Skip to main content

Quantum Dot Toolbox in Membrane Neurotransmitter Transporter Research

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Quantum dot-based fluorescence techniques enable multi-scale molecular profiling ranging from real-time single molecule dynamics to expression trends in million-cell populations. In comparison to currently available probes, quantum dots are particularly well suited for such studies by virtue of their unique photophysical properties. We discuss in this chapter methodological components of what makes up the “Quantum Dot Toolbox” in neurotransmitter transporter studies along with specific work our group has published. First, we describe ensemble analysis of subcellular transporter localization and provide visualization of transporter residence in distinct cellular surface features. Second, we provide discussion on high content analysis of changes in transporter surface levels and give insight into the advantages of using quantum dot probes in flow cytometry. Third, we review the fundamental principles of subdiffraction-limit fluorescence microscopy and single molecule analysis of transporter surface dynamics. Included in this chapter are three protocols with experimental considerations specific to each technical section.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  PubMed  Google Scholar 

  2. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  PubMed  Google Scholar 

  3. Dahan M et al (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445

    Article  CAS  PubMed  Google Scholar 

  4. Bouzigues C, Morel M, Triller A, Dahan M (2007) Asymmetric redistribution of GABA receptors during GABA gradient sensing by nerve growth cones analyzed by single quantum dot imaging. Proc Natl Acad Sci 104:11251–11256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID (2011) Biocompatible quantum dots for biological applications. Chem Biol 18:10–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frischknecht R et al (2009) Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat Neurosci 12:897–904

    Article  CAS  PubMed  Google Scholar 

  7. Chang JC et al (2011) A fluorescence displacement assay for antidepressant drug discovery based on ligand-conjugated quantum dots. J Am Chem Soc 133:17528–17531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chang JC et al (2012) Single molecule analysis of serotonin transporter regulation using antagonist-conjugated quantum dots reveals restricted, p38 MAPK-dependent mobilization underlying uptake activation. J Neurosci 32:8919–8929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kovtun O et al (2011) Visualization of the cocaine-sensitive dopamine transporter with ligand-conjugated quantum dots. ACS Chem Nerosci 2:370–378

    Article  CAS  Google Scholar 

  10. Kovtun O, Ross EJ, Tomlinson ID, Rosenthal SJ (2012) A flow cytometry-based dopamine transporter binding assay using antagonist-conjugated quantum dots. Chem Commun 48:5428–5430

    Article  CAS  Google Scholar 

  11. Chang JC, Rosenthal SJ (2013) A bright light to reveal mobility: single quantum dot tracking reveals membrane dynamics and cellular mechanisms. J Phys Chem Lett 4:2858–2866

    Article  CAS  Google Scholar 

  12. Chang JC, Rosenthal SJ (2013) In: Sandra Rosenthal J, David Wright W (eds) NanoBiotechnology protocols. Humana Press, New York, pp 71–84

    Google Scholar 

  13. Kovtun O et al (2015) Single-quantum-dot tracking reveals altered membrane dynamics of an attention-deficit/hyperactivity-disorder-derived dopamine transporter coding variant. ACS Chem Nerosci 6:526–534

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra J. Rosenthal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thal, L.B., Bailey, D.M., Kovtun, O., Rosenthal, S.J. (2017). Quantum Dot Toolbox in Membrane Neurotransmitter Transporter Research. In: Shukla, A. (eds) Chemical and Synthetic Approaches in Membrane Biology. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/8623_2016_12

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6835-0

  • Online ISBN: 978-1-4939-6836-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics