Skip to main content

3D Organotypic Culture Model to Study Components of ERK Signaling

  • Protocol
  • First Online:
ERK Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1487))

Abstract

Organotypic models are 3D in vitro representations of an in vivo environment. Their complexity can range from an epidermal replica to the establishment of a cancer microenvironment. These models have been used for many years, in an attempt to mimic the structure and function of cells and tissues found inside the body. Methods for developing 3D organotypic models differ according to the tissue of interest and the experimental design. For example, cultures may be grown submerged in culture medium and or at an air–liquid interface. Our group is focusing on an air–liquid interface 3D organotypic model. These cultures are grown on a nylon membrane-covered metal grid with the cells embedded in a Collagen-Matrigel gel. This allows cells to grow in an air–liquid interface to enable diffusion and nourishment from the medium below. Subsequently, the organotypic cultures can be used for immunohistochemical staining of various components of ERK signaling, which is a key player in mediating communication between cells and their microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benbrook D (2006) Organotypic cultures represent tumor microenvironment for drug testing. Drug Discov Today 3:143–148

    Article  Google Scholar 

  2. van der Worp HB, Howells DW, Sena ES et al (2010) Can animal models of disease reliably inform human studies? PLoS Med 7, e1000245

    Article  PubMed  PubMed Central  Google Scholar 

  3. Coleman SJ, Chioni AM, Ghallab M et al (2014) Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Mol Med 6:467–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chioni AM, Grose R (2008) Organotypic modelling as a means of investigating epithelial-stromal interactions during tumourigenesis. Fibrogenesis Tissue Repair 1:8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Freeman AE, Igel HJ, Herrman BJ et al (1976) Growth and characterization of human skin epithelial cell cultures. In Vitro 12:352–362

    Article  CAS  PubMed  Google Scholar 

  6. Regnier M, Pautrat G, Pauly G et al (1984) Natural substrates for the reconstruction of skin in vitro. Br J Dermatol 111(Suppl 27):223–224

    Article  PubMed  Google Scholar 

  7. Boelsma E, Gibbs S, Faller C et al (2000) Characterization and comparison of reconstructed skin models: morphological and immunohistochemical evaluation. Acta Derm Venereol 80:82–88

    CAS  PubMed  Google Scholar 

  8. Gangatirkar P, Paquet-Fifield S, Li A et al (2007) Establishment of 3D organotypic cultures using human neonatal epidermal cells. Nat Protoc 2:178–186

    Article  CAS  PubMed  Google Scholar 

  9. Duval JL, Dinis T, Vidal G et al (2014) Organotypic culture to assess cell adhesion, growth and alignment of different organs on silk fibroin. J Tissue Eng Regen Med. doi:10.1002/term.1916

    Google Scholar 

  10. Margulis A, Zhang W, Garlick JA (2005) In vitro fabrication of engineered human skin. Methods Mol Biol 289:61–70

    PubMed  Google Scholar 

  11. Stark HJ, Szabowski A, Fusenig NE et al (2004) Organotypic cocultures as skin equivalents: a complex and sophisticated in vitro system. Biol Proceed Online 6:55–60

    Article  CAS  Google Scholar 

  12. Barker CL, McHale MT, Gillies AK et al (2004) The development and characterization of an in vitro model of psoriasis. J Invest Dermatol 123:892–901

    Article  CAS  PubMed  Google Scholar 

  13. Ridky TW, Chow JM, Wong DJ et al (2010) Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia. Nat Med 16:1450–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holliday DL, Hughes S, Shaw JA et al (2007) Intrinsic genetic characteristics determine tumor-modifying capacity of fibroblasts: matrix metalloproteinase-3 5A/5A genotype enhances breast cancer cell invasion. Breast Cancer Res 9:R67

    Article  PubMed  PubMed Central  Google Scholar 

  15. Luqmani YA, Graham M, Coombes RC (1992) Expression of basic fibroblast growth factor, FGFR1 and FGFR2 in normal and malignant human breast, and comparison with other normal tissues. Br J Cancer 66:273–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meyers C (2002) Epithelial cell culture: three dimensional cervical system. In: Atala A, Lanza RP (eds) Methods of tissue engineering. Academic, San Diego, CA, pp 263–264

    Google Scholar 

  17. Gregoire L, Munkarah A, Rabah R et al (1998) Organotypic culture of human ovarian surface epithelial cells: a potential model for ovarian carcinogenesis. In Vitro Cell Dev Biol Anim 34:636–639

    Article  CAS  PubMed  Google Scholar 

  18. Quiros RM, Valianou M, Kwon Y et al (2008) Ovarian normal and tumor-associated fibroblasts retain in vivo stromal characteristics in a 3-D matrix-dependent manner. Gynecol Oncol 110:99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Papini S, Rosellini A, De Matteis A et al (2007) Establishment of an organotypic in vitro culture system and its relevance to the characterization of human prostate epithelial cancer cells and their stromal interactions. Pathol Res Pract 203:209–216

    Article  PubMed  Google Scholar 

  20. Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 15:647–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nguyen-Ngoc KV, Shamir ER, Huebner RJ et al (2015) 3D culture assays of murine mammary branching morphogenesis and epithelial invasion. Methods Mol Biol 1189:135–162

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shamir ER, Ewald AJ (2015) Adhesion in mammary development: novel roles for E-cadherin in individual and collective cell migration. Curr Top Dev Biol 112:353–382

    Article  PubMed  PubMed Central  Google Scholar 

  23. Froeling FE, Marshall JF, Kocher HM (2010) Pancreatic cancer organotypic cultures. J Biotechnol 148:16–23

    Article  CAS  PubMed  Google Scholar 

  24. Chioni AM, Grose R (2012) FGFR1 cleavage and nuclear translocation regulates breast cancer cell behavior. J Cell Biol 197:801–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Debnath J, Brugge JS (2005) Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 5:675–688

    Article  CAS  PubMed  Google Scholar 

  26. Nelson CM, Bissell MJ (2005) Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin Cancer Biol 15:342–352

    Article  PubMed  PubMed Central  Google Scholar 

  27. Holliday DL, Brouilette KT, Markert A et al (2009) Novel multicellular organotypic models of normal and malignant breast: tools for dissecting the role of the microenvironment in breast cancer progression. Breast Cancer Res 11:R3

    Article  PubMed  PubMed Central  Google Scholar 

  28. Westcott JM, Prechtl AM, Maine EA et al (2015) An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest 125:1927–1943

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jeon JS, Bersini S, Gilardi M et al (2015) Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci U S A 112:214–219

    Article  CAS  PubMed  Google Scholar 

  30. White EA, Kenny HA, Lengyel E (2014) Three-dimensional modeling of ovarian cancer. Adv Drug Deliv Rev 79–80:184–192

    Article  PubMed  Google Scholar 

  31. Lengyel E, Burdette JE, Kenny HA et al (2014) Epithelial ovarian cancer experimental models. Oncogene 33:3619–3633

    Article  CAS  PubMed  Google Scholar 

  32. Kenny HA, Dogan S, Zillhardt M et al (2009) Organotypic models of metastasis: A three-dimensional culture mimicking the human peritoneum and omentum for the study of the early steps of ovarian cancer metastasis. Cancer Treat Res 149:335–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kenny HA, Lal-Nag M, White EA et al (2014) Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy. Nat Commun 6:6220

    Article  Google Scholar 

  34. Hjelm BE, Berta AN, Nickerson CA et al (2010) Development and characterization of a three-dimensional organotypic human vaginal epithelial cell model. Biol Reprod 82:617–627

    Article  CAS  PubMed  Google Scholar 

  35. Carlson MW, Iyer VR, Marcotte EM (2007) Quantitative gene expression assessment identifies appropriate cell line models for individual cervical cancer pathways. BMC Genomics 8:117

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jacobs N, Moutschen MP, Franzen-Detrooz E et al (1998) Organotypic culture of HPV-transformed keratinocytes: a model for testing lymphocyte infiltration of (pre)neoplastic lesions of the uterine cervix. Virchows Arch 432:323–330

    Article  CAS  PubMed  Google Scholar 

  37. Benbrook DM, Rogers RS, Medlin MA et al (1995) Immunohistochemical analysis of proliferation and differentiation in organotypic cultures of cervical tumor cell lines. Tissue Cell 27:269–274

    Article  CAS  PubMed  Google Scholar 

  38. Corson LB, Yamanaka Y, Lai KM et al (2003) Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development 130:4527–4537

    Article  CAS  PubMed  Google Scholar 

  39. Uehling DE, Harris PA (2015) Recent progress on MAP kinase pathway inhibitors. Bioorg Med Chem Lett 25:4047–4056

    Article  CAS  PubMed  Google Scholar 

  40. Coleman SJ, Watt J, Arumugam P et al (2014) Pancreatic cancer organotypics: High throughput, preclinical models for pharmacological agent evaluation. World J Gastroenterol 20:8471–8481

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We would like to thank Miss Chandy Bundy for Fig. 1, which was part of her M.Sc. project under Dr. Chioni’s supervision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athina-Myrto Chioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chioni, AM., Bajwa, R.T., Grose, R. (2017). 3D Organotypic Culture Model to Study Components of ERK Signaling. In: Jimenez, G. (eds) ERK Signaling. Methods in Molecular Biology, vol 1487. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6424-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6424-6_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6422-2

  • Online ISBN: 978-1-4939-6424-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics