Skip to main content

Global Identification of ERK Substrates by Phosphoproteomics Based on IMAC and 2D-DIGE

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1487))

Abstract

Extracellular signal-regulated kinase (ERK) regulates various cellular functions through phosphorylation of numerous downstream substrates, which have not yet been fully characterized. To date, several phosphoproteomic approaches have been employed to identify novel substrates for ERK. In this chapter, we describe a method to globally identify ERK substrates by combining immobilized metal affinity chromatography (IMAC) and two-dimensional difference gel electrophoresis (2D-DIGE) followed by mass spectrometry. Phosphoprotein enrichment by IMAC enables the subsequent detection of many protein spots with different fluorescence intensities between ERK-inhibited and -activated cells in 2D-DIGE analysis. Furthermore, the advanced sensitivity and resolution of liquid chromatography coupled with tandem mass spectrometry allow for a direct identification of proteins obtained from silver-stained 2D-DIGE gels. Validation experiments such as Phos-tag Western blotting are important steps to further elucidate the functional roles of ERK-mediated phosphorylation of these newly identified substrates.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Roskoski R Jr (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66:105–143

    Article  CAS  PubMed  Google Scholar 

  2. Kosako H, Gotoh Y, Nishida E (1994) Requirement for the MAP kinase kinase/MAP kinase cascade in Xenopus oocyte maturation. EMBO J 13:2131–2138

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kyriakis JM, App H, Zhang XF et al (1992) Raf-1 activates MAP kinase-kinase. Nature 358:417–421

    Article  CAS  PubMed  Google Scholar 

  4. Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44

    Article  CAS  PubMed  Google Scholar 

  5. Hornbeck PV, Zhang B, Murray B et al (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43:D512–D520

    Article  PubMed  Google Scholar 

  6. Fukunaga R, Hunter T (1997) MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 16:1921–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eblen ST, Kumar NV, Shah K et al (2003) Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs. J Biol Chem 278:14926–14935

    Article  CAS  PubMed  Google Scholar 

  8. Lewis TS, Hunt JB, Aveline LD et al (2000) Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol Cell 6:1343–1354

    Article  CAS  PubMed  Google Scholar 

  9. Old WM, Shabb JB, Houel S et al (2009) Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Mol Cell 34:115–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pan C, Olsen JV, Daub H et al (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8:2796–2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carlson SM, Chouinard CR, Labadorf A et al (2011) Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3. Sci Signal 4:rs11

    Google Scholar 

  12. Courcelles M, Frémin C, Voisin L et al (2013) Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions. Mol Syst Biol 9:669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guerrera IC, Predic-Atkinson J, Kleiner O et al (2005) Enrichment of phosphoproteins for proteomic analysis using immobilized Fe(III)-affinity adsorption chromatography. J Proteome Res 4:1545–1553

    Article  CAS  PubMed  Google Scholar 

  14. Dubrovska A, Souchelnytskyi S (2005) Efficient enrichment of intact phosphorylated proteins by modified immobilized metal-affinity chromatography. Proteomics 5:4678–4683

    Article  CAS  PubMed  Google Scholar 

  15. Machida M, Kosako H, Shirakabe K et al (2007) Purification of phosphoproteins by immobilized metal affinity chromatography and its application to phosphoproteome analysis. FEBS J 274:1576–1587

    Article  CAS  PubMed  Google Scholar 

  16. Kosako H, Yamaguchi N, Aranami C et al (2009) Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nat Struct Mol Biol 16:1026–1035

    Article  CAS  PubMed  Google Scholar 

  17. Unlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  Google Scholar 

  18. Tonge R, Shaw J, Middleton B et al (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377–396

    Article  CAS  PubMed  Google Scholar 

  19. Ueda K, Kosako H, Fukui Y et al (2004) Proteomic identification of Bcl2-associated athanogene 2 as a novel MAPK-activated protein kinase 2 substrate. J Biol Chem 279:41815–41821

    Article  CAS  PubMed  Google Scholar 

  20. Santamaría E, Sánchez-Quiles V, Fernández-Irigoyen J et al (2012) A combination of affinity chromatography, 2D DIGE, and mass spectrometry to analyze the phosphoproteome of liver progenitor cells. Methods Mol Biol 909:165–180

    PubMed  Google Scholar 

  21. Deng Z, Bu S, Wang Z-Y (2012) Quantitative analysis of protein phosphorylation using two-dimensional difference gel electrophoresis. Methods Mol Biol 876:47–66

    Article  CAS  PubMed  Google Scholar 

  22. Nakaya M, Tajima M, Kosako H et al (2013) GRK6 deficiency in mice causes autoimmune disease due to impaired apoptotic cell clearance. Nat Commun 4:1532

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tang W, Kim TW, Oses-Prieto JA et al (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321:557–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kosako H, Nagano K (2011) Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev Proteomics 8:81–94

    Article  CAS  PubMed  Google Scholar 

  25. Pritchard CA, Samuels ML, Bosch E et al (1995) Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol Cell Biol 15:6430–6442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kondo T, Hirohashi S (2006) Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics. Nat Protoc 1:2940–2956

    Article  CAS  PubMed  Google Scholar 

  27. Shevchenko A, Tomas H, Havlis J et al (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  Google Scholar 

  28. Kinoshita-Kikuta E, Aoki Y, Kinoshita E et al (2007) Label-free kinase profiling using phosphate affinity polyacrylamide gel electrophoresis. Mol Cell Proteomics 6:356–366

    Article  CAS  PubMed  Google Scholar 

  29. Kosako H (2009) Phos-tag Western blotting for detecting stoichiometric protein phosphorylation in cells. Protoc Exch. doi:10.1038/nprot.2009.170

    Google Scholar 

  30. Han MY, Kosako H, Watanabe T et al (2007) Extracellular signal-regulated kinase/mitogen-activated protein kinase regulates actin organization and cell motility by phosphorylating the actin cross-linking protein EPLIN. Mol Cell Biol 27:8190–8204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mitchell DJ, Blasier KR, Jeffery ED et al (2012) Trk activation of the ERK1/2 kinase pathway stimulates intermediate chain phosphorylation and recruits cytoplasmic dynein to signaling endosomes for retrograde axonal transport. J Neurosci 32:15495–15510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Megumi Kawano, Mayumi Kajimoto, and Junya Yabuno for experimental assistance, Mayumi Iwata for secretarial assistance, Dr. Maria Tsoumpra for helpful advice, and Dr. Naoki Tani for mass spectrometry analysis. This work was supported by JSPS KAKENHI Grant Numbers 23570231 and 26440101, and the program of the Joint Usage/Research Center for Developmental Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University to H.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetaka Kosako .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kosako, H., Motani, K. (2017). Global Identification of ERK Substrates by Phosphoproteomics Based on IMAC and 2D-DIGE. In: Jimenez, G. (eds) ERK Signaling. Methods in Molecular Biology, vol 1487. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6424-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6424-6_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6422-2

  • Online ISBN: 978-1-4939-6424-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics