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Abstract

In this paper we study the stochastic Galerkin approximation for the linear transport
equation with random inputs and diffusive scaling. We first establish uniform (in the
Knudsen number) stability results in the random space for the transport equation with
uncertain scattering coefficients and then prove the uniform spectral convergence
(and consequently the sharp stochastic asymptotic-preserving property) of the
stochastic Galerkin method. A micro–macro decomposition-based fully discrete
scheme is adopted for the problem and proved to have a uniform stability. Numerical
experiments are conducted to demonstrate the stability and asymptotic properties of
the method.
Keywords: Linear transport equation, Random inputs, Diffusion limit, Uncertainty
quantification, Stochastic Galerkin method, Polynomial chaos, Asymptotic-preserving
scheme

1 Background
We consider the linear transport equation in one-dimensional slab geometry:

ε∂t f + v∂xf = σ

ε
Lf − εσ af + εS, σ (x, z) ≥ σmin > 0, (1)

Lf (t, x, v, z) = 1
2

∫ 1

−1
f (t, x, v′, z) dv′ − f (t, x, v, z). (2)

This equation arises in neutron transport, radiative transfer, etc., that describes particles
(for example neutrons) transport in a background media (for example nuclei), in which
f (t, x, v, z) is the density distribution of particles at time t ≥ 0, position x ∈ (0, 1). v =
� · ex = cos θ ∈ [−1, 1] where θ is the angle between the moving direction and x-axis.
σ (x, z), σ a(x, z) are total and absorption cross section, respectively. S(x, z) is the source
term. ε is the dimensionless Knudsen number, the ratio between particle mean free path
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and the characteristic length (such as the length of the domain). The Dirichlet boundary
conditions are given in the incoming direction by

f (t, 0, v, z) = fL(t, v, z), for v ≥ 0 ,

f (t, 1, v, z) = fR(t, v, z), for v ≤ 0 ,
(3)

while the initial condition is given by

f |t=0(x, v, z) = f0(x, v, z). (4)

We are interested in the problem that contains uncertainty in the collision cross section,
source, initial or boundary data. The uncertainty is characterized by the random variable
z ∈ R

d with probability density function ω(z). Thus in our problem f, σ , σ a and S all
depend on z.
In recent years, there have been extensive activities to study partial differential equa-

tions or engineering problems with uncertainties. Many numerical methods have been
introduced. In this article, we are interested in the polynomial chaos (originally intro-
duced in Wiener’s work [26])-based stochastic Galerkin method which has been shown
to be competitive in many applications, see [4,27,28]. The stochastic Galerkin method
has been used for linear transport equation with uncertain coefficients [25]. Here we
are interested in the problem that contains both uncertainty and multiscale. The latter
is characterized by the Knudsen number ε, which, in the so-called optically thin region
(ε � 1), due to high scattering rate of particles, leads the linear transport equation to
a diffusion equation, known as the diffusion limit [1,3,18]. For the past decades, devel-
oping asymptotic-preserving (AP) schemes for (deterministic) linear transport equation
with diffusive scaling has seenmany activities, see for examples [5,7–9,17,19,20,22]. Only
recently AP scheme for linear transport equation with both uncertainty and diffusive scal-
ing was introduced in [15] (in the framework of stochastic Galerkin method, coined as
s-APmethod). Seemore related recentworks along this line in [6,12,13]. A scheme is s-AP
if the stochastic Galerkin method for the linear transport equation, as ε → 0, becomes a
stochastic Galerkin method for the limiting diffusion equation. It was realized in [15] that
the deterministic AP framework can be easily adopted to study linear transport equations
with uncertain coefficients. Moreover, as shown in [6,12], kinetic equations, linear or
nonlinear, could preserve the regularity in random space of the initial data at later time,
which naturally leads to spectral accuracy of the stochastic Galerkin method.
When ε � 1, however, the energy estimates and consequently the convergence rates

given in [6,12] depend on the reciprocal of ε, which implies that one needs the degree of
the polynomials used in the stochastic Galerkin method to grow as ε decreases. In fact,
this is typical of a standard numerical method for problems that contain small or multiple
scales. While AP schemes can be used with numerical parameters independent of ε, to
prove this rigorously is not so easy and has been done only in a few occasions [5,14]. A
standard approach to prove a uniform convergence is to use the diffusion limit, as was
done first in [5] in the deterministic case and then in [11] for the uncertain transport
equation. See also the review article [7]. However such approaches might not give the
sharp convergence rate.
In this paper, we provide a sharp error estimate for the stochastic Galerkin method

for problem (1). This requires a sharp (ε-independent) energy estimate on high-order
derivatives in the random space for f , as well as [f ] − f where [f ] is the velocity average



Jin et al. ResMath Sci (2017) 4:15 Page 3 of 25

of f defined in (5) which is shown to be bounded even if ε → 0. Then the uniform in ε

spectral convergence naturally follows, without using the diffusion limit.
The s-AP scheme in [15] uses the AP framework of [8] that relies on the even- and

odd-parity formulation of the transport equation. In this paper, we use the micro–macro
decomposition-based approach (see [22]) to develop a fully discrete s-AP method. The
advantage of this approach is that it allows us to prove a uniform (in ε) stability condition,
as was done in the deterministic counterpart in [23]. In fact, we will show that one can
easily adopt the proof of [23] for the s-AP scheme.
The paper is organized as follows. In Sect. 2 we summarize the diffusion limit of the

linear transport equation. The generalized polynomial chaos-based stochastic Galerkin
method for the problem is introduced in Sect. 3 and shown formally to be s-AP. The
uniform in ε regularity of the stochastic Galerkin scheme is proven in Sect. 4, which
leads to a uniform spectral convergence proof. The micro–macro decomposition-based
fully discrete scheme is given in Sect. 5, and its uniform stability is established in Sect. 6.
Numerical experiments are carried out in Sect. 7. The paper is concluded in Sect. 8.

2 The diffusion limit
Denote

[φ] = 1
2

∫ 1

−1
φ(v) dv, (5)

as the average of velocity-dependent function φ. For each random realization z, there
exists a positive function φ(v) > 0, the so-called absolute equilibrium state that satisfies
[φ] = 1, [vφ(v)] = 0, (from Perron–Frobenius theorem, cf. [1]).
Define in the Hilbert space L2

(
(−1, 1); φ−1 dv

)
the inner product and norm

〈f, g〉φ =
∫ 1

−1
f (v)g(v)φ−1 dv, ‖f ‖2φ = 〈f, f 〉φ . (6)

The linear operator L satisfies the following properties [1]:

• [Lf ] = 0, for every f ∈ L2([−1, 1]);
• The null space of f isN (L) = Span {φ | φ = [φ] };
• The range of f isR(L) = N (L)⊥ = { f | [f ] = 0 };
• L is nonpositive self-adjoint in L2((−1, 1);φ−1 dv), i.e. , there is a positive constant sm

such that

〈f,Lf 〉φ ≤ −2sm‖f ‖2φ , ∀ f ∈ N (L)⊥; (7)

• L admits a pseudo-inverse, denoted by L−1, fromR(L) toR(L).
Let ρ = [f ]. For each fixed z, the classical diffusion limit theory of linear transport

equation [1,3,18] gives that, as ε → 0, ρ converges to the following random diffusion
equation:

∂tρ = ∂x(κ(z)∂xρ) − σ a(z)ρ + S, (8)

where the diffusion coefficient

κ(z) = 1
3
σ (z)−1 . (9)

Themicro–macro decomposition, a useful tool for the study of the Boltzmann equation
and its fluid dynamics limit [24], and for the design of asymptotic-preserving numerical
schemes for kinetic equations [2,16,22], takes the form
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f (t, x, v, z) = ρ(t, x, z) + εg(t, x, v, z), (10)

where [g] = 0. Introducing (10) into (1), one gets its micro–macro form:

∂tρ + ∂x[vg] = −σ aρ + S, (11a)

∂t g + 1
ε
(I − [.])(v∂xg) = −σ (z)

ε2
g − σ ag − 1

ε2
v∂xρ. (11b)

Diffusion limit (8) can be easily seen now. When ε → 0, (11b) gives

g = − v
σ (z)

∂xρ

which, when plugged into (11a), gives diffusion equation (8)–(9).

3 The gPC-stochastic Galerkin approximation
We assume the complete orthogonal polynomial basis in the Hilbert spaceH (Rd ;ω(z) dz)
corresponding to the weight ω(z) is {φi(z), i = 0, 1, . . . , }, where φi(z) is a polynomial of
degree i and satisfies

〈φi,φj〉ω =
∫

φi(z)φj(z)ω(z) dz = δij .

Here φ0(z) = 1, and δij is the Kronecker delta function. The inner product and norm in
this space are, respectively,

〈f, g〉ω =
∫
Rd

fg ω(z) dz, ‖f ‖2ω = 〈f, f 〉ω . (12)

Since the solution f (t, ·, ·, ·) is defined in L2
(
(0, 1) × (−1, 1) × R

d ;ω(z) dx dv dz
)
, one has

the generalized polynomial chaos (gPC) expansion

f (t, x, v, z) =
∞∑
i=0

fi(t, x, v)φi(z), f̂ = (
fi
)∞
i=0 :=

(
f̄ , f̂1

)
.

The mean and variance of f can be obtained from the expansion coefficients as

f̄ = E(f ) =
∫
R

f ω(z) dz = f0, var (f ) = |f̂1|2 .
The idea of the stochastic Galerkin (SG) approximation [4,28] is to truncate the above

infinite series by

fM =
M∑
i=0

fi φi, f̂ M = (
fi
)M
i=0 :=

(
f̄ , f̂ M1

)
, (13)

from which one can extract the mean and variance of fM from the expansion coefficients
as

E(fM) = f̄ , var (fM) = |f̂ M1 |2 ≤ var (f ) .

Furthermore, we define

σij = 〈
φi, σφj

〉
ω
, � = (

σij
)
M+1,M+1,

σ a
ij = 〈

φi, σ aφj
〉
ω
, �a = (

σ a
ij
)
M+1,M+1,

for 0 ≤ i, j ≤ M. Let Id be the (M + 1) × (M + 1) identity matrix. �,�a are symmetric
positive-definite matrices satisfying [27]

� ≥ σmin Id .
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If one applies the gPC ansatz (13) into transport equation (1), and conduct the Galerkin
projection, one obtains [15,25]:

ε∂t f̂ + v∂xf̂ = −1
ε
(I − [·])� f̂ − ε�af̂ − Ŝ (14)

where Ŝ is defined similarly as (13).
We now use the micro–macro decomposition

f̂ (t, x, v) = ρ̂(t, x) + εĝ(t, x, v), (15)

where ρ̂ = [f̂ ] and [g] = 0, in (14) to get

∂t ρ̂ + ∂x[vĝ] = −�aρ̂ + Ŝ, (16a)

∂t ĝ + 1
ε
(I − [.])(v∂xĝ) = − 1

ε2
�ĝ − �aĝ − 1

ε2
v∂xρ̂, (16b)

with initial data

ρ̂(0, x) = ρ̂0(x), ĝ(0, x, v) = ĝ0(x, v) ,

that satisfy

1
2

∫ 1

−1
(ρ̂(0, x) + εĝ(0, x, v))2 dv = ρ̂(0, x)2 + ε2

2

∫ 1

−1
ĝ(0, x, v))2 dv ≤ C .

It is easy to see that system (16) formally has the diffusion limit as ε → 0:

∂t ρ̂ = ∂x(K∂xρ̂) − �aρ̂ + Ŝ , (17)

where

K = 1
3
�−1 .

Thus the gPC approximation is s-AP in the sense of in [15].
One can easily derive the following energy estimate for system (16)∫ 1

0
ρ̂(t, x)2 dx + ε2

2

∫ 1

0

∫ 1

−1
ĝ(t, x, v)2 dv dx

≤
∫ 1

0
ρ̂(0, x)2 dx + ε2

2

∫ 1

0

∫ 1

−1
ĝ(0, x, v)2 dv dx .

On the other hand, the direct gPC approximation of the random diffusion equation (8)–
(9) is:

∂t ρ̂ = ∂x(Kd∂xρ̂) − �aρ̂ + Ŝ, (18)

where Kd = (κij), κi,j = 〈φi, κφj〉ω.

4 The regularity in the random space and a uniform spectral convergence
analysis of gPC-SGmethod
In this section, we assume σ a = S = 0 for clarity and periodic boundary condition

f (t, 0, v, z) = f (t, 1, v, z) (19)

for simplicity. We prove that, under some suitable assumptions on σ (z), the solution to
the linear transport equation with random inputs preserves the regularity in the random
space of the initial data uniformly in ε. Then based on the regularity result, we conduct
the spectral convergence analysis and error estimates for the gPC-SG method and will
also obtain error bounds uniformly in ε.
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4.1 Notations

We first recall the Hilbert space of the random variable introduced in Sect. 3,

H (Rd ; ω dz) =
{
f | Rd → R,

∫
Rd

f 2(z)ω(z) dz < +∞
}
, (20)

equipped with the inner product and norm defined in (12). We also define the kth-order
differential operator with respect to z as

Dkf (t, x, v, z) := ∂kz f (t, x, v, z), (21)

and the Sobolev norm in H as

‖f (t, x, v, ·)‖2Hk :=
∑
α≤k

‖Dα f (t, x, v, ·)‖2ω . (22)

Finally, we introduce norms in space and velocity as follows:

‖f (t, ·, ·, ·)‖2� :=
∫
Q

‖f (t, x, v, ·)‖2ω dx dv, t ≥ 0, (23)

‖f (t, ·, ·, ·)‖2
�k :=

∫
Q

‖f (t, x, v, ·)‖2Hk dx dv, t ≥ 0, (24)

where Q = [0, 1] × [−1, 1] denotes the domain in the phase space. For simplicity, we will
suppress the dependence of t and just use ‖f ‖� , ‖f ‖�k in the following proof.

4.2 Regularity in the random space

Wewill study the regularity of f with respect to the random variable z. To this aim, we first
prove the following lemma. For simplicity, we state and prove the following lemma only
for one-dimensional case. Proof for high-dimensional case is identical except the change
of coefficient.

Lemma 4.1 Assume σ (z) ≥ σmin > 0, then for any integer k and σ ∈ Wk,∞, g ∈ Hk we
have

− 〈Dk (σ g), Dkg〉ω ≤ −σmin
2

‖Dkg‖2ω + 4k

2σmin

(
max
0≤j≤k

‖Djσ‖2L∞

)
‖g‖2Hk−1 . (25)

Proof Since

Dk (σ g) =
k∑

j=0

(
k
j

)
(Dk−jσ )(Djg) = σDkg +

k−1∑
j=0

(
k
j

)
(Dk−jσ )(Djg) , (26)

we have

− 〈Dk (σ g), Dkg〉ω = −〈σDkg, Dkg〉ω −
〈k−1∑
j=0

(
k
j

)
(Dk−jσ )(Djg), Dkg

〉

ω

≤ −σmin‖Dkg‖2ω −
〈k−1∑
j=0

(
k
j

)
(Dk−jσ )(Djg), Dkg

〉

ω

. (27)

By Young’s inequality

−
〈k−1∑
j=0

(
k
j

)
(Dk−jσ )(Djg), Dkg

〉

ω

≤ σmin
2

‖Dkg‖2ω

+ 1
2σmin

∥∥∥∥∥∥
k−1∑
j=0

(
k
j

)
(Dk−jσ )(Djg)

∥∥∥∥∥∥
2

ω

, (28)
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and Cauchy–Schwarz inequality
∥∥∥∥∥∥
k−1∑
j=0

(
k
j

)
(Dk−jσ )(Djg)

∥∥∥∥∥∥
2

ω

≤
⎛
⎝k−1∑

j=0

(
k
j

)2
‖Dk−jσ‖2L∞

⎞
⎠
⎛
⎝k−1∑

j=0
‖Djg‖2ω

⎞
⎠

≤
⎧⎨
⎩

k∑
j=0

(
k
j

)2
⎫⎬
⎭ max

0≤j≤k
‖Djσ‖2L∞‖g‖2Hk−1

≤ 4k
(
max
0≤j≤k

‖Djσ‖2L∞

)
‖g‖2Hk−1 . (29)

Combining (27), (28) and (29), one obtains

− 〈Dk (σ · g), Dkg〉 ≤ −σmin
2

‖Dkg‖2ω + 4k

2σmin

(
max
0≤j≤k

‖Djσ‖2L∞

)
‖g‖2Hk−1 . (30)

This completes the proof of Lemma 4.1. ��

Now we are ready to prove the following regularity result.

Theorem 4.1 (Uniform regularity) Assume

σ (z) ≥ σmin > 0 .

If for some integer m ≥ 0,

‖Dkσ (z)‖L∞ ≤ Cσ , ‖Dkf0‖� ≤ C0, k = 0, . . . , m, (31)

then the solution f to linear transport equation (1)–(2), with σ a = S = 0 and periodic
boundary condition (19), satisfies,

‖Dkf ‖� ≤ C, k = 0, . . . , m, ∀t > 0, (32)

where Cσ , C0 and C are constants independent of ε.

Proof For σ a = S = 0, the kth (0 ≤ k ≤ m)-order formal differentiation of (1) with
respect to z is,

ε2∂t (Dkf ) + εv∂x(Dkf ) = Dk(σ (z)([f ] − f )
)
, (33)

where [·] is the average operator defined in (5). Multiplying Dkf to both sides of (33) and
integrating on Q = [0, 1] × [−1, 1], one gets

ε2

2
∂t‖Dkf ‖2� + ε

∫
Q
v〈Dkf, ∂x(Dkf )〉ω dx dv

=
∫
Q
〈Dk (σ (z)([f ] − f )), Dk f 〉ω dx dv . (34)

Integration by parts yields

ε

∫
Q
v〈Dkf, ∂x(Dkf )〉ω dx dv = ε

2

∫
Q×Rd

v∂x(Dkf )2ω dz dx dv = 0, (35)

where we have used periodic boundary condition (19). Notice that
∫
Q
〈Dk(σ (z)([f ] − f )

)
, [Dkf ]〉ω dx dv = 0 , (36)
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combining with (34) one obtains

ε2

2
∂t‖Dkf ‖2� = −

∫
Q
〈Dk(σ (z)([f ] − f )

)
, Dk ([f ] − f )〉ω dx dv. (37)

Energy estimate We will establish the following energy estimate by using mathematical
induction with respect to k : for any k ≥ 0, there exist k constants ckj > 0, j = 0, . . . , k − 1
such that

ε2∂t

⎛
⎝‖Dkf ‖2� +

k−1∑
j=0

ckj‖Djf ‖2�
⎞
⎠ ≤

⎧⎪⎪⎨
⎪⎪⎩

−2σmin
∥∥[f ] − f

∥∥2
�
, k = 0,

−σmin
∥∥Dk ([f ] − f )

∥∥2
�
, k ≥ 1.

(38)

When k = 0, (37) becomes

ε2∂t‖f ‖2� = −2
∫
Q
〈σ (z)([f ] − f ), ([f ] − f )〉ω dx dv

≤ −2σmin‖[f ] − f ‖2� ,
(39)

which satisfies (38).
Assume that for any k ≤ p where p ∈ N, (38) holds. Adding all these inequalities

together we get

ε2∂t

⎛
⎝1
2
‖f ‖2� +

p∑
i=1

‖Dif ‖2� +
p∑

i=1

i−1∑
j=0

cij‖Djf ‖2�
⎞
⎠ ≤ −σmin

∥∥[f ] − f
∥∥2

�p , (40)

which is equivalent to

ε2∂t

⎛
⎝

p∑
j=0

c′p+1,j‖Djf ‖2�
⎞
⎠ ≤ −σmin

∥∥[f ] − f
∥∥2

�p , (41)

where

c′p+1,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2

+
p∑

i=1
ci0, j = 0,

1 +
p∑

i=1
cij , 1 ≤ j ≤ p − 1,

1, j = p.

(42)

When k = p + 1, (37) reads

ε2∂t‖Dp+1f ‖2� = −2
∫
Q
〈Dp+1(σ (z)([f ] − f )

)
, Dp+1([f ] − f )〉ω dx dv . (43)

According to Lemma 4.1 with g = Dp+1([f ] − f ) and the assumption ‖Dkσ (z)‖L∞ ≤ Cσ ,
the right-hand side satisfies the estimate

RHS ≤ − σmin

∫
Q

∥∥Dp+1([f ] − f )
∥∥2

ω
dx dv

+4p+1

σmin

(
max

0≤j≤p+1
‖Djσ‖2L∞

)∫
Q

∥∥[f ] − f
∥∥2
Hp dx dv

≤ − σmin
∥∥Dp+1([f ] − f )

∥∥2
�

+ C2
σC ′

p+1
σmin

∥∥[f ] − f
∥∥2

�p . (44)

where C ′
p+1 = (p + 1)4p+1. Now we have the estimate

ε2∂t‖Dp+1f ‖2� ≤ −σmin
∥∥Dp+1([f ] − f )

∥∥2
�

+ C2
σC ′

p+1
σmin

∥∥[f ] − f
∥∥2

�p . (45)
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Adding this equation (45) with (41) multiplied by C2
σC ′

p+1/σ
2
min gives,

ε2∂t

⎛
⎝‖Dp+1f ‖2� +

p∑
j=0

cp+1,j‖Djf ‖2�
⎞
⎠ ≤ −σmin

∥∥Dp+1([f ] − f )
∥∥2

�
, (46)

where

cp+1,j = C2
σC ′

p+1
σmin

c′p+1,j . (47)

This shows that (38) still holds for k = p + 1. By mathematical induction, (38) holds for
all integer k ∈ N.
Finally, according to (38), we have

∂t

⎛
⎝‖Dkf ‖2� +

k−1∑
j=0

ckj‖Djf ‖2�
⎞
⎠ ≤ 0, ckj > 0, k ∈ N, (48)

which yields

‖Dkf ‖2� ≤ ‖Dkf ‖2� +
k−1∑
j=0

ckj‖Djf ‖2�

≤ ‖Dkf0‖2� +
k−1∑
j=0

ckj‖Djf0‖2�

≤ C2
0

⎛
⎝1 +

k−1∑
j=0

ckj

⎞
⎠ := C2, (49)

where C is clearly independent of ε. This completes the proof of the theorem. ��

Theorem 4.1 shows the derivatives of the solution with respect to z can be bounded by
the derivatives of initial data. In particular, the ‖Dkf ‖� bound is independent of ε! This
is crucial for our later proof that our scheme is s-AP. However, this estimate alone is not
sufficient to guarantee that thewhole gPC-SGmethod has a spectral convergence uniform
in ε (since there isO(1/ε2) coefficient in front of the projection error, such we needO(ε2)
estimation of [f ]− f to cancel this coefficient). To this aim, we first provide the following
lemma.

Lemma 4.2 Assume for some integer m ≥ 0,

‖Dk (∂xf0)‖� ≤ Cx, k = 0, . . . , m, t > 0. (50)

Then holds:∫
Q

ε〈vDk (∂xf ), Dk ([f ] − f )〉ω dx dv ≤ σmin
4

‖Dk ([f ] − f )‖2� + C1ε2

σmin
. (51)

Proof First note that ∂xf satisfies the same equation as f itself,

ε2∂t (∂xf ) + εv∂x(∂xf ) = σ (z)([∂xf ] − ∂xf ). (52)

Thus according to Theorem 4.1 and our assumption (50),

‖Dk (∂xf )‖� ≤ C, t > 0, (53)
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with C independent of ε. Then by Young’s inequality,
∫
Q

ε〈vDk (∂xf ), Dk ([f ] − f )〉ω dx dv

≤ σmin
4

‖Dk ([f ] − f )‖2� + ε2

σmin
‖vDk (∂xf )‖2�

≤ σmin
4

‖Dk ([f ] − f )‖2� + ε2

σmin
‖Dk (∂xf )‖2�

≤ σmin
4

‖Dk ([f ] − f )‖2� + C1ε2

σmin
, (54)

where C1 = C2 is a constant. This completes the proof. ��

Now we are ready to prove the following theorem.

Theorem 4.2 (ε2-estimate on [f ] − f ) With all the assumptions in Theorem 4.1 and
Lemma 4.2, for a given time T > 0, the following regularity result of [f ] − f holds:

‖Dk ([f ] − f )‖2�
≤ e−σmint/2ε2‖Dk ([f0] − f0)‖2� + C ′ε2

≤ Cε2,

(55)

for any t ∈ (0, T ] and 0 ≤ k ≤ m,, where C ′ and C are constants independent of ε.

Proof First notice that [f ] satisfies

ε2∂t [f ] + ε∂x[vf ] = 0, (56)

so [f ] − f satisfies the following equation:

ε2∂t ([f ] − f ) + ε∂x([vf ] − vf ) = −σ (z)([f ] − f ). (57)

As the proof in Theorem 4.1, differentiating this equation k times with respect to z,
multiplying by Dk ([f ] − f ) and integrating on Q, one obtains

ε2∂t
∥∥Dk ([f ] − f )

∥∥2
�

= − 2
∫
Q

ε〈Dk (∂x[vf ] − v∂xf ), Dk ([f ] − f )〉ω dx dv

−2
∫
Q
〈Dk(σ (z)([f ] − f )

)
, Dk ([f ] − f )〉ω dx dv

:= I + II. (58)

Notice that∫
Q

ε〈Dk (∂x[vf ]), Dk ([f ] − f )〉ω dx dv = 0, (59)

and using Lemma 4.2, we have

I ≤ σmin
2

‖Dk ([f ] − f )‖2� + 2C1ε2

σmin
. (60)

For the second part by Lemma 4.1,

II ≤ −σmin
∥∥Dk ([f ] − f )

∥∥2
�

+ C2
σ4k

σmin

∥∥[f ] − f
∥∥2

�k−1 . (61)
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So we get the following estimate,

ε2∂t
∥∥Dk ([f ] − f )

∥∥2
�

≤ − σmin
2

∥∥Dk ([f ] − f )
∥∥2

�
+ 2C1ε2

σmin

+C2
σ 4k

σmin

∥∥[f ] − f
∥∥2

�k−1 . (62)

To prove the theorem we use mathematical induction. When k = 0 (62) turns to

ε2∂t
∥∥[f ] − f

∥∥2
�

≤ −σmin
2

∥∥[f ] − f
∥∥2

�
+ 2C1ε2

σmin
. (63)

By Grönwall’s inequality,
∥∥[f ] − f

∥∥2
�

≤ e−σmint/2ε2
∥∥[f0] − f0

∥∥2
�

+ 4C1

σ 2
min

ε2

≤ C0ε
2, for t > 0, (64)

which satisfies (55).
Assume for any k ≤ p where p ∈ N, (55) holds. This implies∥∥[f ] − f

∥∥2
�p(t) ≤ Cpε

2. (65)

So when k = p + 1 by (62),

ε2∂t
∥∥Dp+1([f ] − f )

∥∥2
�

≤ −σmin
2

∥∥Dp+1([f ] − f )
∥∥2

�
+ 2C1ε2

σmin

+C2
σC ′

p+1
σmin

Cpε
2, (66)

which means

∂t
∥∥Dp+1([f ] − f )

∥∥2
�

≤ −σmin
2ε2

∥∥Dp+1([f ] − f )
∥∥2

�
+ C ′′

p+1. (67)

Again, the Grönwall’s inequality yields∥∥Dp+1([f ] − f )
∥∥2

�
≤ e−σmint/2ε2

∥∥Dp+1([f0] − f0)
∥∥2

�
+ C ′′

p+1ε
2

≤ Cp+1ε
2, for t > 0, (68)

where Cp+1 is a constant independent of ε. So by mathematical induction, we complete
the proof of the theorem. ��
Remark 4.1 We remark that all the above lemma and theorems are proved for z ∈ R and
σ depending only on z. However, our conclusions and techniques are not limited to these
cases. For z ∈ R

d , it is straightforward to prove and for σ (x, z) also a function of x, we
only need to modify the proof of Lemma 4.2 by using the same technique as in the proof
of Theorem 4.1.

4.3 A spectral convergence uniformly in ε

Let f be the solution to linear transport equation (1)–(2). We define the Mth-order pro-
jection operator

PMf =
M∑
i=0

〈f,φi〉ωφi.

The error arisen from the gPC-SG can be split into two parts rN and eN ,

f − fM = f − PMf + PMf − fM := rM + eM, (69)

where rM = f −PMf is the truncation error, and eM = PMf − fM is the projection error.
For the truncation error rM , we have the following lemma
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Lemma 4.3 (Truncation error). Under all the assumptions in Theorems 4.1 and 4.2, we
have for t ∈ (0, T ] and any integer k = 0, . . . , m,

‖rM‖� ≤ C1

Mk . (70)

Moreover,
∥∥[rM] − rM

∥∥
�

≤ C2

Mk ε, (71)

where C1 and C2 are independent of ε.

Proof By the standard error estimate for orthogonal polynomial approximations andThe-
orem 4.1, for 0 ≤ t ≤ T ,

‖rM‖� ≤ CM−k‖Dkf ‖� ≤ C1

Mk , (72)

with C independent ofM.
In the same way, according to Theorem 4.2,

∥∥[rM] − rM‖� = ∥∥([f ] − f ) − ([PMf ] − PMf )
∥∥

�

≤ CM−k‖Dk ([f ] − f )‖�

≤ C2

Mk ε, (73)

which completes the proof ��

It remains to estimate eM . To this aim, we first notice fM satisfying

ε2∂t fM + εv∂xfM = PM
{
σ (z)([fM] − fM)

}
. (74)

On the other hand, by doing theMth-order projection directly on original linear transport
equation we get

ε2∂t (PMf ) + εv∂x(PMf ) = PM
{
σ (z)([f ] − f )

}
. (75)

(75) subtracted by (74) gives

ε2∂t eM + εv∂xeM = PM
{
σ (z)

{
[f ] − f − ([fM] − fM)

}}

= PM
{
σ (z)

{
[f ] − f − ([PMf ] − PMf )

+ ([PMf ] − PMf ) − ([fM] − fM)
}}

= PM
{
σ (z)

(
[rM] − rM

)} + PM
{
σ (z)

(
[eM] − eM

)}
. (76)

Now we can give the following estimate of the projection error eM ,

Lemma 4.4 Under all the assumptions in Theorems 4.1 and 4.2, we have for t ∈ (0, T ]
and any integer k = 0, . . . , m,

‖eM‖� ≤ C(T )
Mk , (77)

where C(T ) is a constant independent of ε.
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Proof We use basically the same energy estimate as before: multiply (76) by eM and
integrate on Q, notice that

∫
Q
〈PM

{
σ (z)

(
[rM] − rM

)}
, [eM]〉ω dx dv = 0, (78)

∫
Q
〈PM

{
σ (z)

(
[eM] − eM

)}
, [eM]〉ω dx dv = 0, (79)

then one gets

ε2∂t‖eM‖2� = −
∫
Q
〈PM

{
σ (z)

(
[eM] − eM

)}
, [eM] − eM〉ω dx dv

−
∫
Q
〈PM

{
σ (z)

(
[rM] − rM

)}
, [eM] − eM〉ω dx dv. (80)

Notice the projection operator PM is a self-joint operator

〈PMf, g〉ω = 〈f,PMg〉ω ,
and

PMeM = eM,

thus

ε2∂t‖eM‖2� = −
∫
Q
〈σ (z)([eM] − eM

)
, [eM] − eM〉ω dx dv

−
∫
Q
〈σ (z)([rM] − rM

)
, [eM] − eM〉ω dx dv

≤ − σmin
∥∥[eM] − eM‖2� + σmin

2
∥∥[eM] − eM‖2�

+ Cσ

2σmin

∥∥[rM] − rM‖2�

≤ − σmin
2

∥∥[eM] − eM‖2� + Cσ

2σmin

( C ′

Mk

)2
ε2

≤
( C
Mk

)2
ε2, (81)

where for the last two inequalities we have used Young’s inequality and Lemma 4.3. Then
by a integral over t we get

‖eM‖2� ≤ ‖e0M‖2� +
(C(T )

Mk

)2
, (82)

since e0M = PMf0 − f 0M = 0 we complete the proof of this lemma. ��
Finally, we are now ready to state the main convergence theorem:

Theorem 4.3 (Uniform convergence in ε) Assume

σ (z) ≥ σmin > 0 .

If for some integer m ≥ 0,

‖σ (z)‖Hk ≤ Cσ , ‖Dkf0‖� ≤ C0, ‖Dk (∂xf0)‖� ≤ Cx, k = 0, . . . , m, (83)

Then the error of the whole gPC-SG method is

‖f − fM‖� ≤ C(T )
Mk , (84)

where C(T ) is a constant independent of ε.



Jin et al. ResMath Sci (2017) 4:15 Page 14 of 25

Proof From Lemmas 4.3 and 4.4, one has

‖f − fM‖� ≤ ‖rM‖� + ‖eM‖� ≤ C(T )
Mk ,

which completes the proof. ��

Remark 4.2 Theorem 4.3 gives a uniformly in ε spectral convergence rate; thus, one can
choose M independent of ε, a very strong s-AP property. If the scattering is anisotropic,
namely σ depends on ν, then one usually obtains a convergence rate that requiresM � ε

(see for example [12]). In such cases the proof of s-AP property is much harder, and one
usually needs to use the diffusion limit, see [5] in the case of deterministic case and [11]
in the random case.

5 The Full discretization
As pointed out in [15], by using the gPC-SG formulation, one obtains a vector version of
the original deterministic transport equation. This enables one to use the deterministic AP
scheme. In this paper, we adopt the AP scheme developed in [22] for gPC-SG system (16).
One of the most important and challenge problems for linear transport equation is

the treatment of boundary conditions; here, we refer to the early work by Jin and Lever-
more [10] andmore recent work by Lemou andMéhats [21] for their study of AP property
and numerical treatment of physical boundary conditions.
We take a uniform grid xi = ih, i = 0, 1, . . .N , where h = 1/N is the grid size, and

time steps tn = n�t. ρn
i is the approximation of ρ at the grid point (xi, tn), while gn+1

i+ 1
2
is

defined at a staggered grid xi+1/2 = (i + 1/2)h, i = 0, . . .N − 1.
The fully discrete scheme for gPC system (11) is

ρ̂n+1
i − ρ̂n

i
�t

+
⎡
⎣v

ĝn+1
i+ 1

2
− ĝn+1

i− 1
2

�x

⎤
⎦ = −�a

i ρ̂
n+1
i + Ŝi, (85a)

ĝn+1
i+ 1

2
− ĝni+ 1

2

�t
+ 1

ε�x
(I − [.])

(
v+ (

ĝni+ 1
2

− ĝni− 1
2

)
+ v− (

ĝni+ 3
2

− ĝni+ 1
2

))

= − 1
ε2

�iĝn+1
i+ 1

2
− �aĝn+1

i+ 1
2

− 1
ε2

v
ρ̂n
i+1 − ρ̂n

i
�x

. (85b)

It has the formal diffusion limit when ε → 0 as can be easily checked, which is

ρ̂n+1
i − ρ̂n

i
�t

− K
ρ̂n
i+1 − 2ρ̂n

i + ρ̂n
i−1

�x2
= −�a

i ρ̂
n+1
i + Ŝi, (86)

where K = 1
3�

−1. This is the fully discrete scheme for (17). Thus the scheme is stochas-
tically AP as defined in [15].
We also notice that [ĝn

i+ 1
2
] = 0 for every n which will be used later.

6 The uniform stability
One important property for an AP scheme is to have a stability condition independent
of ε, so one can take �t � O(ε) when ε becomes small. In this section we prove such a
result. The proof basically follows that of [23] for the deterministic problem.
For clarity in this section we assume σ a = S = 0. The main theoretical result about the

stability is the following theorem:
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Theorem 6.1 Denote

σij = 〈φi, σφj〉ω , � = (σij), � ≥ σmin Id .

If �t satisfies the following CFL condition

�t ≤ σmin
3

�x2 + 2ε
3

�x, (87)

then the sequences ρ̂n and ĝn defined by scheme (85) satisfy the energy estimate

�x
N−1∑
i=0

((
ρ̂n
i
)2 + ε2

2

∫ 1

−1

(
ĝni+ 1

2

)2
dv
)

≤ �x
N−1∑
i=0

((
ρ̂0
i
)2 + ε2

2

∫ 1

−1

(
ĝ0i+ 1

2

)2
dv
)

for every n, and hence scheme (85) is stable.

Remark 6.1 Since the right-hand side of (87) has a lower bound when ε → 0 (and the
lower bound being that of the stability condition of discrete diffusion equation (86)), the
scheme is asymptotically stable and �t remains finite even if ε → 0.

6.1 Notations and useful lemma

We give some useful notations for norms and inner products that are used in our analysis.
For every grid function μ = (μi)N−1

i=0 define:

‖μ‖2 = �x
N−1∑
i=0

μ2
i . (88)

For every velocity-dependent grid function v ∈ [−1, 1] �→ φ(v) = (φi+ 1
2
(v))N−1

i=0 , define:

‖|φ‖| = �x
N−1∑
i=0

[
φ2
i+ 1

2

]
. (89)

If φ and ψ are two velocity-dependent grid functions, their inner product is defined as:

〈φ , ψ〉 = �x
N−1∑
i=0

[
φi+ 1

2
ψi+ 1

2

]
. (90)

Now we give some notations for the finite difference operators that are used in
scheme (85). For every grid function φ = (φi+ 1

2
)i∈Z, we define the following one-sided

difference operators:

D−φi+ 1
2

=
φi+ 1

2
− φi− 1

2

�x
and D+φi+ 1

2
=

φi+ 3
2

− φi+ 1
2

�x
(91)

We also define the following centered difference operators:

Dcφi+ 1
2

=
φi+ 3

2
− φi− 1

2

2�x
and D0φi =

φi+ 1
2

− φi− 1
2

�x

(
= D−φi+ 1

2

)
. (92)

Finally, for every grid function μ = (μi)i∈Z, define the following centered operator:

δ0μi+ 1
2

= μi+1 − μi
�x

. (93)
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We first recall some basic facts. For every grid functions φ = (φi+ 1
2
)N−1
i=0 ,ψ =

(ψi+ 1
2
)N−1
i=0 , and μ = (μi)N−1

i=0 , one has (see [23]):

(
v+D− + v−D+)φi+ 1

2
= vDcφi+ 1

2
− �x

2
|v|D−D+φi+ 1

2
; (94)

�x
∑
i∈Z

(
D+φi+ 1

2

)2 ≤ 4
�x2

�x
∑
i

φ2
i+ 1

2
; (95)

∣∣〈(v+D+ + v−D−)ψ , φ
〉∣∣ ≤ α‖|φ‖|2 + 1

4α
‖||v|D+ψ‖|2, ∀α > 0; (96)

�x
∑
i∈Z

μiD0φi = −�x
∑
i∈Z

(
δ0μi+ 1

2

)
φi+ 1

2
; (97)

�x
∑
i∈Z

ψi+ 1
2
D−φi+ 1

2
�x = −�x

∑
i∈Z

(
D+ψi+ 1

2

)
φi+ 1

2
; (98)

�x
∑
i∈Z

φi+ 1
2
Dcφi+ 1

2
= 0; (99)

If g ∈ L2([−1, 1]), then [vg]2 ≤ 1
2
[|v|g2]. (100)

6.2 Energy estimates

Now we provide the details of the energy estimate. The proof is similar to that for deter-
ministic problem in [23].
First,multiplying (85a) and (85b) by ρ̂n+1 and ε2ĝn+1, respectively.With the assumption

that σ a
i = 0, Ŝi = 0, and using the fact that � ≥ σminId, one has

1
2�t

(‖ρ̂n+1‖2 − ‖ρ̂n‖2 + ‖ρ̂n+1 − ρ̂n‖2) + �x
N−1∑
i=0

ρ̂n+1
i D0

[
vĝn+1

i

]

+ ε2

2�t
(‖|ĝn+1‖|2 − ‖|ĝn‖|2 + ‖|ĝn+1 − ĝn‖|2)

+ ε
〈
ĝn+1 ,

(
v+D− + v−D+) ĝn〉

≤ −σmin‖|ĝn+1‖|2 + �x
N−1∑
i=0

[
vD0ĝn+1

i

]
ρ̂n
i .

Combining the second term on the left hand side and the last term on the right-hand side,
one gets

1
2�t

(‖ρ̂n+1‖2 − ‖ρ̂n‖2 + ‖ρ̂n+1 − ρ̂n‖2)

+ ε2

2�t
(‖|ĝn+1‖|2 − ‖|ĝn‖|2 + ‖|ĝn+1 − ĝn‖|2)

+ ε
〈
ĝn+1 ,

(
v+D− + v−D+) ĝn〉

≤ −σmin‖|ĝn+1‖|2 + �x
N−1∑
i=0

[
vD0ĝn+1

i

]
(ρ̂n

i − ρ̂n+1
i ).

Using the Young’s inequality,

�x
N−1∑
i=0

[
vD0ĝn+1

i

]
(ρ̂n

i − ρ̂n+1
i ) ≤ 1

2�t
‖ρ̂n+1 − ρ̂n‖2 + �t

2
�x

N−1∑
i=0

[
vD0ĝn+1

i

]2
.
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This gives
1

2�t
(‖ρ̂n+1‖2 − ‖ρ̂n‖2) + ε2

2�t
(‖|ĝn+1‖|2 − ‖|ĝn‖|2 + ‖|ĝn+1 − ĝn‖|2)

+ ε
〈
ĝn+1 ,

(
v+D− + v−D+) ĝn〉

≤ −σmin‖|ĝn+1‖|2 + �t
2

�x
N−1∑
i=0

[
vD0ĝn+1

i+ 1
2

]2
.

We take the following decomposition〈
ĝn+1 ,

(
v+D− + v−D+) ĝn〉 = 〈

ĝn+1 ,
(
v+D− + v−D+) ĝn+1〉

+ 〈
ĝn+1 ,

(
v+D− + v−D+) (ĝn − ĝn+1)

〉 =: A + B,

where

A = �x
2

�x
N−1∑
i=0

[
|v|

(
D+ĝn+1

i+ 1
2

)2
]
,

B = − 〈(
v+D+ + v−D−) ĝn+1 , ĝn − ĝn+1〉 .

Using the Young’s inequality,

|B| ≤ ε

2�t
‖|ĝn+1 − ĝn‖|2 + �t

2ε
‖||v|D+ĝn+1‖|2.

This leads to
1

2�t
(‖ρ̂n+1‖2 − ‖ρ̂n‖2) + ε2

2�t
(‖|ĝn+1‖|2 − ‖|ĝn‖|2)

+ ε
�x
2

N−1∑
i=0

[
|v|

(
D+ĝn+1

i+ 1
2

)2
]

�x − �t
2

‖||v|D+ĝn+1‖|2

≤ −σmin‖|ĝn+1‖|2 + �t
2

�x
N−1∑
i=0

[
vD0ĝn+1

i+ 1
2

]2
.

Since |v| ≤ 1,

�t
2

‖||v|D+ĝn+1‖|2 ≤ �t
2

�x
N−1∑
i=0

[
|v|

(
D+ĝn+1

i+ 1
2

)2
]
,

�t
2

�x
∑
i∈Z

[
vD0ĝn+1

i+ 1
2

]2
≤ �t

4
�x

N−1∑
i=0

[
|v|

(
D+ĝn+1

i+ 1
2

)2
]
.

These imply
1

2�t
(‖ρ̂n+1‖2 − ‖ρ̂n‖2) + ε2

2�t
(‖|ĝn+1‖|2 − ‖|ĝn‖|2)

≤ −σmin‖|ĝn+1‖|2 +
(
3�t
4

− ε
�x
2

)
�x

N−1∑
i=0

[
|v|

(
D+ĝn+1

i+ 1
2

)2
]
.

Note (
3�t
4

− ε
�x
2

)
�x

N−1∑
i=0

[
|v|

(
D+ĝn+1

i+ 1
2

)2
]

≤
(
3�t
4

− ε
�x
2

)
+

�x
N−1∑
i=0

[(
D+ĝn+1

i+ 1
2

)2
]

≤
(
3�t
4

− ε
�x
2

)
+

4
�x2

‖|ĝn+1‖|2,
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where (a)+ = max(0, a) denotes the positive part of a. Applying this in (6.2) then gives

1
2�t

(‖ρ̂n+1‖2 − ‖ρ̂n‖2) + ε2

2�t
(‖|ĝn+1‖|2 − ‖|ĝn‖|2)

≤
((

3�t
4

− ε
�x
2

)
+

4
�x2

− σmin

)
‖|ĝn+1‖|2.

This means that we have the final energy estimate

‖ρ̂n+1‖2 + ε2‖|ĝn+1‖|2 ≤ ‖ρ̂n‖2 + ε2‖|ĝn‖|2

if �t is such that(
3�t
4

− ε
�x
2

)
+

4
�x2

≤ σmin.

Since σmin > 0, an equivalent condition is
(
3�t
4

− ε
�x
2

)
4

�x2
≤ σmin, which gives the

sufficient condition

�t ≤ �x2σmin
3

+ 2
3
ε�x .

This completes the proof of Theorem 6.1.

7 Numerical examples
In this section, we present several numerical examples to illustrate the effectiveness of our
method.
We consider the linear transport equation with random coefficient σ (z):

ε∂t f + v∂xf = σ (z)
ε

([f ] − f ), 0 < x < 1 , (101)

with initial condition:

f (0, x, v, z) = 0 ,

and the boundary conditions are:

f (t, 0, v, z) = 1, v ≥ 0; f (t, 1, v, z) = 0, v ≤ 0.

7.1 Example 1

First we consider a random coefficient with one-dimensional random parameter:

σ (z) = 2 + z, z is uniformly distributed in (−1, 1).

The limiting random diffusion equation for kinetic equation (101) is

∂tρ = 1
3σ (z)

∂xxρ , (102)

with initial condition and boundary conditions:

ρ(t, 0, z) = 1, ρ(t, 1, z) = 0, ρ(0, x, z) = 0.

The analytical solution for (102) with the given initial and boundary conditions is

ρ(t, x, z) = 1 − erf

⎛
⎜⎜⎝ x√

4
3σ (z)

t

⎞
⎟⎟⎠ . (103)

When ε is small, we use this as the reference solution, as it is accurate with an error of
O(ε2). Hereafter we set ε = 10−8. For large ε or in the case we cannot get an analytic
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solution, we will use the collocation method (see [27]) with the same time and spatial
discretization to micro–macro system (11) as a comparison in the following examples.
For more details about the collocation method, especially the s-AP property, we refer to
the discussion in the work of Jin and Liu [12]. In addition, the standard 30-points Gauss–
Legendre quadrature set is used for the velocity space to compute ρ in the following
example.
To examine the accuracy, we use two error norms: the differences in themean solutions

and in the corresponding standard deviation, with �2 norm in x:

emean(t) = ∥∥E[uh] − E[u]
∥∥

�2 ,

estd(t) = ∥∥σ [uh] − σ [u]
∥∥

�2 ,

where uh, u are the numerical solutions and the reference solutions, respectively.
In Fig. 1, we plot the errors in mean and standard deviation of the gPC numerical

solutions at t = 0.01with different gPCorders. Three sets of results are included: solutions
with �x = 0.04 (squares), �x = 0.02 (circles), �x = 0.01 (stars). We always use �t =
0.0002/3. One observes that the errors become smaller with finer mesh. One can see
that the solutions decay rapidly in N and then saturate where spatial discretization error
dominates. It is then obvious that the errors due to gPC expansion can be neglected at
orderM = 4 even for ε = 10−8. The solution profiles of the mean and standard deviation
are shown on the left and right of Fig. 2, respectively.
We also plot the profiles of the mean and standard deviation of the flux vf in Fig. 3.

Herewe observe good agreement among the gPC-Galerkinmethod, stochastic collocation
method with 20 Gauss–Legendre quadrature points and analytical solution (103).
In Fig. 4, we examine the difference between the solution t = 0.01 obtained by the 4th-

order gPC method with �x = 0.01,�t = �x2/12 and limiting analytical solution (103).
As expected, we observe the differences become smaller as ε is smaller in a quadratic
fashion, before the numerical errors become dominant.

7.2 Example 2: mixing regime

In this test, we still set σ = 2 + z. We consider ε > 0 depending on the space variable in
a wide range of mixing scales:

Fig. 1 Example 1. Errors of the mean (solid line) and standard deviation (dash line) of ρ with respect to the
gPC order at ε = 10−8: �x = 0.04 (squares), �x = 0.02 (circles), �x = 0.01 (stars)



Jin et al. ResMath Sci (2017) 4:15 Page 20 of 25

Fig. 2 Example 1. The mean (left) and standard deviation (right) of ρ at ε = 10−8, obtained by the gPC
Galerkin at orderM = 4 (circles), the stochastic collocation method (crosses) and limiting analytical
solution (103)

Fig. 3 Example 1. The mean (left) and standard deviation (right) obtained by gPC-Galerkin (circle) and
collocation method (cross) at time t = 0.01

Fig. 4 Example 1. Differences in the mean (solid line) and standard deviation (dash line) of ρ with respect to
ε2, between limiting analytical solution (103) and the 4th-order gPC solution with �x = 0.04 (squares),
�x = 0.02 (circles) and �x = 0.01 (stars)

ε(x) = 10−3 + 1
2
[tanh(6.5 − 11x) + tanh(11x − 4.5)] (104)

which varies smoothly from 10−3 to O(1) as shown in Fig. 5. This tests the ability of the
scheme for problems with mixing regimes or its uniform convergence in ε.
In order to keep the conservation of the mass, the proper linear transport equation

should be in the following form,
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Fig. 5 ε(x)

∂t f + v∂x
( 1

ε(x)
f
)

= σ

ε2(x)
Lf − σ af + S, σ (x, z) ≥ σmin > 0, (105)

then micro–macro decomposition (11) changes to

∂tρ + ∂x[vg] = −σ aρ + S, (106a)

∂t g + 1
ε(x)

(I − [.])(v∂xg) = − σ (z)
ε2(x)

g − σ ag − 1
ε(x)

v∂x
(

1
ε(x)

ρ

)
. (106b)

We can find only the last term changed. For limiting equation (8), it also need to be
changed to

∂tρ = ∂x(κ(z)∂xρ) − ∂x(κ(z)a(x)ρ) − σ a(z)ρ + S, (107)

where we assume that

a(x) = lim
ε→0

ε′(x)
ε(x)

, (108)

exists. For the corresponding numerical scheme we only need to replace the last term

− 1
ε2

v
ρ̂n
i+1 − ρ̂n

i
�x

(109)

by

− 1
ε(xi+1/2)

v
(

ρ̂n
i+1

ε(xi+1)
− ρ̂n

i
ε(xi)

)
1

�x
(110)

in (85b).
The initial data are

fin(x, v, z) = ρ0
2

[
exp

(
−
(
v − 0.75

T0

)2
)

+ exp
(

−
(
v + 0.75

T0

)2
)]

(111)

with

ρ0(x) = 2 + sin(2πx)
2

, T0(x) = 5 + 2 cos(2πx)
20

. (112)

The reference solution is obtained using collocationmethodwith 30 points. The param-
eters are set up as the following: the mesh size is �x = 0.01, and the corresponding t
direction mesh size is �t = �x2/3. And we use the 5th-order gPC-Galerkin method to
evolve the equation to different time t = 0.005, t = 0.01, t = 0.05, t = 0.1. For the v
integral, we use Legendre quadrature of 30 points.
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Fig. 6 Example 2 with initial data (111)–(112). The �2 error of mean and standard deviation (dash line) with
respect to gPC order

Fig. 7 Example 3. The mean (left) and standard deviation (right) obtained by gPC-Galerkin (circle) and
collocation method (cross) at time t = 0.1, ε = 10−8

Figure 6 shows the �2 error of the mean and standard deviation with respect to the gPC
order. We also see the fast (spectral) convergence of the method.

7.3 Example 3: random initial data

We then add randomness on the initial data (σ = 2 + z still random).

f (0, x, v, z) = f (0, x, v) + 0.2z (113)

where f (x, v, 0) is the same as in (111). This time we set �x = 0.01 and �t = �x2/12 and
final time T = 0.01. First we test in the fluid limit regime ε = 10−8 as shown in Fig. 7.
Then we test in ε = 1 which is shown in Fig. 8.
One can see a good agreement between the gPC-SG solutions and the solutions by the

collocation method.

7.4 Example 4: random boundary data

For the next example, we then add randomness on the boundary conditions:

fL(t, v, z) = 2 + z, fR(t, v, z) = 1 + z. (114)

We also test when ε = 10−8 and ε = 10 as shown in Figs. 9 and 10, again, good agreements
are observed between the gPC-SG solutions and the solutions by the collocation method.
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Fig. 8 Example 3. The mean (left) and standard deviation (right) obtained by gPC-Galerkin (circle) and
collocation method (cross) at time t = 0.1, ε = 1

Fig. 9 Example 4. The mean (left) and standard deviation (right) obtained by gPC-Galerkin (circle) and
collocation method (cross) at time t = 0.1, ε = 10−8

Fig. 10 Example 4. The mean (left) and standard deviation (right) obtained by gPC-Galerkin (circle) and
collocation method (cross) at time t = 0.1, ε = 10

7.5 Example 5: 2D random space

Finally, model the random input as a random field, in the following form:

σ (x, z1, z2) = 1 − σ z1
π2 cos(2πx) − σ z2

4π2 cos(4πx) (115)

where we set σ = 4 and z1, z2 are both uniformly distributed in (−1, 1). The mean
and standard deviation of the solution ρ at t = 0.01 obtained by the 5th-order gPC
Galerkin with �x = 0.025,�t = 0.0002/3 are shown in Fig. 11. We then use the high-
order stochastic collocation method over 40×40 Gauss–Legendre quadrature points to
compute the reference mean and standard deviation of the solutions. In Fig. 12, we show
the errors of the mean (solid lines) and standard deviation (dash lines) of ρ with respect
to the order of gPC expansion. The fast spectral convergence of the errors can be clearly
seen.
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Fig. 11 The mean (left) and standard deviation (right) of ρ at ε = 10−8, obtained by 5th-order gPC Galerkin
(circles) and the stochastic collocation method (crosses). The random input has dimension d = 2

Fig. 12 Errors of the mean (solid line) and standard deviation (dash line) of ρ with respect to gPC order, with
the d = 2-dimensional random input

8 Conclusions
In this paper we establish the uniform spectral accuracy in terms of the Knudsen number,
which consequently allows us to justify the stochastic asymptotic-preserving property of
the stochastic Galerkin method for the linear transport equation with random scattering
coefficients. For the micro–macro decomposition-based fully discrete scheme we also
prove a uniform stability result. These are the first uniform accuracy and stability results
for the underlying problem.
It is expected that our uniform stability proof is useful for more general kinetic or

transport equations, which is the subject of our future study.
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