Skip to main content

Protocols for Investigating the Microbial Communities of Oil and Gas Reservoirs

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Recent studies have shown that microorganisms and microbial activity in oil reservoirs and the associated production systems are much more prominent than was originally thought. These findings, in conjunction with technological advances in bio-related disciplines, have revolutionized the way we understand and manage these biological processes.

Here we present a series of protocols outlining the best practices for handling core and produced fluid material from petroleum reservoirs for isolation of nucleic acids, microbial profiling, and whole metagenome sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ollivier B, Magot M (2005) Petroleum microbiology. ASM Press, Washington, p 365

    Google Scholar 

  2. Hubert C (2010) Microbial ecology of oil reservoir souring and its control by nitrate injection. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg, pp 2753–2766

    Chapter  Google Scholar 

  3. Whitby C, Skovhus TL (2011) Applied microbiology and molecular biology in oilfield systems. Springer, Netherlands, p 279

    Book  Google Scholar 

  4. Skovhus TL, Caffrey SM, Hubert CRJ (2014) Applications of molecular microbiological methods. Caister Academic Press, United Kingdom, p 214

    Google Scholar 

  5. Kaster KM et al (2009) Characterisation of culture-independent and -dependent microbial communities in a high-temperature offshore chalk petroleum reservoir. Antonie Van Leeuwenhoek 96(4):423–439

    Article  PubMed  Google Scholar 

  6. Orphan VJ et al (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66(2):700–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang F et al (2010) Response of microbial community structure to microbial plugging in a mesothermic petroleum reservoir in China. Appl Microbiol Biotechnol 88(6):1413–1422

    Article  CAS  PubMed  Google Scholar 

  8. Wang LY et al (2014) Comparison of bacterial community in aqueous and oil phases of water-flooded petroleum reservoirs using pyrosequencing and clone library approaches. Appl Microbiol Biotechnol 98(9):4209–4221

    Article  CAS  PubMed  Google Scholar 

  9. Meckenstock RU et al (2014) Oil biodegradation. Water droplets in oil are microhabitats for microbial life. Science 345(6197):673–676

    Article  CAS  PubMed  Google Scholar 

  10. Bennett B et al (2013) The controls on the composition of biodegraded oils in the deep subsurface – Part 3. The impact of microorganism distribution on petroleum geochemical gradients in biodegraded petroleum reservoirs. Org Geochem 56:94–105

    Article  CAS  Google Scholar 

  11. Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426(6964):344–352

    Article  CAS  PubMed  Google Scholar 

  12. Magot M (2005) Indigenous microbial communities in oil fields. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, pp 21–33

    Chapter  Google Scholar 

  13. Salter SJ et al (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kallmeyer J et al (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci U S A 109(40):16213–16216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kieft TL (2010) Sampling the deep sub-surface using drilling and coring techniques. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg, pp 3427–3441

    Chapter  Google Scholar 

  16. Yanagawa K et al (2013) The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331). Front Microbiol 4

    Google Scholar 

  17. Smith DC et al (2000) Tracer-based estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiol J 17(3):207–219

    Article  CAS  Google Scholar 

  18. Smith DC et al (2000) Methods for quantifying potential microbial contamination during deep ocean coring. ODP Technical Note

    Google Scholar 

  19. Fournelle HJ, Day EK, Page WB (1957) Experimental ground water pollution at Anchorage, Alaska. Public Health Rep 72(3):203–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Juck DF et al (2005) Utilization of fluorescent microspheres and a green fluorescent protein-marked strain for assessment of microbiological contamination of permafrost and ground ice core samples from the Canadian High Arctic. Appl Environ Microbiol 71(2):1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beeman RE, Suflita JM (1989) Evaluation of deep subsurface sampling procedures using serendipitous microbial contaminants as tracer organisms. Geomicrobiol J 7(4):223–233

    Article  Google Scholar 

  22. Lehman RM et al (1995) Combined microbial community-level analyses for quality assurance of terrestrial subsurface cores. J Microbiol Methods 22(3):263–281

    Article  Google Scholar 

  23. Kotlar HK et al (2011) High coverage sequencing of DNA from microorganisms living in an oil reservoir 2.5 kilometres subsurface. Environ Microbiol Rep 3(6):674–681

    Article  PubMed  Google Scholar 

  24. Marquis RE, Matsumura P (1978) Microbial life under pressure. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 105–158

    Google Scholar 

  25. Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595(1-2):367–381

    Article  CAS  PubMed  Google Scholar 

  26. Parkes RJ et al (2009) In: Collett T et al (eds) Technology for high-pressure sampling and analysis of deep-sea sediments, associated gas hydrates, and deepbiosphere processes, in natural gas hydrates—Energy resource potential and associated geologic hazards: AAPG Memoir. The American Association of Petroleum Geologists, pp 672–683

    Google Scholar 

  27. Bale SJ et al (1997) Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47(2):515–521

    Article  CAS  PubMed  Google Scholar 

  28. Binga EK, Lasken RS, Neufeld JD (2008) Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME J 2(3):233–241

    Article  CAS  PubMed  Google Scholar 

  29. Woyke T et al (2011) Decontamination of MDA reagents for single cell whole genome amplification. PLoS One 6(10), e26161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rajendhran J, Gunasekaran P (2008) Strategies for accessing soil metagenome for desired applications. Biotechnol Adv 26(6):576–590

    Article  CAS  PubMed  Google Scholar 

  31. Silander K, Saarela J (2008) Whole genome amplification with Phi29 DNA polymerase to enable genetic or genomic analysis of samples of low DNA yield. Methods Mol Biol 439:1–18

    Article  CAS  PubMed  Google Scholar 

  32. Pel J et al (2009) Nonlinear electrophoretic response yields a unique parameter for separation of biomolecules. Proc Natl Acad Sci U S A 106(35):14796–14801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ritalahti KM et al (2010) Groundwater sampling for nucleic acid biomarker analysis. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg, pp 3407–3418

    Chapter  Google Scholar 

  34. Van de Peer Y, Chapelle S, De Wachter R (1996) A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res 24(17):3381–3391

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chakravorty S et al (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 69(2):330–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55(3):541–555

    Article  CAS  PubMed  Google Scholar 

  37. Liu Z et al (2008) Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res 36(18), e120

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu Z et al (2007) Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 35(18), e120

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Qian PY (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4(10), e7401

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nossa CW et al (2010) Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol 16(33):4135–4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meyer M, Stenzel U, Hofreiter M (2008) Parallel tagged sequencing on the 454 platform. Nat Protoc 3(2):267–278

    Article  CAS  PubMed  Google Scholar 

  42. Armougom F, Raoult D (2008) Use of pyrosequencing and DNA barcodes to monitor variations in Firmicutes and Bacteroidetes communities in the gut microbiota of obese humans. BMC Genomics 9:576

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lane DJ et al (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82(20):6955–6959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. DeAngelis MM, Wang DG, Hawkins TL (1995) Solid-phase reversible immobilization for the isolation of PCR products. Nucleic Acids Res 23(22):4742–4743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ishoey T et al (2008) Genomic sequencing of single microbial cells from environmental samples. Curr Opin Microbiol 11(3):198–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lasken RS (2009) Genomic DNA amplification by the multiple displacement amplification (MDA) method. Biochem Soc Trans 37(Pt 2):450–453

    Article  CAS  PubMed  Google Scholar 

  47. Abulencia CB et al (2006) Environmental whole-genome amplification to access microbial populations in contaminated sediments. Appl Environ Microbiol 72(5):3291–3301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Quince C et al (2011) Removing noise from pyrosequenced amplicons. BMC Bioinform 12:38

    Article  Google Scholar 

  49. DeSantis TZ et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pruesse E et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cole JR et al (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33(Database issue):D294–D296

    Article  CAS  PubMed  Google Scholar 

  52. Caporaso JG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schloss PD et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Meyer F et al (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386

    Article  CAS  Google Scholar 

  55. Chevreux B et al (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14(6):1147–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Namiki T et al (2012) MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res 40(20), e155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Afiahayati KS, Sakakibara Y (2015) MetaVelvet-SL: an extension of the Velvet assembler to a de novo metagenomic assembler utilizing supervised learning. DNA Res 22(1):69–77

    Article  CAS  PubMed  Google Scholar 

  58. Luo R et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  59. Peng Y et al (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428

    Article  CAS  PubMed  Google Scholar 

  60. Scholz M, Lo CC, Chain PS (2014) Improved assemblies using a source-agnostic pipeline for MetaGenomic Assembly by Merging (MeGAMerge) of contigs. Sci Rep 4:6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Garcia Martin H et al (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24(10):1263–1269

    Article  PubMed  Google Scholar 

  62. Diaz NN et al (2009) TACOA: taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach. BMC Bioinform 10:56

    Article  Google Scholar 

  63. Brady A, Salzberg SL (2009) Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models. Nat Methods 6(9):673–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Noguchi H, Park J, Takagi T (2006) MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res 34(19):5623–5630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33(Web Server issue):W451–W454

    Google Scholar 

  66. Delcher AL et al (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Karp PD, Paley S, Romero P (2002) The Pathway Tools software. Bioinformatics 18(Suppl 1):S225–S232

    Article  PubMed  Google Scholar 

  68. Moriya Y et al (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35(Web Server issue):W182–W185

    Google Scholar 

  69. Li C et al (2009) SubpathwayMiner: a software package for flexible identification of pathways. Nucleic Acids Res 37(19), e131

    Article  PubMed  PubMed Central  Google Scholar 

  70. Green ML, Karp PD (2004) A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinform 5:76

    Article  Google Scholar 

  71. Markowitz VM et al (2008) IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res 36(Database issue):D534–D538

    CAS  PubMed  Google Scholar 

  72. Tan B, Nesbo C, Foght J (2014) Re-analysis of omics data indicates Smithella may degrade alkanes by addition to fumarate under methanogenic conditions. ISME J 8(12):2353–2356

    Article  PubMed  PubMed Central  Google Scholar 

  73. Leininger S et al (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442(7104):806–809

    Article  CAS  PubMed  Google Scholar 

  74. Gilbert JA et al (2009) Potential for phosphonoacetate utilization by marine bacteria in temperate coastal waters. Environ Microbiol 11(1):111–125

    Article  CAS  PubMed  Google Scholar 

  75. Gilbert JA et al (2008) Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One 3(8), e3042

    Article  PubMed  PubMed Central  Google Scholar 

  76. Urich T et al (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One 3(6), e2527

    Article  PubMed  PubMed Central  Google Scholar 

  77. Roume H et al (2013) A biomolecular isolation framework for eco-systems biology. ISME J 7(1):110–121

    Article  CAS  PubMed  Google Scholar 

  78. Wilmes P, Bond PL (2006) Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol 14(2):92–97

    Article  CAS  PubMed  Google Scholar 

  79. Schweder T, Markert S, Hecker M (2008) Proteomics of marine bacteria. Electrophoresis 29(12):2603–2616

    Article  CAS  PubMed  Google Scholar 

  80. Toyoda A et al (2009) Isolation and identification of cellulose-binding proteins from sheep rumen contents. Appl Environ Microbiol 75(6):1667–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Turnbaugh PJ, Gordon JI (2008) An invitation to the marriage of metagenomics and metabolomics. Cell 134(5):708–713

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. Head .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Tsesmetzis, N., Maguire, M.J., Head, I.M., Lomans, B.P. (2016). Protocols for Investigating the Microbial Communities of Oil and Gas Reservoirs. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2016_212

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_212

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53116-7

  • Online ISBN: 978-3-662-53118-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics