Skip to main content

Analysis of S1P Receptor Expression by Uterine Immune Cells Using Standardized Multi-parametric Flow Cytometry

  • Protocol
  • First Online:
Sphingosine-1-Phosphate

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1697))

Abstract

Flow cytometry is a powerful tool for phenotypic and functional analyses of single immune cells. The increasing capability of flow cytometry technology has driven a more detailed understanding of immune cell subsets and functions in complex cellular systems such as the developing human decidua/placenta. We propose a standardized procedure for the isolation and analysis of human decidual natural killer (dNK) cells and this method can be extended to investigation of other uterine lymphocytes. Here this platform is used to examine the expression of sphingosine-1-phosphate (S1P) receptor and functional growth factors by dNK cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yanagida K, Hla T (2017) Vascular and immunobiology of the circulatory sphingosine 1-phosphate gradient. Annu Rev Physiol 79. Doi: 10.1146/annurev-physiol-021014-071635

  2. Blaho VA, Hla T (2014) An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res 55:1596–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Walzer T, Chiossone L, Chaix J, Calver A, Carozzo C, Garrigue-Antar L, Jacques Y, Baratin M, Tomasello E, Vivier E (2007) Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat Immunol 8:1337–1344

    Article  CAS  PubMed  Google Scholar 

  4. Jenne CN, Enders A, Rivera R, Watson SR, Bankovich AJ, Pereira JP, Xu Y, Roots CM, Beilke JN, Banerjee A, Reiner SL, Miller SA, Weinmann AS, Goodnow CC, Lanier LL, Cyster JG, Chun J (2009) T-bet–dependent s1p5 expression in nk cells promotes egress from lymph nodes and bone marrow. J Exp Med 206:2469–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Streitz M, Miloud T, Kapinsky M, Reed MR, Magari R, Geissler EK, Hutchinson JA, Vogt K, Schlickeiser S, Kverneland AH (2013) Standardization of whole blood immune phenotype monitoring for clinical trials: panels and methods from the one study. Transplant Res 2:17

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK (2016) A deep profiler’s guide to cytometry. Trends Immunol 33:323–332

    Article  Google Scholar 

  7. Zhang J, Dunk CE, Lye SJ (2013) Sphingosine signalling regulates decidual NK cell angiogenic phenotype and trophoblast migration. Hum Reprod 28:3026–3037

    Article  CAS  PubMed  Google Scholar 

  8. Zhang J, Dunk C, Croy AB, Lye SJ (2016) To serve and to protect: the role of decidual innate immune cells on human pregnancy. Cell Tissue Res 363:249–265

    Article  CAS  PubMed  Google Scholar 

  9. Perfetto SP, Chattopadhyay PK, Roederer M (2004) Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4:648–655

    Article  CAS  PubMed  Google Scholar 

  10. Lugli E, Roederer M, Cossarizza A (2010) Data analysis in flow cytometry: the future just started. Cytometry A 77:705–713

    Article  PubMed  PubMed Central  Google Scholar 

  11. Saeys Y, Gassen SV, Lambrecht BN (2016) Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat Rev Immunol 16:449–462

    Article  CAS  PubMed  Google Scholar 

  12. Lai L, Ong R, Li J, Albani S (2015) A cd45-based barcoding approach to multiplex mass-cytometry (cytof). Cytometry A 87:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spitzer Matthew H, Nolan Garry P (2016) Mass cytometry: single cells, many features. Cell 165:780–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Byrd T, Carr KD, Norman JC, Huye L, Hegde M, Ahmed N (2015) Polystyrene microspheres enable 10-color compensation for immunophenotyping of primary human leukocytes. Cytometry 87:1038–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parks DR, Roederer M, Moore WA (2006) A new “logicle” display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. Cytometry A 69:541–551

    Article  PubMed  Google Scholar 

  16. Aghaeepour N, Finak G, Hoos H, Mosmann TR, Brinkman R, Gottardo R, Scheuermann RH (2013) Critical assessment of automated flow cytometry data analysis techniques. Nat Meth 10:228–238

    Article  CAS  Google Scholar 

  17. Verschoor CP, Lelic A, Bramson JL, Bowdish DME (2015) An introduction to automated flow cytometry gating tools and their implementation. Front Immunol 6:380

    Article  PubMed  PubMed Central  Google Scholar 

  18. Spiegel S, Milstien S (2011) The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol 11:403–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fang V, Chaluvadi VS, Ramos-Perez WD, Mendoza A, Baeyens A, Rivera R, Chun J, Cammer M, Schwab SR (2017) Gradients of the signaling lipid s1p in lymph nodes position natural killer cells and regulate their interferon-[gamma] response. Nat Immunol 18:15–25

    Google Scholar 

  20. Jin Y, Knudsen E, Wang L, Bryceson Y, Damaj B, Gessani S, Maghazachi AA (2003) Sphingosine 1-phosphate is a novel inhibitor of T-cell proliferation. Blood 101:4909–4915

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by Canadian Institutes of Health Research (CIHR) grants (MOP82811, MOP130550, and FDN-143262) to Dr. S. J. Lye. We thank Dr. B. Anne Croy (Queen’s University) for her critical review and helpful advice. We thank the donors, the Research Centre for Women’s and Infants’ Health BioBank Program of Lunenfeld-Tanenbaum Research Institute (LTRI) and the Sinai Health System/University Health Network (Toronto, Canada) for providing human specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhang, J., Bang, A., Lye, S.J. (2017). Analysis of S1P Receptor Expression by Uterine Immune Cells Using Standardized Multi-parametric Flow Cytometry. In: Pébay, A., Turksen, K. (eds) Sphingosine-1-Phosphate. Methods in Molecular Biology, vol 1697. Humana Press, New York, NY. https://doi.org/10.1007/7651_2017_24

Download citation

  • DOI: https://doi.org/10.1007/7651_2017_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7412-2

  • Online ISBN: 978-1-4939-7413-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics