Skip to main content

Quantifying Tensile Force and ERK Phosphorylation on Actin Stress Fibers

  • Protocol
  • First Online:
Book cover ERK Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1487))

Abstract

ERK associates with the actin cytoskeleton, and the actin-associated pool of ERK can be activated (phosphorylated in the activation loop) to induce specific cell responses. Increasing evidence has shown that mechanical conditions of cells significantly affect ERK activation. In particular, tension developed in the actin cytoskeleton has been implicated as a critical mechanism driving ERK signaling. However, a quantitative study of the relationship between actin tension and ERK phosphorylation is missing. In this chapter, we describe our novel methods to quantify tensile force and ERK phosphorylation on individual actin stress fibers. These methods have enabled us to show that ERK is activated on stress fibers in a tensile force-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramos JW (2008) The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol 40:2707–2719

    Article  CAS  PubMed  Google Scholar 

  2. Helfman DM, Pawlak G (2005) Myosin light chain kinase and acto-myosin contractility modulate activation of the ERK cascade downstream of oncogenic Ras. J Cell Biochem 95:1069–1080

    Article  CAS  PubMed  Google Scholar 

  3. Paszek MJ, Zahir N, Johnson KR et al (2005) Tension homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  CAS  PubMed  Google Scholar 

  4. Sadoshima J, Izumo S (1993) Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J 12:1681–1692

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sawada Y, Nakamura K, Doi K et al (2001) Rap1 is involved in cell stretching modulation of p38 but not ERK or JNK MAP kinase. J Cell Sci 114:1221–1227

    CAS  PubMed  Google Scholar 

  6. Assoian RK, Klein EA (2008) Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol 18:347–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Numaguchi K, Eguchi S, Yamakawa T et al (1999) Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments. Circ Res 85:5–11

    Article  CAS  PubMed  Google Scholar 

  8. Vetterkind S, Poythress RH, Lin QQ et al (2013) Hierarchical scaffolding of an ERK1/2 activation pathway. Cell Commun Signal 11:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hirata H, Gupta M, Vedula SRK et al (2015) Actomyosin bundles serve as a tension sensor and a platform for ERK activation. EMBO Rep 16:250–257

    Article  CAS  PubMed  Google Scholar 

  10. Conrad PA, Nederlof MA, Herman IM et al (1989) Correlated distribution of actin, myosin, and microtubules at the leading edge of migrating Swiss 3T3 fibroblasts. Cell Motil Cytoskeleton 14:527–543

    Article  CAS  PubMed  Google Scholar 

  11. Walston T, Hardin J (2011) Visualizing cell contacts and cell polarity in Caenorhabditis elegans embryos. In: Sharpe J, Wong R (eds) Imaging in developmental biology: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  12. Gupta M, Kocgozlu L, Sarangi BR et al (2015) Micropillar substrates: a tool for studying cell mechanobiology. Methods Cell Biol 125:289–308

    Article  PubMed  Google Scholar 

  13. Hirata H, Tatsumi H, Sokabe M (2008) Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. J Cell Sci 121:2795–2804

    Article  CAS  PubMed  Google Scholar 

  14. Hirata H, Tatsumi H, Lim CT et al (2014) Force-dependent vinculin binding to talin in live cells: a crucial step in anchoring the actin cytoskeleton to focal adhesions. Am J Physiol Cell Physiol 306:C607–C620

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Seed Fund from the Mechanobiology Institute at the National University of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Hirata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hirata, H., Gupta, M., Vedula, S.R.K., Lim, C.T., Ladoux, B., Sokabe, M. (2017). Quantifying Tensile Force and ERK Phosphorylation on Actin Stress Fibers. In: Jimenez, G. (eds) ERK Signaling. Methods in Molecular Biology, vol 1487. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6424-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6424-6_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6422-2

  • Online ISBN: 978-1-4939-6424-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics