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Monte Carlo simulations and the chi-square
test of independence

DRAKE R. BRADLEY and STEVEN CUTCOMB
Bates College, Lewiston, Mai:n.e 04~O

A Monte Carlo program for sampling 2 by 2 contingency tables from a user-specified population is
discussed. Applications include computer-assisted instruction (CAl) of statistics, evaluation of actual vs
nominal Type I error rates of the chi-square test of independence when expected frequencies are less
than 10, and estimation of the power of the chi-square test.

In the present paper, we describe a Monte Carlo
program, Clll-PHI, which randomly samples 2 by 2
contingency tables from a user-specified population.
Figure la presents the symbolic notation used for
depicting the population. The parameters requiring
specification are the row and column marginal
probabilities [P(Ai), P(Bj)] , the degree of association
between the two categorical variables (c/» , and the size
and number of samples to be drawn (N, K). The
marginal probabilities and the phi coefficient uniquely
determine the joint probability distribution [P(ABjj)]
of the population. 1 These parameters are specified
on-line when the program is run (Figure 1b). CHI-PHI
then randomly samples N observations for each of the
K samples such that the probability of obtaining an
observation in Cellij is equal to the joint probability
for that cell. In the special case where c/> =0, the
variables are independent and the program sets the
probability of obtaining an observation in Cellij equal
to the product of the corresponding marginal proba
bilities [P(ABij) = P(Ai)P(Bj)] . When tf> '* 0, the program
sets the probability of obtaining an observation in
Celljj equal to the product of the corresponding marginal
probabilities incremented or decremented by whatever
amount is necessary to produce the degree of association
specified by the user [P(~j) =P(AJP(Bj) ± ~p] .
For each sample of N observations drawn from the
user-specified population, the program computes the
chi-square statistic and the phi coefficient, and
determines whether or not the observed chi square is
significant (p < .05). CHI-PHI then outputs the
following information: (1) the theoretical expected
frequency of Cellg, assuming independence between
the two variables, obtained by multiplying sample size
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Computation Center. Also, we thank Susan T. Dumais and
Lt. Col. T. D. Bradley for their assistance in conducting various
phases of this project. Reprint requests should be addressed to
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by P(Ai)P(Bj); (2) the mean expected frequency of
Cellq, obtained by averaging the K expected frequencies
for that cell (each computed from the empirically
sampled marginals); (3) the mean observed frequency
of Cellg , obtained by averaging the K observed
frequencies for that cell; (4) the proportion of
significant chi-square statistics obtained across the K
samples; (5) the average phi coefficient based on the K
sample estimates.

CHI-PHI permits the user to specify either negative
or positive association between the two categorical
variables. However, depending on the marginal
probabilities specified in defining the population, the
maximum possible values of the phi coefficient may
or may not achieve an upper theoretical limit of ±1.
The maximum values are therefore indicated by the
program (Figure 1b), and the user simply selects a value
of phi within or including these limits. If the variables
composing the 2 by 2 contingency table achieve at
least an ordinal level of measurement (Row 1 indicating
"less" of some characteristic than Row 2, and Column 1
"less" than Column 2), then the phi coefficient is
interpretable as a correlation coefficient. Specifically,
phi is the fourfold point correlation coefficient between
the row and column variables. Positive values of phi

B
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i = 2

Figure lao Symbolic notation used to denote the marginal
and joint probabilities of the population.
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RUN

CHI-PHI 29JUL 76 09:22

ROW1 AND COLUMN1 MARGINAL PROBABILITIES? .5,.5
SAMPLE SIZE, NUMBER OF SAMPLES? 100,1000
MAXIMUM POSITIVE PHI=1.000 MAXIMUM NEGATIVE PHI=-l.OOO
PHI COEFFICIENT? .3

CELL THEORETICAL MEAN MEAN
(R C) EXPECTED FREQ EXPECTED FREQ OBSERVED FREQ

( 1 1 ) 25.00 25.06 32.50
( 1 2 ) 25.00 24.87 17.42
( 2 1 ) 25.00 24.98 17.54
( 2 2 ) 25.00 25.10 32.54

PROPORTION SIG. CHI-SQRS= 0.858 AVERAGE PHI= 0.301

26.854 SEC. SO/I/O

Figure lb. A sample interactive sequence of the Monte Carlo program CHI-PHI.

will cause observations to cluster in the upper left
and lower right cells of the contingency table.f In tables
where Row 1 and Column 1 signify the absence of the
row and column attributes, and Row 2 and Column 2
signify the presence of these attributes, then a positive
phi coefficient indicates that observations cluster in the
agreement cells (Cell 11 and Cell 22), whereas a negative
phi coefficient indicates that observations cluster in
the disagreement cells (Cell 12 and Cell 21). Finally,

. in situations where the row and column variables have
no such quasiquantitative interpretation, then positive
and negative values of phi simply differentiate the case
where observations cluster in the upper left and lower
right cells (positive) from the case where they cluster
in the lower left and upper right cells (negative).

Figure 2 presents examples of the output generated
by CHI-PHI when all marginal probabilities are set
equal to .5, and the value of phi is set equal to (a) 1 ,
(b) 0, and (c) -1. Figure 3 shows a simulation in which
the row probabilities are set equal to .4 and .6, the
column probabilities equal to .3 and .7, and the value
of phi equal to (a) .802, (b) 0, and (c) -.535. In all
cases, N =100, K =1,000, and the nonzero values of
phi are equal to the maximum values possible, given the
configuration of marginal probabilities selected. Note
that, in Figures 2a and 2c, the mean observed
frequencies cluster entirely in one set of diagonal cells,
with no observed frequencies occurring in the opposing
set of diagonal cells. This is consistent with the fact
that the variables are perfectly correlated (1jJ = ±1). In
Figure 3, however, the marginal probabilities chosen
prevent the selection of phi equal to the upper

theoretical limit of ±1. When the maximum possible
values are used in the simulation (Figures 3a and 3c),
the mean observed cell frequencies cluster in the
appropriate diagonals, but only one of the opposing
diagonal cells has a zero mean observed frequency. In
tables having configurations of this type, it is impossible
to achieve a perfect positive or negative correlation
between the two categorical variables."

We now consider several possible applications of
CHI-PHI. As a general purpose program for simulating
sampling from a joint-probability distribution, CHI-PHI
may be used by instructors for CAl applications in
statistics (demonstrations, labs), or by researchers for
estimating possible inflation of the Type I error rate
when minimum expected cell-frequency requirements
are violated. CHI-PHI may also be used in lieu of tables
of noncentral chi square to estimate the power of the
chi-square test under various configurations of marginal
probabilities, sample size, and a priori assumptions
concerning the degree of association present in the
population. In the remaining portions of this paper, we
provide examples of each of these applications.

One of the most useful demonstrations provided
by CHI-PHI for the beginning student in statistics
is a clear and obvious delineation of the four possible
outcomes of a statistical decision: (1) accepting the
null hypothesis when it is true (1 - a); (2) rejecting
the null hypothesis when it is true (a, the Type I error
rate); (3) accepting the null hypothesis when it is false
(P, the Type II error rate); and (4) rejecting the null
hypothesis when it is false (1 -IJ). Since the student
defines the population at run time, he or she knows
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ROWI AND COLUMNI MARGINAL PROBABILITIES? .5,.5
SAMPLE SIZE, NUMBER OF SAMPLES? 100,1000
MAXIMUM POSITIVE PHI=I.000 MAXIMUM NEGATIVE PHI= -1.000
PHI COEFFICIENT? 1

CELL THEORETICAL MEAN MEAN
(R C) EXPECTED FREQ EXPECTED FREQ OBSERVED FREQ

( 1 1 ) 25.00 25.05 49.82
( 1 2 ) 25.00 24.78 0.00
( 2 1 ) 25.00 24.78 0.00
( 2 2 ) 25.00 25.40 50.18

PROPORTION SIG. CHI-SQRS= 1.000 AVERAGE PHI= 1.-000
(a)

ROWI AND COLU11N1 MARGINAL PROBABILITIES? .5,.5
SAMPLE SIZE, NUMBER OF SAMPLES? 100,1000
MAXIMUM POSITIVE PHI=I.000 MAXLMUM NEGATIVE PHI =-1.000
PHI COEFFICIENT? 0

CELL THEORETICAL MEAN MEAJ.~

(R C) EXPECTED FREQ . EXPECTED FREQ OBSERVED FREQ

( 1 1 ) 25.00 25.03 25.10
( 1 2 ) 25.00 24.98 24.91
( 2 1 ) 25.00 25.03 24.96
( 2 2 ) 25.00 24.96 25.04

PROPORTION SIG. CHI-SQRS= 0.055 AVERAGE PHI= 0.003
(b)

ROWI AND COLUMN1 ~~RGINAL PROBABILITIES? .5,.5
SAMPLE SIZE, NUMBER OF SAMPLES? 100,1000
MAXIMUM POSITIVE PHI =1.000 MAXIMUM NEGATIVE PHI=-1.000
PHI COEFFICIENT? -1

CELL THEORETICAL MEAN MEAN
(R C) EXPECTED FREQ EXPECTED FREQ OBSERVED FREQ

( 1 1 ) 25.00 24.75 0.00
( 1 2 ) 25.00 25.13 49.88
( 2 1 ) 25.00 25.37 50.12
( 2 2 ) 25.00 24.75 0.00

PROPORTION SIG. CHI-SQRS= 1.000 AVERAGE PHI=-1.000
(c)

Figure 2. Monte Carlo simulations selecting 1,000 samples of N = 100 from a population having
marginal probabilities equal to.5, .5, .5, .5, and phi equal to (a) 1, (b) 0, and (c) -1.
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ROW1 AND COLUMN1 MARGINAL PROBABILITIES? .4,.3
SAMPLE SIZE, NUMBER OF SAMPLES? 100,1000
MAXIMUM POSITIVE PHI=0.802 MAXIMUM NEGATIVE PHI =-0.535
PHI COEFFICIENT? .802

CELL THEORETICAL MEAN MEAN
(R C) EXPECTED FREQ EXPECTED FREQ OBSERVED FREQ

( 1 1 ) 12.00 11.95 29.71
( 1 2 ) 28.00 27.68 9.92
( 2 1 ) 18.00 17.77 0.00
( 2 2 ) 42.00 42.60 60.37

PROPORTION SIG. CHI-SQRS= 1.000 AVERAGE PH!= 0.802
(a)

ROW1 AND COLU}lli1 MARGINAL PROBABILITIES1 .4,.3
SAMPLE SIZE, NUMBER OF SAMPLES? 100,1000
MAXIMUM POSITIVE PHI= 0.802 MAXIMUM NEGATIVE PHI=-0.535
PHI COEFFICIENT? 0

CELL THEORETICAL MEAN MEAN
(R C) EXPECTED FREQ EXPECTED FREQ OBSERVED FREQ

( 1 1 ) 12.00 11.89 11.94
( 1 2 ) 28.00 28.00 27.95
( 2 1 ) 18.00 17.92 17.87
( 2 2 ) 42.00 42.19 42.24

PROPORTION SIG. CHI-SQRS= 0.050 AVERAGE PHI= 0.002
(b)

ROW1 AND COLUMN1 MARGINAL PROBABILITIES? .4,.3
SAMPLE SIZE, NUMBER OF SAMPLES? 100,1000
MAXIMUM POSITIVE PHI= 0.802 MAXIMUM NEGATIVE PHI=-0.535
PHI COEFFICIENT? -.535

CELL THEORETICAL MEAN MEAN
(R C) EXPECTED FREQ EXPECTED FREQ OBSERVED FREQ

( 1 1 ) 12.00 11.95 0.00
( 1 2 ) 28.00 28.03 39.98
( 2 1 ) 18.00 18.23 30.17
( 2 2 ) 42.00 41. 79 29.85

PROPORTION SIG. CHI-SQRS= 1.000 AVERAGE PHI=-0.536
(c)

Figure 3. Monte Carlo simulations selecting 1,000 samples of N =100 from a population having
marginal probabilities of .4, .6, .3, .7, and phi equal to (a) .802, (b) 0, and (c) -.535.



in advance whether the null hypothesis is true or false
(the null hypothesis is false whenever C/> =1= 0). The
student can then determine how frequently the chi
square test of independence yields a conclusion
consistent with the true state of affairs in the popula
tion. In Figures 2b and 3b, for example, the user
specified that the categorical variables be entirely
independent (C/> = 0). However, of the 1,000 samples
selected from each of these two populations, 55 in the
first instance and 50 in the second resulted in a decision
to reject the null hypothesis (Type I error). The
empirical Type I error rate is therefore about .05;
that is, the same as the a level used in evaluating the
significance of each chi square. In the remaining 95%
of the cases (1 - a), a correct decision to accept the
null hypothesis occurred. This illustrates that, in the
absence of precise information about population
parameters, all decisions made on the basis of sample
data are probabilistic in nature. The student finds that
this is also the case when the null hypothesis is false.
Figure I illustrates what happens when samples are
drawn from a population in which C/> = .30. In this case,
838 out of 1,000 samples resulted in a decision to reject
the null hypothesis, and since the null hypothesis was
indeed false, these decisions were correct. A reasonable
estimate of the probability of correctly rejecting the null
hypothesis (i.e., the power of the test) is given by the
proportion of significant chi-square tests; I - (3 = .858.
In the remaining 142 samples, the null hypothesis was
accepted (Type II error) and a reasonable estimate
of the Type II error rate is {3 = .142. The student may
also observe that increasing the sample size, the
magnitude of association in the population, or both,
increases the power of the chi-square test. Figures 2a, 2c,
3a, and 3c each illustrate an extreme instance of this,
in which phi is set equal to its maximum positive or
negative value and N is large (N = 100). In all cases,
the power of the chi-square test is I. A computer lab
can be conducted which requires the student to generate
and plot power curves by repeatedly running CHI-PHI
with the same parameters, except for phi, which is
stepped in .10 increments from the maximum negative
value to the maximum positive value (see below).

Another CAl application of CHI-PHI is to demon
strate the sample-to-sample variation in 2 by 2
contingency tables sampled from the same population.
If CHI-PHI is run several times holding all parameters
constant and with K = I, then each output represents
the outcome of drawing one sample from the popula
tion, rather than the average results across K samples
(as above). Consequently, the frequencies output
underneath the "mean expected frequency" and "mean
observed frequency" headings of the output table are
not averages, but the actual expected and observed
frequencies of the one sample drawn. likewise, the
"average phi" is simply the phi coefficient computed
on that one sample. Figure 4 illustrates several successive
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runs of this type. This kind of exercise provides the
student with a direct "feel" for how the cell and
marginal frequencies of the contingency table vary
from one sample to the next as a result of sampling
error. As a further demonstration, the instructor may
run CHI-PHI without telling the students the value
of phi being input to the program, again sampling only
one contingency table from the population. The
students are required to decide whether or not the
population value of phi is nonzero, based only on a
visual inspection of the observed and expected
frequencies of the table. If this procedure is repeated
many times, they can then compare their "hit" rates
(correct detections of nonzero phi) and error rates
(false alarms, misses) with those of the chi-square test,
and in so doing see that statistical decision procedures
balance the successful detections of a relation against
a known probability of committing a Type I error.
The student may also note that, while his or her hit
rate can, in some instances, be higher than that of
the chi-square statistic, this is only possible at the
expense of an increase in false alarms (Type I errors).
Conversely, the student might have a lower Type I
error rate than the chi-square statistic, but only at the
expense of an increase in "misses" (Type II errors).
In actuality, this exercise is a signal-detection task in
which the observer (student) has to detect a signal
(nonzero phi) masked by noise (sampling error).

There are, of course, many other applications of
Monte Carlo sampling programs such as CHI-PHI for
computer-assisted instruction of statistics. The examples
given above serve to illustrate the flexibility of such
general purpose programs for providing a large variety
of laboratory demonstrations and exercises. Of equal
importance, however, is the use of such programs
by professional researchers to evaluate the consequences
of violating the formal assumptions of the statistical
models being applied to their data. In the case of the
chi-square test of independence in 2 by 2 contingency
tables, it is widely asserted that this test is valid only
if all expected cell frequencies are 10 or greater (Hays,
1963, pp. 596, 613). Since the statistical model assumes
a continuous distribution, and since frequency data in
2 by 2 tables are discrete, the accuracy of the approxi
mation (chi-square probabilities for exact multinomial
probabilities) is presumably adequate only if N is large
and expected frequencies at least 10. Unfortunately,
for many research applications this minimum expected
cell-frequency requirement will not be met, even though
one might plausibly expect the chi-square test to be
valid anyway. Table I illustrates this point. The first
four columns of the table list the row and column
marginal probabilities defining various populations
from which contingency tables might be sampled.
The next two columns list the maximum positive and
negative values of phi which can be achieved given the
particular configuration of marginal probabilities listed
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RUN

CHI-PHI 29 JUN 76 09:12

ROW1 AND COLUMN1 MARGINAL PROBABILITIES? .5,.5
SAMPLE SIZE, NUMBER OF SAMPLES? 100,1
MAXIMUM POSITIVE PHI=1.000 MAXIMUM NEGATIVE PHI=-1.000
PHI COEFFICIENT? 0

CELL THEORETICAL MEAN MEAN
(R C) EXPECTED FREQ EXPECTED FREQ OBSERVED FREQ

c1 1 ) 25.00 27.00 28.00
( 1 2 ) 25.00 23.00 22.00
( 2 1 ) 25.00 27.00 26.00
( 2 2 ) 25.00 23.00 24.00

PROPORTION SIG. CHI-SQRS= 0.000 AVERAGE PHI= 0.040
(a)

ROW1 AND COLUMN1 MARGINAL PROBABILITIES? .5,.5
SAMPLE SIZE, NUMBER OF SAMPLES? 100,1
MAXIMUM POSITIVE PHI=1.000 MAXIMUM NEGATIVE PHI= -1.000
PHI COEFFICIENT? 0

CELL THEORETICAL MEAN MEAN
(R C) EXPECTED FREQ EXPECTED FREQ OBSERVED FREQ

( 1 1 ) 25.00 18.80 19.00
( 1 2 ) 25.00 28.20 28.00
( 2 1 ) 25.00 21.20 21.00
( 2 2 ) 25.00 31.80 32.00

PROPORTION SIG. CHI-SQRS= 0.000 AVERAGE PHI= 0.008
(b)

ROW1 AND COLUMN1 MARGINAL PROBABILITL~S? .5,.5
SAMPLE SIZE, NU}ffiER OF SAMPLES? 100,1
MAXIMUM POSITIVE PHI= 1.000 MAXIMUM NEGATIVE PHI= -1.000
PHI COEFFICIENT? 0

CELL THEORETICAL MEAN MEAN
(R C) EXPECTED FREQ EXPECTED FREQ OBSERVED FREQ

( 1 1 ) 25.00 27.44 26.00
( 1 2 ) 25.00 21.56 23.00
( 2 1 ) 25.00 28.56 30.00
( 2 2 ) 25.00 22.44 21.00

PROPORTION SIG. CHI-SQRS= 0.000 AVERAGE PHI=-0.058
(c)

Figure 4. A demonstration of the effect of sampling error on the variation in observed and expected
frequencies of 2 by 2 tables sampled from the same population: N = 100, q,= 0, and all marginal
probabilities are .5.
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Table 1
Error Rate Table

Marginal Probabilities Maximum Phi Sample Size

Rl R2 Cl C2 Positive/Negative 4 10 20 40 60 80 100

.5 .5 .5 .5 1.00 1-1.00 .10894 .0526 4 .04744 .0492° .0558° .0566° .0528°

.5 .5 .6 .4 .816/- .816 .1035 4 .0487 4 .05494 .0543% .0500° .0544° .0471°

.5 .5 .7 .3 .655/- .655 .0921 4 .0407 4 .05014 .0571% .0527' .0453° .0523°

.5 .5 .8 .2 .500/- .500 .07074 .0309 4 .03834 .0488% .0484% .0509% .0506°

.5 .5 .9 .1 .333/- .333 .04624 .01574 .02ll4 .0359% .0505% .0471% .0520%

.6 .4 .6 .4 1.00 1- .667 .09844 .0534 4 .05094 .0555 3 .0501' .0492° .0497°

.6 .4 .7 .3 .802/- .535 .0958 4 .04634 .04764 .0520% .0521' .0480' .0533°

.6 .4 .8 .2 .612/- .408 .07324 .0334 4 .04564 .0479% .0510% .047P .0530'

.6 .4 .9 .1 .408/- .272 .04924 .0214 4 .0287 3 .0390% .0418% .0477% .0528%

.7 .3 .7 .3 1.00 t- .429 .0817 4 .04504 .0451 4 .0518 3 .0520' .0550' .0517'

.7 .3 .8 .2 .764/- .327 .06744 .0451 4 .0425 3 .04303 .0494% .0483' .0472'

.7 .3 .9 .1 .509/- .218 .03794 .03604 .0371' .03792 .0434% .04182 .0502%

.8 .2 .8 .2 1.00 t- .250 .0535 4 .05514 .0475' .03723 .0485 3 .0493' .0482'

.8 .2 .9 .1 .667/- .167 .0347 4 .05344 .0589' .0447 3 .0385 2 .0388% .0423%

.9 .1 .9 .1 1.00 t- .111 .02374 .0481 4 .0721' .0568 3 .0492 3 .0437' .0425 3

Simulations Using Extremely Unbalanced Marginal Probabilities
.5 .5 .99 .01 .101/- .101 .00524 .0013 4 .00064 .001P .00092 .00ll2 .0026'
.6 .4 .99 .01 .123/- .082 .0055 4 .00294 .0021' .0025 2 .0028' .0045 2 .00492
.7 .3 .99 .01 .154/- .066 .00494 .0045 4 .0082' .00722 .01042 .ous- .01592
.8 .2 .99 .01 .201/- .050 .00494 .0087 4 .0174 3 .0286 3 .036P .0417' .0445 2
.9 .1 .99 .01 .302/- .034 .00284 .0071 4 .0171' .03093 .0381' .05223 .0531'
.99 .01 .99 .01 1.00 t- .010 .00034 .00084 .0020' .0035 3 .00563 .00863 .Oll83

at the left. The remaining seven columns list the
empirically determined Type I error rates (proportion
of significant chi-square tests) for samples ranging
from N =4 to N = 100, where ¢ =0 in all cases. These
were obtained using CHI-PHI as in Figures 2b and 3b,
except that each proportion was based on K = 10,000
contingency tables being sampled from the user-specified
population.

The superscript listed adjacent to each error rate
in Table 1 indicates the number of cells out of four in
which the expected frequency was less than 10. Only
13 out of the 147 combinations tested (21 sets of
marginal probabilities by 7 sample sizes) yield expected
frequencies of 10 or greater in all four cells. Never
theless, the combinations selected in Table 1 would
seem to cover most applications of interest to the
researcher, insofar as chi-square tests of independence
in psychology rarely involve samples larger than 100
or smaller than 10 (we include N =4 as a limiting case).
Furthermore, the marginal probabilities listed in the
first four columns cover the entire range of unique
combinations of such probabilities, incremented in
.10 steps, which might arise in a population," Yet,
the superscripts in the table show that very few instances
in practice justify the use of a chi-square test of
independence on 2 by 2 tables, if we take seriously
the requirement of a minimum expected cell frequency
of 10.

Fortunately, the Type I error rates listed in Table 1
provide virtually no support for the assumption that
expected cell frequencies must be 10 or more for the
chi-square test to provide an adequate approximation.f

Excluding N;: 4 for the moment, the empirically
obtained error rates in Table 1 are never seriously
inflated relative to the nominal error rate of .05. In
particular, note the error rates listed in the N;: 10
column of the table: In each and every case, all four cells
of the contingency table have expected frequencies
less than 10, and yet the error rates never exceed the
nominal level of ex = .05 by more than .0051. Simula
tions using extremely unbalanced marginal probabilities
demonstrate a strong negative bias; that is, the actual
error rates are usually much smaller than the nominal
error rate. The only strong positive bias observed occurs
for certain combinations of marginal probabilities
when N =4, and this is certainly not a realistic sample
size for most research applications. Furthermore, in
75 out of the 147 combinations tested, one or more
cells of the 2 by 2 table had expected frequencies less
than 1, again with no serious inflation in error rate
except when N = 4. Consequently, the chi-square test
of independence would appear to be an exceptionally
robust test, far more so than is generally supposed.
This conclusion is reached empirically, via the results
of a Monte Carlo sampling program (CHI-Pill), rather
than derivationally, a far more tedious process."

Another valuable application of CHI-Pill, for either
the student or the experienced researcher, is the use of
this program for estimating the power of the chi-square
test. If the simulations summarized in Table 1 had been
conducted with ¢ =1= 0, then the numbers entered in the
seven right-hand columns would be hit rates (proportion
of significant chi-square tests), rather than Type I
error rates. In this case, the table would be a power
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1.0

.9

abcd

'[P(ABij) - P(Ai)P(Bj»)'

P(Ai)P(Bj)

bcd + acd + abd + abc

<P =

l1p = <P

ruing the marginal probabilities [P(Ai)' P(Bj} 1 and the degree
of association in the population (1/» defines the required joint
probability distribution [P(ABij) J. Substituting l1p for
P(ABij) - P(Ai)P(Bj) in the formula above, and expanding,
simplifying, and rearranging terms, we obtain:

where a = P(A, )P(B,), b =P(A, )P(B.), c = P(A. )P(B,), and
d = P(A. )P(B.}. The probability increment/decrement factor
[l1p = P(ABij) - P(Ai}P(Bj») is the size of the difference
required in each cell to produce the amount of association (<p)
entered in the formula. Consequently, the joint-probability
distribution is simply: P(ABij) =P(Ai)P(Bj) ± top. Note that
l1p is the same for all four cells because of the linear constraints
pertaining to 2 by 2 tables (df = 1). Furthermore, l1p must be
added in one set of diagonal cells and subtracted in the other in
order to produce the desired distribution of joint probabilities,
and to insure that they sum (within rows and columns) to
equal the corresponding marginal probabilities (Figure La).

2. The program produces positive association by adding
l1p to P(A, )P(B,) and P(A1)P(B1)' and subtracting l1p from
P(A, )P(B.) and P(A1)P(B,). Negative association is produced
by the reverse operation. In either case, the resulting joint
probability distribution [P(ABij») is used to construct a
probability space from which a random-number generator
samples the N observations.

3. Maximum values of -lor +1 are possible only if
P(A, )P(B,) =P(A.)P(B1) or P(A, )P(B1) =P(A.)P(B,),
respectively, so that P(ABij) = P(Ai)P(Bj) - top = 0 in two

1. Since the population value of phi is defined (after Hays,
1963, p. 604) as
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in the one-way analysis of variance, and evaluate the
consequences of violating the assumptions of homoge
neity of variance and normality of distribution of
within-groups errors (Bradley, Hotchkiss, Dumais, &
Shea, 1976). The use of empirical simulations to study
the behavior and operating characteristics of inferential
statistics under various conditions, including those
representing substantial departures from the assumptions
of the statistical models being applied, would appear
to be a useful pedagogical device and a highly valuable
research tool.
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Figure S. Empirically determined power levels for the
chi-square test of independence on 2 by 2 tables as a function
of sample size (N =10 vs N =20) and magnitude of association
(phi ranging from -1 to 1).

table rather than an error-rate table. If a researcher is
interested in estimating power for a particular
application of chi square, then CHI-PHI may be used
to establish power levels for the different sample sizes
and values of phi under consideration. The researcher
might then select that sample size which is adequate
for detecting the minimum degree of association of
practical or theoretical importance 75% of the time.
Figure 5 presents two power curves (N = 10, N = 20)

. obtained by successively running CHI-PHI with marginal
probabilities all equal to .5, and phi ranging from -1
to 1 in .10 increments. Each data point represents the
proportion of significant chi-square tests obtained in
that simulation. The proportions plotted in the N = 10
curve are based on K = 10,000 samples, whereas those
plotted in the N::: 20 curve are based on K::: 1,000
samples. These results show, as expected, that power
falls off as the degree of association approaches zero,
and as sample size decreases (N::: 10 vs N::: 20). An
association between attributes of ep::: ±.60 will be
detected about 50% of the time with a sample of N = 10,
whereas samples of N::: 20 increase the hit rate to
around 81%. This general procedure permits the
researcher to find a sample size which is adequate for
detecting whatever minimum degree of association is
of practical import for any particular configuration
of marginal probabilities desired.

In conclusion, Monte Carlo sampling programs such
as CHI-PHI have many practical uses, both for research
and CAl applications. CHI-PHI is just one of a package
of such programs we have been using in a CAl system
for teaching introductory statistics. Other programs_
we have written generate power curves for the F test



diagonal cells. This condition is met whenever both sets
of marginal probabilities are balanced in the same way:
peAl )/P(A.) =PCB, )/P(B.) or peA, )/P(A.) =PCB.)/(B.), since
the arrangement of rows and columns is arbitrary except for
determining the sign of phi. When P(A,) = P(A.) = PCB,) =
P(B.) = .50, the maximum possible values of phi are ±1;
otherwise, if the marginal probabilities are unequal but balanced
similarly for rows and columns, then the maximum value of
phi can be I or -1, but not both. Finally, when marginal
probabilities are unequal and are not balanced in the same way
for rows and columns, the maximum values of phi cannot equal
either I or -1. Table 1 demonstrates these points by listing a
variety of marginal probabilities, along with the maximum
positive and negative values of phi which are possible for each
particular combination.

4. Although the marginal probabilities in Table 1 do not
include all possible ordered combinations, they do represent
all possible joint-probability distributions which can result
from marginal probabilities incremented in .10 steps, provided
order is disregarded. Hence, marginal probabilities of .6, .4,
.3, and .7, of .3, .7, .6, and .4, and of .3, .7, .4, and .6 all result
in a joint-probability distribution (assuming independence)
consisting of the following four probabilities: .42, .28, .18, and
.12. The only difference between them is the cells to which the
probabilities are assigned in the 2 by 2 table. However, as far
as testing for possible inflation in the Type I error rate, it is
inconsequential which cells receive which joint probabilities.
Therefore, if an investigator has an estimate of the marginal
probabilities in the population and wishes to determine the
empirical Type I error rate for various sam pie sizes, all that is
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necessary is that he consult Table 1 and find the set of marginal
probabilities most closely approximating his own, disregarding
order. Hence, any of the above three sets of marginal probabi
lities can be evaluated for inflation in error rate by consulting
the .6, .4, .7, .3 row of the table.

5. This is true with regard to using the continuous chi-square
distribution to approximate a discrete multinomial distribution
in terms of the areas in the tails of each distribution (p < .05).
This does not imply that the approximation is adequate
throughout the entire range of cumulative probabilities (Tate &
Hyer, 1973). Since we are concerned here with the use of
chi square as an inferential test, adequacy of approximation
is of concern only for those 0< levels typically used in inference
(i.e., 0< = .05, 0< = .01, 0< = .10). We have conducted additional
Monte Carlo simulations (reproducing Table 1) for tests
conducted at the 0< = .01 and 0< =.10 levels of significance.
The same overall results were obtained as reported in the text
for 0: = .05.

6. As a check on the accuracy of the empirically determined
error rates reported in Table 1, several exact probabilities were
computed for small N by manual expansion of the multinomial.
In each case, the exact values were closely approximated by
the empirical values. For example, manual expansion of the
multinomial for marginal probabilities of .5, .5, .5, .5, and
N =4 produced an exact Type I error rate of .1094, which
is very close to the empirical value (Table 1) of .1089; in fact,
95% confidence limits constructed about the former value
include the latter. A similar check conducted on marginal
probabilities of .9, .1, .9, .1, and N =4 produced an exact
value of .0226, as compared to the empirical value of .0237.


