Skip to main content

Studying the Oxidative Stress Paradigm In Vitro: A Theoretical and Practical Perspective

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1028))

Abstract

Since the early 1990s, interest into the biological interaction of nanosized particles of various compositions has increased. Following the initial findings that nanoscaled particles can elicit an adverse biological response when compared to their larger (micron-scale) material counterparts, interest into how nanosized materials may elicit potentially adverse effects upon any biological system has been intensively investigated. Over the past 20 years, hundreds to thousands of research studies have been published highlighting the biological effects and interaction of the plethora of nanoparticles (NPs) that are being either accidentally or intentionally (engineered) produced. While a definitive knowledge of many aspects is required prior to investigating the biological interaction of NPs, such as the relevant exposure route to the biological system, the specific characteristics of the NPs being studied, and the realistic dose (concentration) that would interact with the biological system, understanding how the NPs affect the biological system is not based upon any defined theory. In fact, there is no specific understanding as to why particles show different effects when occurring within a certain nanosize range compared to their larger counterpart (micron size range). Despite this, certain paradigms and theories have been proposed and are studied, such as the fiber paradigm and theory of genotoxicity, in order to try and understand such nanoscale effects. The most studied and widely accepted paradigm, however, is the oxidative stress paradigm. This chapter will provide an insight into this paradigm, how it is perceived, how it is studied, why investigating this paradigm in vitro is advantageous, and how the findings associated with this paradigm can provide an insight into the (potentially adverse) biological interaction of nanoscale objects.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  CAS  Google Scholar 

  2. Müller L, Gasser M, O’Raemy D, Herzog F, Brandenberger C, Schmid O, Gehr P, Rothen-­Rutishauser B, Clift MJD (2011) Realistic exposure methods for investigating the interaction of nanoparticles with the lung at the air-­liquid interface in vitro. InSci J (Nanotech) 1:30–64

    Article  Google Scholar 

  3. Maynard AD (2007) Nanotechnology: the next big thing, or much ado about nothing? Ann Occup Hyg 51:1–12

    Article  CAS  Google Scholar 

  4. Clift MJ, Gehr P, Rothen-Rutishauser B (2011) Nanotoxicology: a perspective and discussion of whether or not in vitro testing is a valid alternative. Arch Toxicol 85:723–731

    Article  CAS  Google Scholar 

  5. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444:267–269

    Article  CAS  Google Scholar 

  6. Timbrell J (1999) Principles of biochemical toxicology, 3rd edn. CRC, Philadelphia, PA, USA

    Google Scholar 

  7. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ (2004) Nanotoxicology. Occup Environ Med 61:727–728

    Article  CAS  Google Scholar 

  8. Ferin J, Oberdorster G, Penney DP (1992) Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 6:535–542

    Article  CAS  Google Scholar 

  9. Oberdorster G, Ferin J, Morrow PE (1992) Volumetric loading of alveolar macrophages (AM): a possible basis for diminished AM-mediated particle clearance. Exp Lung Res 18:87–104

    Article  CAS  Google Scholar 

  10. Zanobetti A, Schwartz J, Samoli E, Gryparis A, Touloumi G, Peacock J, Anderson RH, Le Tertre A, Bobros J, Celko M, Goren A, Forsberg B, Michelozzi P, Rabczenko D, Hoyos SP, Wichmann HE, Katsouyanni K (2003) The temporal pattern of respiratory and heart disease mortality in response to air pollution. Environ Health Perspect 111:1188–1193

    Article  CAS  Google Scholar 

  11. Schwartz J (2004) The effects of particulate air pollution on daily deaths: a multi-city case crossover analysis. Occup Environ Med 61:956–961

    Article  CAS  Google Scholar 

  12. Medina S, Plasencia A, Ballester F, Mucke HG, Schwartz J (2004) Apheis: public health impact of PM10 in 19 European cities. J Epidemiol Community Health 58:831–836

    Article  CAS  Google Scholar 

  13. Dockery DW, Pope CA 3rd, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr, Speizer FE (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329:1753–1759

    Article  CAS  Google Scholar 

  14. Donaldson K, Stone V, Clouter A, Renwick L, MacNee W (2001) Ultrafine particles. Occup Environ Med 58:211–216

    Article  CAS  Google Scholar 

  15. Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V (2002) Interactions between ultrafine particles and transition metals in vivo and in vitro. Tox Appl Pharm 184:172–179

    Article  CAS  Google Scholar 

  16. Donaldson K, Stone V, Borm PJ, Jimenez LA, Gilmour PS, Schins RP, Knaapen AM, Rahman I, Faux SP, Brown DM, MacNee W (2003) Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic Biol Med 34:1369–1382

    Article  CAS  Google Scholar 

  17. Seaton A, MacNee W, Donaldson K, Godden D (1995) Particulate air pollution and acute health effects. Lancet 345:176–178

    Article  CAS  Google Scholar 

  18. Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J (1997) Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 155:1376–1383

    Article  CAS  Google Scholar 

  19. Wichmann HE, Spix C, Tuch T, Wolke G, Peters A, Heinrich J, Kreyling WG, Heyder J (2000) Daily mortality and fine and ultrafine particles in Erfurt, Germany part I: role of particle number and particle mass. Res Rep Health Eff Inst 98:5–86, discussion 87–94

    Google Scholar 

  20. Schulz H, Harder V, Ibald-Mulli A, Khandoga A, Koenig W, Krombach F, Radykewicz R, Stampfl A, Thorand B, Peters A (2005) Cardiovascular effects of fine and ultrafine particles. J Aerosol Med 18:1–22

    Article  CAS  Google Scholar 

  21. Li XY, Gilmour PS, Donaldson K, MacNee W (1997) In vivo and in vitro proinflammatory effects of particulate air pollution (PM10). Environ Health Perspect 105(Suppl 5):1279–1283

    Article  CAS  Google Scholar 

  22. Li XY, Brown D, Smith S, MacNee W, Donaldson K (1999) Short-term inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats. Inhal Toxicol 11:709–731

    Article  Google Scholar 

  23. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199

    Article  CAS  Google Scholar 

  24. Duffin RTC, Clouter A, Brown DM, MacNee W, Stone V, Donaldson K (2001) The importance of surface area and specific reactivity in the acute pulmonary inflammatory response to particles. Ann Occup Hyg 4:242–245

    Google Scholar 

  25. Duffin R, Tran L, Brown D, Stone V, Donaldson K (2007) Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19:849–856

    Article  CAS  Google Scholar 

  26. Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H (2006) Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 114:328–333

    Article  Google Scholar 

  27. MacNee W (2001) Oxidative stress and lung inflammation in airways disease. Eur J Pharmacol 429:195–207

    Article  CAS  Google Scholar 

  28. Unfried K, Albrecht C, Klotz LO, von Mikecz A, Grether-Beck S, Schins RPF (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1:52–71

    Article  CAS  Google Scholar 

  29. Stone V, Shaw J, Brown DM, Macnee W, Faux SP, Donaldson K (1998) The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicol In Vitro 12:649–659

    Article  CAS  Google Scholar 

  30. Droge W, Schulze-Osthoff K, Mihm S, Galter D, Schenk H, Eck HP, Roth S, Gmunder H (1994) Functions of glutathione and glutathione disulfide in immunology and immunopathology. FASEB J 8:1131–1138

    CAS  Google Scholar 

  31. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460

    Article  CAS  Google Scholar 

  32. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807

    Article  CAS  Google Scholar 

  33. Alberts B, Johnson J, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science—Taylor and Francis Group, New York, USA

    Google Scholar 

  34. Abbas AK, Lichtman AH (2003) Cellular and molecular immunology, 5th edn. Elsevier Health Sciences, USA

    Google Scholar 

  35. Stone V, Brown DM, Watt N, Wilson M, Donaldson K, Ritchie H, MacNee W (2000) Ultrafine particle-mediated activation of macrophages: intracellular calcium signaling and oxidative stress. Inhal Toxicol 12:345–351

    Article  CAS  Google Scholar 

  36. Stone V, Tuinman M, Vamvakopoulos JE, Shaw J, Brown D, Petterson S, Faux SP, Borm P, MacNee W, Michaelangeli F, Donaldson K (2000) Increased calcium influx in a ­monocytic cell line on exposure to ultrafine carbon black. Eur Respir J 15:297–303

    Article  CAS  Google Scholar 

  37. Brown DM, Stone V, Findlay P, MacNee W, Donaldson K (2000) Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup Environ Med 57:685–691

    Article  CAS  Google Scholar 

  38. Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V (2004) Calcium and ROS-mediated activation of transcription factors and TNF-­alpha cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol 286:L344–L353

    Article  CAS  Google Scholar 

  39. Brown DM, Hutchison L, Donaldson K, MacKenzie SJ, Dick CA, Stone V (2007) The effect of oxidative stress on macrophages and lung epithelial cells: the role of phosphodiesterases 1 and 4. Toxicol Lett 168:1–6

    Article  CAS  Google Scholar 

  40. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  Google Scholar 

  41. Schins RP, Knaapen AM (2007) Genotoxicity of poorly soluble particles. Inhal Toxicol 19(Suppl 1):189–198

    Article  CAS  Google Scholar 

  42. Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39:9370–9376

    Article  CAS  Google Scholar 

  43. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  CAS  Google Scholar 

  44. Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5

    Article  Google Scholar 

  45. Rothen-Rutishauser B, Blank F, Muhlfeld C, Gehr P (2008) In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opin Drug Metab Toxicol 4:1075–1089

    Article  CAS  Google Scholar 

  46. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Clift, M.J.D., Rothen-Rutishauser, B. (2013). Studying the Oxidative Stress Paradigm In Vitro: A Theoretical and Practical Perspective. In: Armstrong, D., Bharali, D. (eds) Oxidative Stress and Nanotechnology. Methods in Molecular Biology, vol 1028. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-475-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-475-3_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-474-6

  • Online ISBN: 978-1-62703-475-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics