  Google Scholar 

  26. Liu S, Sun J-P, Zhou B et al (2006) Structural basis of docking interactions between ERK2 and MAP kinase phosphatase 3. Proc Natl Acad Sci U S A 103:5326–5331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garai A, Zeke A, Gógl G et al (2012) Specificity of linear motifs that bind to a common mitogen-activated protein kinase docking groove. Sci Signal 5:74

    Article  Google Scholar 

  28. Lee T, Hoofnagle AN, Kabuyama Y et al (2004) Docking motif interactions in MAP kinases revealed by hydrogen exchange mass spectrometry. Mol Cell 14:43–55

    Article  CAS  PubMed  Google Scholar 

  29. Peti W, Page R (2013) Molecular basis of MAP kinase regulation. Protein Sci 22:1698–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Francis DM, Różycki B, Tortajada A et al (2011) Resting and active states of the ERK2:HePTP complex. J Am Chem Soc 133:17138–17141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mace PD, Wallez Y, Egger MF et al (2013) Structure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK. Nat Commun 4:1681

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kummer L, Parizek P, Rube P et al (2012) Structural and functional analysis of phosphorylation-specific binders of the kinase ERK from designed ankyrin repeat protein libraries. Proc Natl Acad Sci U S A 109:E2248–E2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alexa A, Gógl G, Glatz G et al (2015) Structural assembly of the signaling competent ERK2-RSK1 heterodimeric protein kinase complex. Proc Natl Acad Sci U S A 112:2711–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu J, Rossomando AJ, Her JH (1991) Autophosphorylation in vitro of recombinant 42-kilodalton mitogen-activated protein kinase on tyrosine. Proc Natl Acad Sci U S A 88:9508–9512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seeliger MA, Young M, Henderson MN et al (2005) High yield bacterial expression of active c-Abl and c-Src tyrosine kinases. Protein Sci 14:3135–3139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Khokhlatchev A, Xu S, English J et al (1997) Reconstitution of mitogen-activated protein kinase phosphorylation cascades in bacteria. Efficient synthesis of active protein kinases. J Biol Chem 272:11057–11062

    Article  CAS  PubMed  Google Scholar 

  37. Luna-Vargas MPA, Christodoulou E, Alfieri A et al (2011) Enabling high-throughput ligation-independent cloning and protein expression for the family of ubiquitin specific proteases. J Struct Biol 175:113–119

    Article  CAS  PubMed  Google Scholar 

  38. Butt TR, Edavettal SC, Hall JP et al (2005) SUMO fusion technology for difficult-to-express proteins. Protein Expr Purif 43:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01AA017238, 1R01CA160457 (to S.J.R.), and a DOD-BCRP Fellowship BC100466 to P.D.M. P.D.M. and J.F.W. are currently supported by a Rutherford Discovery Fellowship from the New Zealand government administered by the Royal Society of New Zealand (to P.D.M.). The original pET-LIC vector used in this work was kindly gifted by the Netherlands Cancer Institute (NKI) Protein Facility with funding from grant no. 175.010.2007.012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Mace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Weijman, J.F., Riedl, S.J., Mace, P.D. (2017). Structural Studies of ERK2 Protein Complexes. In: Jimenez, G. (eds) ERK Signaling. Methods in Molecular Biology, vol 1487. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6424-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6424-6_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6422-2

  • Online ISBN: 978-1-4939-6424-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics