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Abstract

Background: Prognosis in oesophageal cancer (OC) is poor. The 5-year overall survival (OS) rate is approximately 15%.
Personalised medicine is hoped to increase the 5- and 10-year OS rates. Quantitative analysis of PET is gaining substantial
interest in prognostic research but requires the accurate definition of the metabolic tumour volume. This study compares
prognostic models developed in the same patient cohort using individual PET segmentation algorithms and assesses the
impact on patient risk stratification.
Consecutive patients (n= 427) with biopsy-proven OC were included in final analysis. All patients were staged with PET/
CT between September 2010 and July 2016. Nine automatic PET segmentation methods were studied. All tumour
contours were subjectively analysed for accuracy, and segmentation methods with < 90% accuracy were
excluded. Standardised image features were calculated, and a series of prognostic models were developed using
identical clinical data. The proportion of patients changing risk classification group were calculated.

Results: Out of nine PET segmentation methods studied, clustering means (KM2), general clustering means (GCM3),
adaptive thresholding (AT) and watershed thresholding (WT) methods were included for analysis. Known clinical
prognostic factors (age, treatment and staging) were significant in all of the developed prognostic models. AT
and KM2 segmentation methods developed identical prognostic models. Patient risk stratification was dependent
on the segmentation method used to develop the prognostic model with up to 73 patients (17.1%) changing risk
stratification group.

Conclusion: Prognostic models incorporating quantitative image features are dependent on the method used to
delineate the primary tumour. This has a subsequent effect on risk stratification, with patients changing groups
depending on the image segmentation method used.
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Highlights

� Texture features are dependent on the segmentation
method

� Prognostic scores differ between models derived
using different segmentation methods

� Patient risk stratification using identical clinical data
is dependent on the segmentation method

Background
Prognosis in oesophageal cancer (OC) is poor. The 1- and
5-year overall survival (OS) rate is 44 and 15%, respectively
[1]. The aim of precision medicine and prognostic models
is to ensure each patient is managed with the most appro-
priate treatment, which may improve patient OS [2–4].
The avoidance of futile aggressive therapies prevents
unnecessary treatment and improves quality of life. In
addition, better patient stratification may also allow more
efficient trial designs.
Prognostic models are formulated from patient specific

information such as age, pathological subtype, molecular
characterisation and tumour staging. However, the
advanced quantitative analysis of medical images, especially
CT, MR and PET, is gaining substantial interest in
prognostic research as more accurate prognostic models
may be developed. Radiomic features characterise tumour
phentotypes through extraction of high-dimensional data
[5] and can be associated with metastatic growth,
recurrence and survival in several solid cancers [6]. These
methods may also have added prognostic value in cancer
staging pathways [7].
The accurate delineation of the relevant metabolic

tumour volume (MTV) on PET/CT is challenging due to
low spatial resolution and the high noise characteristics of
PET imaging [8]. Many different PET segmentation tech-
niques have been proposed as a solution to the delineation
of the MTV [9]. Numerous PET-based radiomic features
have been described, but the results of radiomic analysis are
highly dependent on the method used to derive the MTV
[10]. Few studies have compared results of radiomic analysis
derived from each segmentation method (cf. [11] and refer-
ences therein) or have investigated their effect on patient
risk stratification derived from prognostic models [12–14].
This study aimed to develop a series of prognostic

models in the same patient cohort using identical clinical
data and standardised radiomic features derived from
different segmentation methods. The impact of using
different segmentation methods on patient risk stratification
was assessed.

Methods
Patient cohort
This is a retrospective cohort study of consecutive patients
with biopsy-proven OC, including gastro-oesophageal

junctional (GOJ) tumours, radiologically staged between
16 September 2010 and 31 July 2016. Patients were
identified from a database of OC patients used in a
previous study [15]. Institutional Review Board approval
was granted and requirement for informed consent was
waived (Wales REC 1, UK reference 14/WA/1208).
Overall, 486 patients with FDG-avid primary oesophageal

and GOJ tumours were considered for inclusion. Fourteen
patients were excluded due to missing clinical data. All
patients were deemed to have potentially curable disease
following contrast-enhanced CT staging investigation. All
PET/CT examinations were performed separately, following
the initial CT, and reported in the same centre by
Consultant Radiologists with an interest in Nuclear
Medicine. Radiological staging was performed according to
the International Union Against Cancer (UICC) TNM 7th
edition [16]. Following exclusions, 472 patients were studied.

PET/CT protocol
Patients were fasted for at least 6 h prior to tracer adminis-
tration. Serum glucose levels were routinely checked and
confirmed as less than 7.0 mmol/L prior to imaging.
Patients received a dose of 4 MBq of 18F-FDG/kg. Uptake
time was 90 min, standard practice at our institution. A
GE 690 scanner (GE Healthcare, Buckinghamshire, UK)
was used. CT images were acquired in a helical acquisition
with a pitch of 0.98 and tube rotation speed of 0.5 s. Tube
output was 120 kVp with output modulation between 20
and 200 mA. Matrix size for the CT acquisition was
512 × 512 pixels with a 50 cm field of view. No oral or
intravenous contrast was administered. PET images were
acquired at 3 min per field of view. The length of the axial
field of view was 15.7 cm (skull base to mid-thigh). Images
were reconstructed with the ordered subset expectation
maximisation algorithm, with 24 subsets and 2 iterations.
Matrix size was 256 × 256 pixels, using the VUE Point™
time of flight algorithm. All PET-based data was obtained
using the same PET/CT scanner and reconstruction
method with voxel dimensions of 2.73 × 2.73 × 3.27 mm.

Treatment protocols
Patients began treatment 2–4 weeks after staging FDG
PET/CT imaging. Patients either had endoscopic mucosal
resection (EMR), surgery alone, neo-adjuvant chemotherapy
(NACT) or neo-adjuvant chemoradiotherapy (NACRT)
prior to surgery, definitive chemo-radiotherapy (dCRT) or
palliative therapy. The optimum treatment strategy was
decided by consensus at the MDT. In general, fit patients
with tumours pre-operatively staged as T3/T4a, N0/N1
were pre-operatively treated with NACT or NACRT. Less
fit patients, or those with T1/2 N0 disease, had surgery
alone. Patients deemed unsuitable for surgery due to co-
morbidity and/or performance status, extensive loco-
regional disease, or personal choice received dCRT.
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Data preparation and PET segmentation
Manual delineation of the metabolic tumour volume
(MTV) is limited by intra- and inter-observer variability
and is time consuming [17–19]. Semi-automated and auto-
mated segmentation methods are favourable alternatives by
reducing variability in delineation and decreasing the
contouring time [20]. Fixed percentage thresholding has
been shown to be dependent upon the SUVmax of a tumour
as well as the MTV [21]. Furthermore, it has been shown
that texture analysis of PET imaging is dependent upon the
segmentation method used to define the MTV [12, 22, 23].
However, more complex segmentation algorithms such as
adaptive iterative thresholding (AT) have been shown to be
independent of SUVmax as well as being correlated to the
MTV. Segmentation methods adopting clustering tech-
niques such as Fuzzy C-means (FCM), Gaussian fuzzy C-
means (GCM) and K-means (KM) using 2, 3 and 4 clusters
(FCM2, GCM3–4, KM2 - KM4), as well as region growing
(RG) and watershed transform (WT) methods, are
promising segmentation methods in the delineation of the
MTV. These segmentation methods are reviewed in detail
in the report by Hatt et al. [9], are described in detail
previously [24] and are summarised in Table 1. In each case,
the MTV was defined using AT, FCM2, GCM3, GCM4,
KM2, KM3, KM4, RG and WT PET segmentation methods.
A clinical radiologist subjectively assessed each tumour

contour produced by all nine PET segmentation methods
for accurate tumour representation. All tumour contours
were visualised using the same software and image settings
to ensure consistent methodology. Segmentation methods
were considered inadequate for further analysis if less than
90% of contours were non-representative. This pre-defined
value was decided upon prior to image visualisation.
Contours were assessed individually and classified as not
representative if contours were greatly different from the
primary tumour, or included bone, lung or medistinial
tissue. In addition, segmentation methods that had failed

and conformed to the boundary of the bounding box were
defined as not representative of the primary tumour.

Clinical data and image analysis
Only primary tumours were analysed to ensure consistent
methodology across all patients. Before quantitative image
analysis and texture feature extraction, PET images were
re-sampled into 0.5 SUV bins. A fixed bin width maintains
a constant intensity resolution when compared to
approaches based on a fixed number of bins [25]. In the
development of the prognostic models, age at diagnosis
(number of years), radiological stage (stage IA-IV) and
treatment (curative vs palliative) were included because
these are strong predictors of survival [26]. Curative and
palliative treatments were coded as 1 and 2 respectively.
Radiological staging was modelled categorically.
Radiomic analysis was performed using features imple-

mented as part of the Image Biomarker Standardisation
Initiative (IBSI), a multicentre, international collaboration
aimed at improving the reproducibility and validation of
quantitative medical image analysis studies [5]. The
radiomic features selected for inclusion in this study were
chosen as they have shown prognostic and predictive
significance in other radiomic studies investigating OC
[12, 27, 28]. These have been summarised in Table 2.
Moreover, many radiomic feature implementations have
been described [6, 7, 27, 29] and are divided into three
groups for which a summary is provided. In this study, the
MTV was analysed as a 3D volume with no thresholding
applied to the MTV mask.

Table 1 Name and description of PET-AS methods used in
this study, with references of published work using similar
segmentation approaches

Algorithm Description Key references

AT 3D adaptive iterative thresholding,
using background subtraction

Jentzen et al. [43],
Drever et al. [44]

RG 3D region-growing with automatic
seed finder and stopping criterion

Day et al. [45]

KM 3D K-mean iterative clustering with
custom stopping criterion

Zaidi and
El Naqa [8]

FCM 3D fuzzy C-mean iterative clustering
with custom stopping criterion

Belhassen and
Zaidi [46]

GCM 3D Gaussian mixture models based
clustering with custom stopping criterion

Hatt et al. [37]

WT Watershed transform-based algorithm,
using sobel filter

Geets et al. [47],
Tylski et al. [48]

Table 2 Summary of quantitative imaging features

Type/order
of statistics

Feature Brief definition

Morphological Volume Sum of voxels delineated multiplied by
the volume of one voxel

Pre-discretisation SUVmax Maximum uptake of FDG in the MTV

Energy Sum squared SUV values in the MTV

First order Skewness Measures symmetry of intensity
histogram

Kurtosis Measures flatness of intensity histogram

Entropy Measures randomness

Second order Dissimilarity Variation of grey level pairs (GLCM).
Features were calculated for each
unique direction and averaged with
a distance setting of 1

Higher order Grey-level
non-uniformity

Distribution of zone counts for each
intensity value (GLSZM)

Zone
percentage

Fraction of recorded zones compared
to maximum possible

Coarseness Measures spatial rate of change in
intensity using a distance of 1
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First-order metrics
First-order statistical metrics summarise the voxel
intensity distribution within the segmented MTV,
without concern for spatial relationships [30]. First-order
metrics are typically histogram based and reduce the
MTV to singular values describing the mean, minimum,
maximum, median, and uniformity of the intensities
within the MTV. Included in first-order stastical analysis
is Skewness (asymmetry measure), Kurtosis (pointiness
measure) and Entropy (randomness measure). Kurtosis
and skewness have been shown to be independent
predictors of survival [15] and of prognostic significance
in the literature [31].

Higher-order metrics
Higher-order statistical metrics retain spatial information
and are used to quantify inter-voxel intensity relationships.
Dissimilarity is the quantification of variation in voxel
pairs and is calculated using a Grey Level Co-occurrence
Matrix (GLCM) generated for each unique direction and
averaged. A low dissimilarity is resultant of neighbouring
voxels having similar values [32]. Zone percentage is
calculated from a Grey Level Size Zone matrix (GLSZM)
by assessing the fraction of recorded zones compared to
the maximum number of possible zones. Heterogeneous
MTVs have high zone percentage scores. Grey Level Non-
Uniformity (GLNU) is an evaluation of the distribution of
zone counts for each intensity value. The feature value is
low when the number of zones associated with each inten-
sity value are similar. Coarseness is a neighbourhood grey-
tone difference matrix (NGTDM) feature that gives an
indication of the level of spatial rate of change in intensity
[33]. GLCM, GLSZM and NGTDM can be computed in
2D or 3D. The matrices in this study were computed in
3D as this may highlight the multi-scale, directional
properties of tumour tissue [34].

Outcome data
The primary outcome of the study was OS, defined as
number of months survived from date of diagnosis.
Patients were followed up 3-monthly for the first year, 6-
monthly until 5 years then annually thereafter, or until
death. All included patients were followed up for at least
12 months. Date of death was obtained from the Cancer
Network Information System Cymru database (CaNISC,
Velindre NHS Trust, Wales).

Statistical analysis
Categorical variables were described as frequency (percent)
and continuous variables as median (range) and differences
assessed with appropriate non-parametric tests. Cumulative
survival was calculated by the Kaplan-Meier life-table
method. Cox regression models with backward conditional
method were constructed using identical clinical data and

imaging data derived from each of the segmentation
methods. An individual prognostic score was calculated
from each segmentation method by summation of the
products of variables and their corresponding parameter
estimate. Using this score, patients were separated into low,
intermediate and high-risk groups (higher prognostic score
deemed higher risk) and a log-rank test evaluated significant
differences in OS. The number of patients that changed risk
stratification group depending on the segmentation method
used was calculated, and the OS for the different risk
groups between models was analysed. A p value of < 0.05
was considered statistically significant. Statistical analysis
was performed using SAS version 9.4 (SAS, NC, USA) and
SPSS version 23.0 (IBM, Chicago, USA). Imaging data,
software and delineated MTVs are not available publicly.

Results
Four hundred and seventy-two patients, each with nine
MTV contours delineated by AT, FCM2, GCM3, GCM4,
KM2, KM3, KM4, RG and WT PET segmentation
methods were assessed by a Clinical Radiologist with
5 years of research experience for accurate tumour
representation. Forty-five patients and five segmentation
methods were excluded due to poor MTV delineation.
FCM2 failed to delineate an acceptable tumour repre-
sentation in 145 (30.8%) of cases. KM3 and KM4 failed
in 88 (18.6%) and 215 (45.6%) of cases, respectively. RG
failed in 389 (82.5%), and GCM4 in 33 (7%) of cases.
Therefore, 427 cases with MTVs delineated with KM2,
GCM3, AT and WT PET segmentation methods deemed
to have accurate tumour representation and included for
further analysis.
The 427 cases included for analysis were used to develop

the prognostic models for KM2, WT, GCM3 and AT
methods. Baseline characteristics of patients are detailed
in Table 3. The median OS of the cohort was 17.0 months
(95% confidence interval (95% CI) 14.8–19.2). Median
follow-up was 35.0 months (95% CI 28.7–41.3). Overall 1-
and 2-year survival in the development cohort was 65.3%
and 30.1%, respectively.

Development of prognostic models
The final steps of each prognostic model are presented
in Table 4. Three known clinical prognostic factors (age,
radiological stage and treatment) remained in each
derived model, but there was a difference in the inclusion
of texture metrics by segmentation technique. AT and
KM2 produced the same model output. Interestingly, IBSI
metrics were not included in the final models for these
segmentation methods. However, skewness and kurtosis
were independently significant for survival using GCM3
method. Skewness and GLNU were significant using WT
method. Their inclusion in the models illustrates their
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additional prognostic value compared with current
prognostic factors.

Prognostic score calculation
The equations for each model derived from different
segmentation methods were used to calculate the prognostic

scores, and are listed in Table 5. These calculations were
derived using published methods [35].
Figure 1 shows the risk stratification for WT, KM2, AT

and GCM3. Median OS for the low-risk, intermediate-risk
and high-risk groups in the AT- and KM2-derived
prognostic model was 36.0 months (29.9–42.1 months),
18.0 months (15.1–20.9 months) and 9.0 months (7.8–
10.2 months), respectively. Median OS for the low-risk,
intermediate-risk and high-risk groups in the GCM3-
derived prognostic model was 36.0 months (28.8–
43.2 months), 18.0 months (15.4–20.6 months) and
9.0 months (7.7–19.2 months). Median OS for the WT
derived prognostic model low-risk, intermediate-risk and
high-risk groups was 36 months (27.8–44.2 months),
19 months (15.1–23 months) and OS for the high-risk
group was 9 months (7.7–10.3 months) respectively.

Table 3 Baseline characteristics of patient cohort

Median age 67.0 years (range 24–84)

Gender Male 315 (73.8):female 112 (26.2)

Histology

Adenocarcinoma 313 (73.3)

Squamous cell carcinoma 100 (23.4)

Undifferentiated 5 (1.2)

High-grade dysplasia 4 (0.9)

Neuro-endocrine 3 (0.7)

Small cell carcinoma 1 (0.2)

Sarcoma 1 (0.2)

Tumour location

Oesophagus 268 (62.8)

Upper third 14 (5.2)

Middle third 71 (26.5)

Lower third 183 (68.3)

Gastro-oesophageal junction 159 (37.2)

Siewert I 67 (42.1)

Siewert II 42 (26.4)

Siewert III 50 (31.4)

Stage group

IA 10 (2.3)

IB 17 (4.0)

IIA 70 (16.4)

IIB 13 (3.0)

IIIA 97 (22.7)

IIIB 52 (12.2)

IIIC 76 (17.8)

IV 92 (21.5)

Treatment

Curative 224 (52.5)

NACT 86 (38.4)

dCRT 86 (38.4)

Surgery alone 31 (13.8)

NACRT 20 (8.9)

EMR 1 (0.5)

Palliative 203 (47.5)

Mortality

Alive 132 (30.9)

Dead 295 (69.1)

Table 4 Final output of prognostic models derived using AT,
GCM3, KM2 and WT PET segmentation methods

Parameter estimate p value Hazard ratio 95% CI

AT

Age 0.020 0.001 1.020 1.008–1.033

Treatment − 1.075 < 0.001 0.341 0.254–0.459

Stage 0.144 < 0.001 1.155 1.072–1.245

GCM3

Age 0.019 0.003 1.019 1.006–1.032

Treatment − 1.024 < 0.001 0.359 0.266–0.485

Stage 0.142 < 0.001 1.153 1.068–1.245

Kurtosis 0.632 0.002 1.882 1.260–2.809

Skewness − 0.789 0.044 0.454 0.211–0.980

KM2

Age 0.020 0.001 1.020 1.008–1.033

Treatment − 1.075 < 0.001 0.341 0.254–0.459

Stage 0.144 < 0.001 1.155 1.072–1.245

WT

Age 0.018 0.004 1.018 1.006–1.031

Treatment − 1.063 < 0.001 0.345 0.257–0.464

Stage 0.140 < 0.001 1.150 1.065–1.242

GLNU 0.017 0.006 1.017 1.005–1.029

Skewness 0.674 0.030 1.962 1.067–3.607

Table 5 Prognostic model equations

Segmentation
Method

Prognostic model equation

AT (Age × 0.020 − (Treatment × 1.075) + (Stage × 0.144)

GCM3 (Age × 0.019) − (Treatment × 1.024) + (Stage × 0.142)
− (Skewness × 0.789) + (Kurtosis × 0.632)

KM2 (Age × 0.020) − (Treatment × 1.075) + (Stage × 0.144)

WT (Age × 0.018) − (Treatment × 1.063) + (Stage × 0.140)
+ (Skewness × 0.674) + (GLNU × 0.017)
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Table 6 shows the number of patients stratified as low,
intermediate and high-risk for each single prognostic
model along with the prognostic score range for each risk
stratification group. Table 7 shows the number of patients
whom change risk stratification.
The largest proportion of patients to change risk stratifi-

cation group was between prognostic models based on
GCM3 and on WT (n = 73, 17.1%). It can be noted that
no patient changed risk stratification group between AT
and KM2 because the prognostic models were identical.

The number of concordant patients stratified as low,
intermediate and high-risk across the developed models
was 118 (28%), 95 (22%) and 116 (27%), respectively.
There was no overall survival difference between AT,
GCM3, KM2 or WT low-risk groups (χ2 0.052, df 3,
p = 0.997), intermediate-risk groups (χ2 0.016, df 3,
p = 0.999) or high-risk groups (χ2 0.028, df 3, p = 0.999).
For interest, Additional file 1 describes the developed

prognostic models for the excluded PET-AS methods.
Additional file 2 describes variances in radiomic features

Fig. 1 Risk stratification and OS for WT (top left), KM2 (top right), AT (bottom left) GCM3 (bottom right)

Table 6 Number of patients in each risk stratification group for
each single prognostic model and prognostic score range

Number of patients
in risk group
(prognostic range)

Low-risk Intermediate-risk High-risk

AT/KM2 141 (− 0.45–0.98) 143 (0.99–2.16) 143 (2.17–2.79)

GCM3 140 (− 1.13–0.36) 143 (0.37–1.54) 144 (1.55–2.73)

WT 142 (−0.17–1.30) 144 (1.31–2.48) 141 (2.49–3.62)

Table 7 Total number of patients and percentage that change
risk-stratification group

Number changing group (%) AT GCM3 KM2 WT

AT

GCM3 66 (15.4)

KM2 0 (0.0) 66 (15.4)

WT 57 (13.3) 73 (17.1) 57 (13.3)

Parkinson et al. EJNMMI Research  (2018) 8:29 Page 6 of 9



extracted using differing discretisation methodologies,
which is an important consideration in radiomic studies.
Additional file 3 describes the correlation of MTV with
the extracted radiomic features.

Discussion
Radiomic research aims to improve the prediction of
patient outcome through the extraction of additional
data from medical images. However, numerous challenges
with the extraction of radiomic features have been
highlighted [10]. Selection of significant features for
prognostic models is of considerable importance because
external parameters such as delineation method and
image reconstruction parameters affect reproducibility
and robustness of these features [14, 36].
In this study, first, second and higher-order radiomic

features were extracted from each of the PET-AS
delineations. The significant variables in the developed
prognostic models were dependent upon the delineation
method. In the GCM3-based prognostic models, first-
order features kurtosis and skewness were found to be
significant predictors of survival. However, higher-order
feature GLNU was found to be of significance in
combination with the first-order feature skewness in the
WT-based prognostic model. For the AT and KM2-
based prognostic models, radiomic features were not
found to be significant predictors of survival in comparison
to the currently known predictors such as clinical stage
and age. This highlights the dependency of significant PET
radiomic variables on segmentation method.
Our findings demonstrate the potential impact of dif-

ferent segmentation methods for prognostic models
using standardised implementations of radiomic features
within clinical practice. Patients may be assigned
different risk stratification groups depending on the
segmentation method used in the process of developing
the prognostic model. This could lead to sub-groups of
patients receiving a more aggressive treatment than is
necessary, leading to decreased quality of life. Furthermore,
patients could potentially be denied beneficial treatment.
Nine segmentation methods were included in this

study, with five being excluded from analysis after being
reviewed by a radiologist. These methods were excluded
due to poor tumour representation in a number of cases.
In Additional file 1, the prognostic models developed
from PET-AS methods that were excluded from the
study are described. Interestingly, the excluded PET-AS
methods FCM2, KM3, KM4 and RG developed identical
prognostic models to the included methods AT and
KM2. This suggests that whilst radiomic features are
dependent upon the delineation method, this may be
unrelated to the delineation method considered acceptable
by a radiologist.

It has been reported that the accuracy of the segmentation
delineation of the MTV is dependent upon tumour
characteristics [9, 21, 24]. GCM-based segmentation
methods have been shown to have limited performance in
low TBR scenarios [24]. Furthermore, clustering methods
such as FCM are highly dependent upon the heterogeneity
of the tumour volumes. In homogeneous regions with low
TBRs, the iterative process of FCM has been shown to
overestimate the tumour volume [37]. Statistical-based
segmentation algorithms such as RG compare adjoining
voxel intensities. If the voxels are of similar intensities, they
are included within the volume [38]. However, the
performance of statistical-based RG segmentation algo-
rithms in highly heterogeneous tumour volumes is
degraded. Moreover, the performance of RG is dependent
upon the defined stopping criteria. In our study, the RG
algorithm stopped voxel inclusion when after an iteration
no more than 5% of the total number of voxels already
defined as the MTV were included. This stopping criteria
has been reported to be limited in complex tumours [24].
This study used radiomic data derived using SUV bins

of 0.5 units. In Additional file 2, the variance of radiomic
features derived using different discretisation methods is
shown but lies outside the scope of this study, so further
analysis was not performed. Future work could investi-
gate how different discretisation methods influences the
significance of radiomic features in the development of
prognostic models and subsequent impact on risk strati-
fication in patients with OC.
The variability in segmentation performance in any one

single clinical case means the standardisation of the
delineation of the MTV is critical for the application of
radiomics within OC. This supports the recommendations
of the International Atomic Energy Agency (IAEA) whom
state that there are no validated quantitative approaches for
PET contouring that will result in ideal tumour delineation
for all patients and tumour locations [39]. In addition, the
American Association of Physicist in Medicine (AAPM)
Task Group No 211 reported that they could not recom-
mend a single PETauto segmentation method for MTV de-
lineation. However, machine-learned segmentation methods
have showed promise for accurate MTV delineation [9].
Machine-learned-based and consensus-based segmentation
methodologies have been proposed for the standardisation
of the delineation of theMTV [20, 40, 41]. In Additional file 3,
radiomic features derived from each segmentation method
were correlated with MTV. As described, GLNU, Energy
and Coarseness were correlated with MTV for all PET
segmentation methods. However, the level of correlation
varied between PET-AS methods. Our study suggests that a
standardised segmentation methodology should be used for
the development of prognostic models.
Shape metrics can also be quantified from the primary

tumour. Within this group of radiomic features, the
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surface to volume ratio (S2VR), sphere to volume ratio,
compactness, sphericity and disproportion of the tumour
can be characterised but have not been included in this
study which focused on intra-tumoural heterogeneity.
However, studies have investigated the inclusion of
shape metrics in prognostic models [42].
The results of this study are strengthened by the large

cohort (n = 427) of OC patients with contours assessed
and approved by a Clinical Radiologist. The approach of
controlling model development by using identical
clinical data and standardised image features ensured
that differences in risk stratification were due to the
image segmentation method. In this study, we did not
use any PET image interpolation algorithm before image
feature analysis [34]. This approach however, is consistent
with currently reported studies.

Conclusion
Prognostic models incorporating quantitative image features
are dependent on the method used to delineate the primary
tumour. This has a subsequent effect on risk stratification,
with patients changing groups depending on the image
segmentation method used. The standardisation of PET
segmentation is important and should be considered in
future prognostic and predictive clinical models. The
findings of this study may have substantial potential impact
on clinical management of patients with OC.

Additional files

Additional file 1: Prognostic models developed from PET auto-
segmentation methods excluded from the study. (DOCX 122 kb)

Additional file 2: Differences in radiomic features between two
discretisation methods. (DOCX 69 kb)

Additional file 3: Correlation of radiomic features and the delineated
Metabolic Tumour Volume. (DOCX 2375 kb)
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