Skip to main content

Introduction: Field and In Situ Studies

  • Protocol
  • First Online:
  • 611 Accesses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Mesocosms and microcosms provide an experimentally tractable way to study environmental processes under close to natural conditions while maintaining some control over gross physical processes. They also allow contaminants to be constrained for appropriate collection and disposal at the end of the experiment. This overview provides an extensive catalog of the literature on mesocosms and microcosms that have been used to study microbial responses to hydrocarbons; it should be a useful introduction for researchers entering the field.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. ZoBell CE (1946) Action of microorganisms on hydrocarbons. Bacteriol Rev 10:1–49

    CAS  PubMed Central  Google Scholar 

  2. Ellis R, Adams RS (1961) Contamination of soils by petroleum hydrocarbons. Adv Agron 13:197–216

    Article  CAS  Google Scholar 

  3. Wang Z, Fingas M, Owens EH, Sigouin L, Brown CE (2001) Long-term fate and persistence of the spilled Metula oil in a marine salt marsh environment: Degradation of petroleum biomarkers. J Chromatogr A 926:275–290

    Article  CAS  Google Scholar 

  4. Elmgren R, Frithsen JB (1982) The use of experimental ecosystems for evaluating the environmental impact of pollutants: a comparison of an oil spill in the Baltic Sea and two long-term, low-level oil addition experiments in mesocosms. In: Grice GD, Reeve MR (eds) Marine mesocosms. Springer, Berlin, pp 153–165

    Chapter  Google Scholar 

  5. Gundlach ER, Boehm PD, Marchand M, Atlas RM, Ward DM, Wolfe DA (1983) The fate of Amoco Cadiz oil. Science 221:122–129

    Article  CAS  PubMed  Google Scholar 

  6. Prince RC, Bragg JR (1997) Shoreline bioremediation following the Exxon Valdez oil spill in Alaska. Bioremediat J 1:97–104

    Article  Google Scholar 

  7. Rosenberg E, Legman R, Kushmaro A, Adler E, Abir H, Ron EZ (1996) Oil bioremediation using insoluble nitrogen source. J Biotechnol 51:273–278

    Article  CAS  PubMed  Google Scholar 

  8. Pastor D, Sanchez J, Porte C, Albaigés J (2001) The Aegean Sea oil spill in the Galicia coast (NW Spain). I. Distribution and fate of the crude oil and combustion products in subtidal sediments. Mar Pollut Bull 42:895–904

    Article  CAS  PubMed  Google Scholar 

  9. Hinga KR (2003) Degradation rates of low molecular weight PAH correlate with sediment TOC in marine subtidal sediments. Mar Pollut Bull 46:466–474

    Article  CAS  PubMed  Google Scholar 

  10. Swannell RPJ, Mitchell D, Lethbridge G, Jones D, Heath D, Hagley M, Jones M, Petch S, Milne R, Croxford R, Lee K (1999) A field demonstration of the efficacy of bioremediation to treat oiled shorelines following the Sea Empress incident. Environ Technol 20:863–873

    Article  CAS  Google Scholar 

  11. Maruyama A, Ishiwata H, Kitamura K, Sunamura M, Fujita T, Matsuo M, Higashihara T (2003) Dynamics of microbial populations and strong selection for Cycloclasticus pugetii following the Nakhodka oil spill. Microb Ecol 46:442–453

    Article  CAS  PubMed  Google Scholar 

  12. Tsutsumi H, Kono M, Takai K, Manabe T, Haraguchi M, Yamamoto I, Oppenheimer C (2000) Bioremediation on the shore after an oil spill from the Nakhodka in the Sea of Japan. III. Field tests of a bioremediation agent with microbiological cultures for the treatment of an oil spill. Mar Pollut Bull 40:320–324

    Article  CAS  Google Scholar 

  13. Bordenave S, Jezequel R, Fourçans A, Budzinski H, Merlin FX, Fourel T, Goni-Urriza M, Guyoneaud R, Grimaud R, Caumette P, Duran R (2004) Degradation of the “Erika” oil. Aquat Living Resour 17:261–268

    Article  CAS  Google Scholar 

  14. Jiménez N, Viñas M, Sabaté J, Díez S, Bayona JM, Solanas AM, Albaiges J (2006) The Prestige oil spill. 2. Enhanced biodegradation of a heavy fuel oil under field conditions by the use of an oleophilic fertilizer. Environ Sci Technol 40:2578–2585

    Article  PubMed  CAS  Google Scholar 

  15. Slater GF, Nelson RK, Kile BM, Reddy CM (2006) Intrinsic bacterial biodegradation of petroleum contamination demonstrated in situ using natural abundance, molecular-level 14C analysis. Org Geochem 37:981–989

    Article  CAS  Google Scholar 

  16. Yim UH, Ha SY, An JG, Won JH, Han GM, Hong SH, Kim M, Jung JH, Shim WJ (2011) Fingerprint and weathering characteristics of stranded oils after the Hebei Spirit oil spill. J Hazard Mater 197:60–69

    Article  CAS  PubMed  Google Scholar 

  17. Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Appl Environ Microbiol 77:7962–7974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Elango V, Urbano M, Lemelle KR, Pardue JH (2014) Biodegradation of MC252 oil in oil: sand aggregates in a coastal headland beach environment. Front Microbiol 5:161

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hester MW, Mendelssohn IA (2000) Long-term recovery of a Louisiana brackish marsh plant community from oil-spill impact: vegetation response and mitigating effects of marsh surface elevation. Mar Environ Res 49:233–254

    Article  CAS  PubMed  Google Scholar 

  20. Natter M, Keevan J, Wang Y, Keimowitz AR, Okeke BC, Son A, Lee MK (2012) Level and degradation of Deepwater Horizon spilled oil in coastal marsh sediments and pore-water. Environ Sci Technol 46:5744–5755

    Article  CAS  PubMed  Google Scholar 

  21. Mahmoudi N, Porter TM, Zimmerman AR, Fulthorpe RR, Kasozi GN, Silliman BR, Slater GF (2013) Rapid degradation of Deepwater Horizon spilled oil by indigenous microbial communities in Louisiana saltmarsh sediments. Environ Sci Technol 47:13303–13312

    Article  CAS  PubMed  Google Scholar 

  22. Mills MA, Bonner JS, McDonald TJ, Page CA, Autenrieth RL (2003) Intrinsic bioremediation of a petroleum-impacted wetland. Mar Pollut Bull 46:887–899

    Article  CAS  PubMed  Google Scholar 

  23. Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74:792–801

    Article  CAS  PubMed  Google Scholar 

  24. Parisi VA, Brubaker GR, Zenker MJ, Prince RC, Gieg LM, da Silva MLB, Alvarez PJJ, Suflita JM (2009) Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons at a petroleum-contaminated site. Microb Biotechnol 2:202–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Griebler C, Safinowski M, Vieth A, Richnow HH, Meckenstock RU (2004) Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ Sci Technol 38:617–631

    Article  CAS  PubMed  Google Scholar 

  26. Tischer K, Kleinsteuber S, Schleinitz KM, Fetzer I, Spott O, Stange F, Lohse U, Franz J, Neumann F, Gerling S, Schmidt C, Hasselwander E, Harms H, Wendeberg A (2013) Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer. Environ Microbiol 15:2603–2615

    Article  CAS  PubMed  Google Scholar 

  27. Mohn W, Radziminski C, Fortin MC, Reimer K (2001) On site bioremediation of hydrocarbon-contaminated Arctic tundra soils in inoculated biopiles. Appl Microbiol Biotechnol 57:242–247

    Article  CAS  PubMed  Google Scholar 

  28. Paudyn K, Rutter A, Rowe RK, Poland JS (2018) Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg Sci Technol 53:102–114

    Article  Google Scholar 

  29. Madsen EL, Sinclair JL, Ghiorse WC (1991) In situ biodegradation: microbiological patterns in a contaminated aquifer. Science 252:830–833

    Article  CAS  PubMed  Google Scholar 

  30. Xiong W, Mathies C, Bradshaw K, Carlson T, Tang K, Wang Y (2012) Benzene removal by a novel modification of enhanced anaerobic biostimulation. Water Res 46:4721–4731

    Article  CAS  PubMed  Google Scholar 

  31. Li P, Sun T, Stagnitti F, Zhang C, Zhang H, Xiong X, Allinson G, Ma X, Allinson M (2002) Field-scale bioremediation of soil contaminated with crude oil. Environ Engin Sci 19:277–289

    Article  Google Scholar 

  32. Jamison VW, Raymond RL, Hudson JO (1975) Biodegradation of high-octane gasoline in groundwater. Dev Ind Microbiol 16:305–312

    CAS  Google Scholar 

  33. Essaid HI, Bekins BA, Herkelrath WN, Delin GN (2011) Crude oil at the Bemidji site: 25 years of monitoring, modeling, and understanding. Ground Water 49:706–726

    Article  CAS  PubMed  Google Scholar 

  34. Ostendorf DW, Kampbell DH (1991) Biodegradation of hydrocarbon vapors in the unsaturated zone. Water Resour Res 27:453–462

    Article  CAS  Google Scholar 

  35. Frankenberger WT, Emerson KD, Turner DW (1989) In situ bioremediation of an underground diesel fuel spill: a case history. Environ Manage 13:325–332

    Article  Google Scholar 

  36. Powell SM, Ferguson SH, Snape I, Siciliano SD (2006) Fertilization stimulates anaerobic fuel degradation of Antarctic soils by denitrifying microorganisms. Environ Sci Technol 40:2011–2017

    Article  CAS  PubMed  Google Scholar 

  37. Höhener P, Dakhel N, Christophersen M, Broholm M, Kjeldsen P (2006) Biodegradation of hydrocarbons vapors: comparison of laboratory studies and field investigations in the vadose zone at the emplaced fuel source experiment, Airbase Værløse, Denmark. J Contam Hydrol 88:337–358

    Article  PubMed  CAS  Google Scholar 

  38. Balba MT, Al-Daher R, Al-Awadhi N, Chino H, Tsuji H (1998) Bioremediation of oil-contaminated desert soil: the Kuwaiti experience. Environ Int 24:163–173

    Article  CAS  Google Scholar 

  39. Alejandro Prado-Jatar M, Brown MT (1997) Interface ecosystems with an oil spill in a Venezuelan tropical savannah. Ecol Eng 8:49–78

    Article  Google Scholar 

  40. Gomez F, Sartaj M (2013) Field scale ex-situ bioremediation of petroleum contaminated soil under cold climate conditions. Int Biodeter Biodegr 85:375–382

    Article  CAS  Google Scholar 

  41. Feris KP, Hristova K, Gebreyesus B, Mackay D, Scow KM (2004) A shallow BTEX and MTBE contaminated aquifer supports a diverse microbial community. Microb Ecol 48:589–600

    Article  CAS  PubMed  Google Scholar 

  42. Leewis MC, Reynolds CM, Leigh MB (2013) Long-term effects of nutrient addition and phytoremediation on diesel and crude oil contaminated soils in subarctic Alaska. Cold Reg Sci Technol 96:129–137

    Article  PubMed  PubMed Central  Google Scholar 

  43. White PM, Wolf DC, Thoma GJ, Reynolds CM (2006) Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollut 169:207–220

    Article  CAS  Google Scholar 

  44. Margesin R, Schinner F (2001) Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an alpine glacier skiing area. Appl Environ Microbiol 67:3127–3133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mishra S, Jyot J, Kuhad RC, Lal B (2001) Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67:1675–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Z, Xu Y, Zhao J, Li F, Gao D, Xing B (2011) Remediation of petroleum contaminated soils through composting and rhizosphere degradation. J Hazard Mater 190:677–685

    Article  CAS  PubMed  Google Scholar 

  47. Mumford KA, Rayner JL, Snape I, Stark SC, Stevens GW, Gore DB (2013) Design, installation and preliminary testing of a permeable reactive barrier for diesel fuel remediation at Casey Station, Antarctica. Cold Reg Sci Technol 96:96–107

    Article  Google Scholar 

  48. Beškoski VP, Gojgić-Cvijović G, Milić J, Ilić M, Miletić S, Šolević T, Vrvić MM (2011) Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)–A field experiment. Chemosphere 83:34–40

    Article  PubMed  CAS  Google Scholar 

  49. Dias R, Ruberto L, Hernández E, Vázquez SC, Lo Balbo A, Del Panno MT, Mac Cormack WP (2012) Bioremediation of an aged diesel oil-contaminated Antarctic soil: Evaluation of the “on site” biostimulation strategy using different nutrient sources. Int Biodeter Biodegr 75:96–103

    Article  CAS  Google Scholar 

  50. Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon-and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877

    CAS  PubMed  PubMed Central  Google Scholar 

  51. MacNaughton S, Swannell R, Lethbridge G, Scott P, Norris G, Harries N, Hart A, Smith J (2005) SIReN: Site for innovative research on monitored natural attenuation. In: Thomson NR (ed) Bringing groundwater quality research to the watershed scale, vol 297. IAHS, Wallingford, pp 269–273

    Google Scholar 

  52. Schirmer M, Dahmke A, Dietrich P, Dietze M, Gödeke S, Richnow HH, Schirmer K, Weiß H, Teutsch G (2006) Natural attenuation research at the contaminated megasite Zeitz. J Hydrol 328:393–407

    Article  Google Scholar 

  53. Gieg LM, Kolhatkar RV, McInerney MJ, Tanner RS, Harris SH, Sublette KL, Suflita JM (1999) Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer. Environ Sci Technol 33:2550–2560

    Article  CAS  Google Scholar 

  54. Hutchins SR, Miller DE, Thomas A (1998) Combined laboratory/field study on the use of nitrate for in situ bioremediation of a fuel-contaminated aquifer. Environ Sci Technol 32:1832–1840

    Article  CAS  Google Scholar 

  55. Hunkeler D, Höhener P, Bernasconi S, Zeyer J (1999) Engineered in situ bioremediation of a petroleum hydrocarbon-contaminated aquifer: assessment of mineralization based on alkalinity, inorganic carbon and stable carbon isotope balances. J Contam Hydrol 37:201–223

    Article  CAS  Google Scholar 

  56. Bolliger C, Höhener P, Hunkeler D, Häberli K, Zeyer J (1999) Intrinsic bioremediation of a petroleum hydrocarbon-contaminated aquifer and assessment of mineralization based on stable carbon isotopes. Biodegradation 10:201–217

    Article  CAS  PubMed  Google Scholar 

  57. Chen KF, Kao CM, Chen CW, Surampalli RY, Lee MS (2010) Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation. J Environ Sci 22:864–871

    Article  CAS  Google Scholar 

  58. Raymond RL, Jamison VW, Hudson JO (1976) Beneficial stimulation of bacterial activity in groundwaters containing petroleum products. AlCHE Symp Ser 73:390–404

    Google Scholar 

  59. Sexstone A, Everett K, Jenkins T, Atlas RM (1978) Fate of crude and refined oils in North Slope soils. Arctic 31:339–347

    CAS  Google Scholar 

  60. Bergstein PE, Vestal JR (1978) Crude oil biodegradation in Arctic tundra ponds. Arctic 31:158–169

    Article  CAS  Google Scholar 

  61. Braddock JF, Lindstrom JE, Prince RC (2003) Weathering of a subarctic oil spill over 25 years: the Caribou-Poker Creeks research watershed experiment. Cold Reg Sci Technol 36:11–23

    Article  Google Scholar 

  62. Sergy GA, Blackall PJ (1987) Design and conclusions of the Baffin Island Oil Spill Project. Arctic 40(Suppl 1):1–9

    Google Scholar 

  63. Venosa AD, Suidan MT, Wrenn BA, Strohmeier KL, Haines JR, Eberhart BL, King D, Holder E (1996) Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ Sci Technol 30:1764–1775

    Article  CAS  Google Scholar 

  64. Sergy GA, Guénette CC, Owens EH, Prince RC, Lee K (2003) In-situ Treatment of Oiled Sediment Shorelines. Spill Sci Tech Bull 8:237–244

    Article  CAS  Google Scholar 

  65. Venosa AD, Lee K, Suidan MT, Garcia-Blanco S, Cobanli S, Moteleb M, Haines JR, Tremblay G, Hazelwood M (2002) Bioremediation and biorestoration of a crude oil-contaminated freshwater wetland on the St. Lawrence River. Bioremediat J 6:261–281

    Article  CAS  Google Scholar 

  66. Lee K, Li Z, Robinson B, Kepkay PE, Blouin M, Doyon B (2011) Field trials of in-situ oil spill countermeasures in ice-infested waters. International oil spill conference proceedings. Available at http://ioscproceedings.org/doi/abs/10.7901/2169-3358-2011-1-160

  67. Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418

    Article  CAS  Google Scholar 

  68. Horowitz A, Atlas RM (1977) Continuous open flow-through system as a model for oil degradation in the Arctic Ocean. Appl Environ Microbiol 33:647–653

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kuiper J, De Wilde P, Wolff W (1984) Effects of an oil spill in outdoor model tidal flat ecosystems. Mar Pollut Bull 15:102–106

    Article  Google Scholar 

  70. Farke HK, Wonneberger WG, Dahlmann G (1985) Effects of oil and a dispersant on intertidal organisms in field experiments with a mesocosm, the Bremerhaven Caisson. Mar Environ Res 15:97–114

    Article  CAS  Google Scholar 

  71. Lee K, Tremblay GH, Cobanli SE (1995) Bioremediation of oiled beach sediments: assessment of inorganic and organic fertilizers. In International oil spill conference. American Petroleum Institute, Washington, pp 107–113

    Google Scholar 

  72. Cavanagh JE, Nichols PD, Franzmann PD, McMeekin TA (1998) Hydrocarbon degradation by Antarctic coastal bacteria. Antarct Sci 10:386–397

    Article  Google Scholar 

  73. Oudot J, Merlin FX, Pinvidic P (1998) Weathering rates of oil components in a bioremediation experiment in estuarine sediments. Mar Environ Res 45:113–125

    Article  CAS  Google Scholar 

  74. Merlin FX, Pinvidic P, Chaumery C, Oudot J, Swannell RPJ, Basseres A, Dalmazzone C, Ducreux J, Lee K, Reilly T (1995) Bioremediation: results of the field trials of Landevennec (France). In International oil spill conference. American Petroleum Institute, Washington, pp 917–918

    Google Scholar 

  75. Delille D, Delille B, Pelletier E (2001) Effectiveness of bioremediation of crude oil contaminated sub-Antarctic intertidal sediment: the microbial response. Microb Ecol 44:118–126

    Article  CAS  Google Scholar 

  76. Prince RC, Bare RE, Garrett RM, Grossman MJ, Haith CE, Keim LG, Lee K, Holtom GJ, Lambert P, Sergy GA, Owens EH, Guénette CC (2003) Bioremediation of stranded oil on an Arctic shoreline. Spill Sci Technol Bull 8:303–312

    Article  CAS  Google Scholar 

  77. Le Floch S, Merlin FX, Guillerme M, Dalmazzone C, Le Corre P (1999) A field experimentation on bioremediation. Bioren Environ Technol 20:897–907

    Article  Google Scholar 

  78. Nayar S, Goh BPL, Chou LM (2005) Environmental impacts of diesel fuel on bacteria and phytoplankton in a tropical estuary assessed using in situ mesocosms. Ecotoxicology 14:397–412

    Article  CAS  PubMed  Google Scholar 

  79. Delille D, Delille B (2000) Field observations on the variability of crude oil impact on indigenous hydrocarbon-degrading bacteria from sub-Antarctic intertidal sediments. Mar Environ Res 49:403–417

    Article  CAS  PubMed  Google Scholar 

  80. Röling WFM, Milner MG, Jones DM, Fratepietro F, Swannell RPJ, Daniel F, Head IM (2004) Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 70:2603–2613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Røberg S, Østerhus JI, Landfald B (2011) Dynamics of bacterial community exposed to hydrocarbons and oleophilic fertilizer in high-Arctic intertidal beach. Polar Biol 34:1455–1465

    Article  Google Scholar 

  82. Xu R, Lau ANL, Lim YG, Obbard JP (2005) Bioremediation of oil-contaminated sediments on an inter-tidal shoreline using a slow-release fertilizer and chitosan. Mar Pollut Bull 51:1062–1070

    Article  CAS  PubMed  Google Scholar 

  83. Egres AG, Martins CC, de Oliveira VM, da Cunha LP (2012) Effects of an experimental in situ diesel oil spill on the benthic community of unvegetated tidal flats in a subtropical estuary (Paranaguá Bay, Brazil). Mar Pollut Bull 64:2681–2691

    Article  CAS  PubMed  Google Scholar 

  84. Harrison PJ, Cochlan WP, Acreman JC, Parsons TR, Thompson PA, Dovey HM, Xiaolin C (1986) The effects of crude oil and Corexit 9527 on marine phytoplankton in an experimental enclosure. Mar Environ Res 18:93–109

    Article  CAS  Google Scholar 

  85. Dahl E, Laake M, Tjessem K, Eberlein K, Bohle B (1983) Effects of Ekofisk crude oil on an enclosed planktonic ecosystem. Mar Ecol Prog Ser 14:81–91

    Article  CAS  Google Scholar 

  86. Grossi V, Massias D, Stora G, Bertrand JC (2002) Burial, exportation and degradation of acyclic petroleum hydrocarbons following a simulated oil spill in bioturbated Mediterranean coastal sediments. Chemosphere 48:947–954

    Article  CAS  PubMed  Google Scholar 

  87. Suárez-Suárez A, López-López A, Tovar-Sánchez A, Yarza P, Orfila A, Terrados J, Arnds J, Marqués S, Niemann H, Schmitt-Kopplin P, Amann R, Rosselló-Móra R (2011) Response of sulfate-reducing bacteria to an artificial oil-spill in a coastal marine sediment. Environ Microbiol 13:1488–1499

    Article  PubMed  CAS  Google Scholar 

  88. Brakstad OG, Nonstad I, Faksness LG, Brandvik PG (2008) Responses of microbial communities in Arctic sea ice after contamination by crude petroleum oil. Microb Ecol 55:540–552

    Article  PubMed  Google Scholar 

  89. Munoz D, Doumenq P, Jacquot F, Scherrer P, Mille G (1997) Long term evolution of petroleum biomarkers in mangrove soil (Guadeloupe). Mar Pollut Bull 34:868–874

    Article  CAS  Google Scholar 

  90. Scherrer P, Mille G (1989) Biodegradation of crude oil in an experimentally polluted peaty mangrove soil. Mar Pollut Bull 20:430–432

    Article  CAS  Google Scholar 

  91. Oudot J, Dutrieux E (1998) Hydrocarbon weathering and biodegradation in a tropical estuarine ecosystem. Mar Environ Res 27:195–213

    Article  Google Scholar 

  92. Burns KA, Codi S, Duke NC (2000) Gladstone, Australia field studies: weathering and degradation of hydrocarbons in oiled mangrove and salt marsh sediments with and without the application of an experimental bioremediation protocol. Mar Pollut Bull 41:392–402

    Article  CAS  Google Scholar 

  93. Brito E, Duran R, Guyoneaud R, Goñi-Urriza M, Garcia de Oteyza T, Crapez MAC, Aleluia I, Wasserman JCA (2009) A case study of in situ oil contamination in a mangrove swamp (Rio De Janeiro, Brazil). Mar Pollut Bull 58:418–423

    Article  CAS  PubMed  Google Scholar 

  94. Garcia-Blanco S, Venosa AD, Suidan MT, Lee K, Cobanli S, Haines JR (2007) Biostimulation for the treatment of an oil-contaminated coastal salt marsh. Biodegradation 18:1–15

    Article  CAS  PubMed  Google Scholar 

  95. Tate PT, Shin WS, Pardue JH, Jackson WA (2011) Bioremediation of an experimental oil spill in a coastal Louisiana salt marsh. Water Air Soil Pollut 223:1115–1123

    Article  CAS  Google Scholar 

  96. Jézéquel R, Menot L, Merlin FX, Prince RC (2003) Natural cleanup of heavy fuel oil on rocks: an in situ experiment. Mar Pollut Bull 46:983–990

    Article  PubMed  CAS  Google Scholar 

  97. Mills MA, Bonner JS, Page CA, Autenrieth RL (2004) Evaluation of bioremediation strategies of a controlled oil release in a wetland. Mar Pollut Bull 49:425–435

    Article  CAS  PubMed  Google Scholar 

  98. Pasteris G, Werner D, Kaufmann K, Höhener P (2002) Vapor phase transport and biodegradation of volatile fuel compounds in the unsaturated zone: a large scale lysimeter experiment. Environ Sci Technol 36:30–39

    Article  CAS  PubMed  Google Scholar 

  99. Höhener P, Hunkeler D, Hess A, Bregnard T, Zeyer J (1998) Methodology for the evaluation of engineered in situ bioremediation: lessons from a case study. J Microbiol Methods 32:179–192

    Article  Google Scholar 

  100. Yu Y, Zhang W, Chen G, Gao Y, Wang J (2014) Preparation of petroleum-degrading bacterial agent and its application in remediation of contaminated soil in Shengli Oil Field, China. Environ Sci Pollut Res 21:7929–7937

    Article  CAS  Google Scholar 

  101. Pizarro-Tobías P, Niqui JL, Roca A, Solano J, Fernández M, Bastida F, García C, Ramos JL (2014) Field trial on removal of petroleum-hydrocarbon pollutants using a microbial consortium for bioremediation and rhizoremediation. Environ Microbiol Rep. doi:10.1111/1758-2229.12174

    Google Scholar 

  102. Parsons TR (1974) Controlled ecosystem pollution experiment (CEPEX). Env Conserv 1:224–224

    Article  Google Scholar 

  103. Santschi PH (1985) The MERL mesocosm approach for studying sediment‐water interactions and ecotoxicology. Environ Technol 6:335–350

    Article  CAS  Google Scholar 

  104. Reilly TJ, Jamail R. (1997) COSS: A testing facility for oil spill research and development. In International oil spill conference. American Petroleum Institute, Washington, pp 996–998

    Google Scholar 

  105. USEPA (2012) A citizen’s guide to bioremediation. http://clu-in.org/download/citizens/bioremediation.pdf. Accessed 11 November 2013

  106. USGS (1997) Bioremediation: nature’s way to a cleaner environment. http://water.usgs.gov/wid/html/bioremed.html. Accessed 11 November, 2013

  107. Page DS, Foster JC, Fickett PM, Gilfillan ES (1988) Identification of petroleum sources in an area impacted by the Amoco Cadiz oil spill. Mar Pollut Bull 19:107–115

    Article  CAS  Google Scholar 

  108. Kvenvolden KA, Hostettler FD, Carlson PR, Rapp JB, Threlkeld CN, Warden A (1995) Ubiquitous tar balls with a California-source signature on the shorelines of Prince William Sound, Alaska. Environ Sci Technol 29:2684–2694

    Article  CAS  PubMed  Google Scholar 

  109. Prince RC, Walters CC (2007) Biodegradation of oil and its implications for source identification. In: Wang Z, Stout SA (eds) Oil spill environmental forensics. Academic, Burlington, pp 349–379

    Chapter  Google Scholar 

  110. Kvenvolden KA, Cooper CK (2003) Natural seepage of crude oil into the marine environment. Geo-MarLett 23:140–146

    CAS  Google Scholar 

  111. Mulabagal V, Yin F, John GF, Hayworth JS, Clement TP (2013) Chemical fingerprinting of petroleum biomarkers in Deepwater Horizon oil spill samples collected from Alabama shoreline. Mar Pollut Bull 70:147–154

    Article  CAS  PubMed  Google Scholar 

  112. Aeppli C, Carmichael CA, Nelson RK, Lemkau KL, Graham WM, Redmond MC, Valentine DL, Reddy CM (2012) Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues. Environ Sci Technol 46:8799–8807

    Article  CAS  PubMed  Google Scholar 

  113. Castanedo S, Medina R, Losada IJ, Vidal C, Méndez FJ, Osorio A, Juanes JA, Puente A (2006) The Prestige oil spill in Cantabria (Bay of Biscay). Part I: operational forecasting system for quick response, risk assessment, and protection of natural resources. J Coastal Res 22:1474–1489

    Article  Google Scholar 

  114. Guénette CC, Sergy GA, Owens EH, Prince RC, Lee K (2003) Experimental design of the Svalbard shoreline field trials. Spill Sci Technol Bull 8:245–256

    Article  CAS  Google Scholar 

  115. Owens EH, Lee K (2003) Interaction of oil and mineral fines on shorelines: review and assessment. Mar Pollut Bull 47:397–405

    Article  CAS  PubMed  Google Scholar 

  116. Busenberg E, Plummer LN (2010) A rapid method for the measurement of sulfur hexafluoride (SF6), trifluoromethyl sulfur pentafluoride (SF5CF3), and Halon 1211 (CF2ClBr) in hydrologic tracer studies. Geochem Geophys Geosyst 11:11

    Article  CAS  Google Scholar 

  117. Sanford WE, Aeschbach-Hertig W, Herczeg AL (2011) Preface: insights from environmental tracers in groundwater systems. Hydrogeol J 19:1–3

    Article  Google Scholar 

  118. Heffner RA, Butler MJ, Reilly K (1996) Pseudoreplication revisited. Ecology 77:2558–2562

    Article  Google Scholar 

  119. Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  120. Hurlbert SH (2004) On misinterpretations of pseudoreplication and related matters: a reply to Oksanen. Oikos 104:591–597

    Article  Google Scholar 

  121. Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. Bioscience 51:341–352

    Article  Google Scholar 

  122. Owens EH, Sergy GA, Guénette CC, Prince RC, Lee K (2003) The reduction of stranded oil by in situ shoreline treatment options. Spill Sci Technol B 8:257–272

    Article  CAS  Google Scholar 

  123. Salanitro JP, Johnson PC, Spinnler GE, Maner PM, Wisniewski HL, Bruce C (2000) Field-scale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation. Environ Sci Technol 34:4152–4162

    Article  CAS  Google Scholar 

  124. Council NR (1996) In situ bioremediation: when does it work? National Academies Press, Washington

    Google Scholar 

  125. Prince RC, Elmendorf DL, Lute JR, Hsu CS, Haith CE, Senius JD, Dechert GJ, Douglas GS, Butler EL (1994) 17α(H),21β(H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil. Environ Sci Technol 28:142–145

    Article  CAS  PubMed  Google Scholar 

  126. USACE (2003) Safety and health aspects of HTRW remediation technologies. http://140.194.76.129/publications/eng-manuals/em1110–1–4007/toc.htm

  127. Lee K, Wohlgeschaffen G, Tremblay GH, Johnson BT, Sergy GA, Prince RC, Guénette CC, Owens EH (2003) Toxicity evaluation with the Microtox test to assess the impact of in situ oiled shoreline treatment options: natural attenuation and sediment relocation. Spill Sci Technol Bull 8:273–284

    Article  CAS  Google Scholar 

  128. Prince RC, Clark JR, Lindstrom JE, Butler EL, Brown EJ, Winter G, Grossman MJ, Parrish RR, Bare RE, Braddock JF, Steinhauer WG, Douglas GS, Kennedy JM, Barter PJ, Bragg JR, Harner EJ, Atlas RM (1994) Bioremediation of the Exxon Valdez oil spill: monitoring safety and efficacy. In: Hinchee RE, Alleman BC, Hoeppel RE, Miller RN (eds) Hydrocarbon remediation. Lewis, Boca Raton, pp 107–124

    Google Scholar 

  129. Swannell RPJ, Croft BC, Grant AL, Lee K (1995) Evaluation of bioremediation agents in beach microcosms. Spill Sci Technol Bull 2:151–159

    Article  CAS  Google Scholar 

  130. Showers WJ, Genna B, McDade T, Bolich R, Fountain JC (2008) Nitrate contamination in groundwater on an urbanized dairy farm. Environ Sci Technol 42:4683–4688

    Article  CAS  PubMed  Google Scholar 

  131. Tomlinson JJ, Elliott-Smith W, Radosta T (2006) Laboratory information management system chain of custody: reliability and security. J Autom Methods Manage Chem 74907:1–4

    Article  CAS  Google Scholar 

  132. USEPA (2013) Test method collections. http://www.epa.gov/osa/fem/methcollectns.htm

  133. Environment Canada (2013) Environment Canada’s publications catalogue. http://www.ec.gc.ca/Publications/

  134. OECD (2013) OECD guidelines for the testing of chemicals. http://www.oecd.org/env/ehs/testing/oecdguidelinesforthetestingofchemicals.htm

  135. Prince RC (2010) Field studies–demonstrating the efficacy of bioremediation. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 3395–3405

    Chapter  Google Scholar 

  136. El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger C. Prince .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Prince, R.C. (2015). Introduction: Field and In Situ Studies. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_189

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_189

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53116-7

  • Online ISBN: 978-3-662-53118-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics