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Abstract

Background: Building a universal genomic signature predicting the intensity of FDG uptake in diverse metastatic
tumors may allow us to understand better the biological processes underlying this phenomenon and their
requirements of glucose uptake.

Methods: A balanced training set (n = 71) of metastatic tumors including some of the most frequent histologies, with
matched PET/CT quantification measurements and whole human genome gene expression microarrays, was used to
build the signature. Selection of microarray features was carried out exclusively on the basis of their strong association
with FDG uptake (as measured by SUVmean35) by means of univariate linear regression. A thorough bioinformatics
study of these genes was performed, and multivariable models were built by fitting several state of the art regression
techniques to the training set for comparison.

Results: The 909 probes with the strongest association with the SUVmean35 (comprising 742 identifiable genes and
62 probes not matched to a symbol) were used to build the signature. Partial least squares using three components
(PLS-3) was the best performing model in the training dataset cross-validation (root mean square error, RMSE = 0.443)
and was validated further in an independent validation dataset (n = 13) obtaining a performance within the 95% CI of
that obtained in the training dataset (RMSE = 0.645). Significantly overrepresented biological processes correlating with
the SUVmean35 were identified beyond glycolysis, such as ribosome biogenesis and DNA replication (correlating with
a higher SUVmean35) and cytoskeleton reorganization and autophagy (correlating with a lower SUVmean35).

Conclusions: PLS-3 is a signature predicting accurately the intensity of FDG uptake in diverse metastatic tumors.
FDG-PET might help in the design of specific targeted therapies directed to counteract the identified malignant
biological processes more likely activated in a tumor as inferred from the SUVmean35 and also from its variations
in response to antineoplastic treatments.
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Background
2 [18F] Fluoro-2-deoxy-D-glucose (FDG) positron emis-
sion tomography (PET) is a metabolic imaging technique
commonly used in the clinic to evaluate the extension of
primary or metastatic tumors prior to therapy. Another

use of this technique that is gaining more acceptance in
oncology is the assessment of early metabolic response
to antineoplastic agents in advanced and metastatic
tumors [1, 2].
At the molecular level, FDG uptake has been related

mainly to aerobic glycolysis, but a full picture of the differ-
ent biological pathways involved in this process is currently
lacking. While the core molecular machinery of glycolysis
is widespread in all tumors, the intensity of FDG uptake is
quite variable among different tumor histologies and even
among the same tumor histotypes according to specific
tumor characteristics [3, 4]. Some studies have correlated
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the tumor FDG uptake with the expression of essential
glycolytic enzymes such as hexokinase-2 or related pro-
teins like glucose transporters Glut1-3 [5–9]. However, a
good correlation between these biomarkers and the inten-
sity of FDG uptake is not always found in all tumor types
[9]. Other preclinical studies in cancer cell lines have also
shown that other biological processes can also be concomi-
tantly upregulated in the presence of higher uptake of
FDG in tumors, as it happens in the activation of onco-
genic pathways such as KRAS, PI3K, and c-MYC [10–12].
All these studies have focused in a limited number of se-
lected genes and in specific tumor types, gathering thus a
limited view of the biology of FDG uptake.
As metastases are the main cause of cancer-related

death, a growing interest in metastatic cancer has been
recently spurred on by a more thorough characterization
of the genomic landscape of these tumors [13]. Hence,
we reasoned that a better understanding of the biological
processes involved in FDG uptake could be glimpsed by
studying a representative sample of diverse human meta-
static tumors, accounting thus for a greater tumor het-
erogeneity but retaining a number of common processes
underlying the biology of FDG uptake beyond glycolysis.
The purpose of the present study was to build a gen-

omic signature able to predict FDG uptake intensity in a
diverse population of metastatic tumors, by using an un-
biased gene expression profiling not limited to a prede-
fined set of genes, but rather using whole human
genome gene expression microarrays. To achieve this
goal, a different methodology from that used previously
in other signatures, that were trained on a single tumor
type [14, 15], was required. Individual genes were se-
lected exclusively by their strong association with FDG
uptake by means of univariate linear regression. Then,
these selected genomic features were used to build and
validate the signature, chosen by comparing several state
of the art predictive regression methods. The selected
genes would also allow us to deepen into the overrepre-
sented biological processes and signaling pathways com-
mon to glucose uptake in different metastatic tumors, as
well as into the potential protein-protein interaction
(PPI) subnetworks found among the selected features.
A deeper knowledge of the metabolic pathways beyond

glycolysis involved in FDG uptake might contribute to
establish the usefulness of FDG PET/CT in indications
such as the evaluation of early metabolic response with
different targeted therapies.

Patients and Methods
Inclusion criteria
The conditions that patients should meet to enter this
study were (a) a diagnosis of metastatic tumor (all were
solid except a single patient with non-Hodgkin

lymphoma) with a baseline FDG-PET/CT in order to
evaluate the extent of disease and at a later point treat-
ment response, (b) a fresh frozen tumor biopsy taken at
the same metastatic location in which FDG uptake was
measured for a gene expression microarray, that was
performed within a maximum interval of 8 weeks of the
FDG-PET/CT, (c) the patients had not received
chemotherapy treatment in the 3 weeks prior to the in-
clusion in the study, and (d) patients in whom no active
tumor could be identified by FDG-PET were excluded
from the study. Seventy-one cancer patients, seen be-
tween July 2010 and July 2015 at Hospital Quironsalud
Torrevieja (Alicante, Spain), met these requirements and
were retrospectively evaluated. In 3 of these patients,
more than one microarray studies had been performed
several months apart, but only the first one was included
in this study. No other restrictions applied to the
patients entering the study on the basis of sex, age, hist-
ology of the tumor, or previous treatments. Informed
consents for the obtention of the diagnostic-therapeutic
biopsy and for undergoing FDG-PET/CT in the patients
included in this study were obtained. Approval of this
study by the Institutional Review Board of Hospital
Quironsalud Torrevieja (Alicante, Spain) was also
obtained.
These 71 patients comprised the training set used to

build the predictive genomic signature. A balanced pro-
portion of some of the most frequent tumor histologies
(eight tumor types comprising from 5 to 9 patients) along
with a group of miscellaneous tumor types constituted
this training set (see Table 2). The hypothesis made was
that we would be able to capture the underlying common
biological processes related to the intensity of FDG uptake
shared by different solid tumors by selecting the micro-
array probes most strongly correlated with FDG uptake
(by means of univariate linear regression) in order to build
a predictive signature (see Additional file 1 for full details).
Besides, 14 additional patients were seen at our institution
after July 2015 and were evaluated prospectively to valid-
ate (external validation set) the predictive signature gener-
ated with the training set. The signature underwent first
an internal validation (tenfold cross-validation × 5 in the
training set) to choose the best performing model among
the four tested as well as to estimate the performance of
the signature in an unseen (by the model) dataset [16] and
an external validation in an independent dataset (not used
to build the model) to test it further. One patient was ex-
cluded from the external validation set as he was consid-
ered a clear-cut outlier presenting extremely high values
of FDG uptake, as outliers have detrimental effects both in
the generation and in the validation of the model. An out-
lier was defined as those measurement values of FDG up-
take that, taking as reference the values of the training set,
were either:
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≤ P1 − 1.5 × (P3 − P1); or
≥ P3 + 1.5 × (P3 − P1)

where P1 was the 25% percentile and P3 was the 75%
percentile.
Among the remaining 13 patients of the validation set,

one had a value of FDG uptake just below the patient
with the lowest limit in the training set, although it was
not a low outlier as defined here. We called this patient
sample an “influential observation.” This term is taken
from the regression argot and used here with a similar
meaning: how different would it be a model prediction if
we were to exclude this observation. After logarithmic
transformation, this observation was just a little outside
the limit of the low outlier boundaries. Nevertheless, in
spite of being aware of the limitations of including such
a patient (with an uptake value below the prediction
range of the training set and a borderline low outlier) for
achieving an accurate prediction, we did not exclude her
from the validation set in order to study the effect on
the predictive accuracy of the signature of excluding this
influential observation from the validation set.

FDG-PET/CT imaging and quantification
All patients fasted for at least 6 h prior to imaging, and pre-
examination blood glucose levels were obtained. Patients
were injected with 444 MBq (12 mCi) pyrogen-free
18F-FDG. Imaging was performed 90 min (± 10) later on a
Biograph 6 Hi-Rez (Siemens Medical Solutions). Whole
body PET/CT scanners were acquired in accordance with
the HQT PET protocol. CT data was used for attenuation
correction (120 mAs Care Dose; 110 Kv, slice 5 mm) and
X-ray contrast medium was injected (65 ml ULTRAVIST®,
rate 1.6–1.8 ml/s and delay 50 s). All images were iteratively
reconstructed using post-emission transmission attenuation-
corrected datasets (size 168; zoom 1; full width at half
maximum (FHWM) 5.0 mm; iterations 4; subsets 8).
FDG uptake in the biopsied location was quantified.

Individual tumor VOIs (volume of interest) were automat-
ically drawn threshold-based, one for each patient. A stand-
ard VOI analysis tool provided with the scanner was used
to calculate the different quantitative parameters obtained
(Leonardo workstation; TRUE D Syngo MMWP 2009B).
We did not correct for partial volume effect based on the
resolution of our Siemens FDG-PET scanner (< 5 mm.),
considering that the minimum diameter of all the lesions
studied were at least threefolds the FHWM (> 1.5 cm). The
following parameters of FDG quantitation were obtained
(as defined below): SUVmax, SUVmean35, SUL, SUVglu,
MTV (metabolic tumor volume), TLG (total lesion
glycolysis), and tumor to background index (T/B).

Microarray processing and statistical methodology
The protocol followed for the obtention of the matched
biopsies is the usual one at our institution and has been

previously published [17]. Total RNA extraction was
done with RNAeasy columns (QIAGEN), and the
amount obtained was measured with the Nanodrop
spectrophotometer (ND-1000). Quality of the RNA was
measured with the Agilent 2100 Bioanalyzer. Microarray
processing and the statistical methodology used to
build and validate the signature is described in the
Additional file 1.

PET quantification parameters
SUVmean35 was defined based on our previous study
(unpublished data) as the SUV mean in a thresholded
VOI (3D isocontour at 35% of the maximum pixel
value). To calculate T/B index, two identical circular
ROIs (region of interest) 50% in size to corresponding
VOIs were centered on the area with maximum uptake
tumor localization and on the tumor-free neighboring
area respectively.
SUL (SUV normalized to lean body mass) was

calculated as follows:
SUL ¼ LBM� SUVmean35

�
patient weight kgð Þ, where

LBM (lean body mass) was calculated according to the
formula of Janmahasatian et al. [18]

LBM male ¼ 9270� patient weight kgð Þ
.

6680þ216�BMIð Þ

LBM female ¼ 9270� patient weight kgð Þ
.

8780þ244�BMIð Þ
;

BMI (body mass index): weight/height2 (kg/m2).
SUVglu (SUV corrected for the blood glucose level)

was obtained as follows [19]:

SUVglu ¼ SUVmean35�basal glucoseð Þ=100 mg=dl

MTV was calculated as tumor volume in centimeter
cube contained in the 35% thresholded VOI. TLG was
calculated as (SUV mean) × (MTV).

Selection of a representative FDG uptake value for the
predictive signature
Among the different FDG quantification parameters
mentioned above, a thorough descriptive statistic was
carried out in the 71 patients belonging to the training
set. This preliminary analysis showed that SUVmax,
SUVmean35, and SUVglu had certain linearity and a
data distribution close to a normal distribution as dem-
onstrated by normality tests (Shapiro-Milk and
Kolmogorov-Smirnov) and QQ-plots. However, the
remaining parameters obtained (SUL, MTV, T/B, and
TLG) did not follow a normal distribution and were not
linear. We reasoned that it was convenient to choose a
representative parameter that followed a normal distri-
bution and that showed certain linearity as some
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methods making use of principal components are known
to have a better fit to this kind of data. Hence, we pre-
ferred to use either the SUVmax, SUVmean35, or
SUVglu as continuous dependent variable (the response
or outcome variable). As expected, there was a very good
correlation between SUVmean35, SUVmax, and SUVglu.
The Pearson correlation coefficient was highest and
most significant between SUVmean35 and SUVmax (r =
0.976, p < 0.001). Given the concordance between
SUVmean35 and SUVmax and to avoid redundancies,
SUVmean35 was chosen. Moreover, we selected the
SUVmean35 as the dependent (or outcome) variable to
be predicted as the parameter representing FDG uptake
because of the higher intrinsic uncertainty associated
with the calculation of SUVmax and also for the better
reproducibility of SUVmean35 in accordance to our ex-
perience (unpublished data). Among these three quanti-
fication parameters mentioned above, SUVmean35 was
also preferred because its calculation has demonstrated
greater inter- and intra-observer reproducibility, in
agreement with reports recommending the use of the
SUV mean in quantifying the biological effects on tumor
response [20, 21]. SPSS software version 15.0 for
Windows was used for the descriptive statistics.
To get a better fit of the SUVmean35 to a normal dis-

tribution, and also to achieve a similar range as the pre-
dictors (probes), the SUVmean35 underwent a base 2
logarithmic transformation. The transformed data would
be used in the elaboration of the predictive model. It is
important to notice that the log-transformed
SUVmean35 values from the 71 patients in the training
set did not contain any outlier. To improve readability,
the term SUV instead of SUVmean35 was used through-
out the manuscript.

Feature selection for building the genomic signature
A key factor to the good performance of predictive
models containing a higher number of features (probes
in our case) than observations (patient samples) (i.e.,
p ≫ N) is the selection of the most relevant features to
the response. The algorithm of supervised principal
components suggested by Hastie et al. [22] was followed
with some modifications. In brief, first, with the predic-
tors standardized, univariate regression coefficients for
the outcome (the SUV) for each one of the 22,814 fil-
tered probes was obtained. Second, reduced matrices
were formed including only those features that exceeded
certain absolute threshold in their regression coeffi-
cients, and the first three principal components of these
matrices were calculated; then, these principal compo-
nents were used in a regression model to predict the
SUV. The absolute regression coefficient threshold used
and the number of principal components were chosen
by tenfold cross-validation (CV). The functions

superpc.cv and superpc.plotcv from the superpc library
(created by one of the authors of [22]) from the R
statistical environment were used for this purpose. The
third principal component and a regression coefficient
threshold of ± 1 were selected. The selected threshold
included 909 probes corresponding to 742 genes with
gene symbol and 62 probes without it. As these 62
probes without symbol might also have an important
contribution to the performance of the signature, they
were also kept.
All the 909 probes selected were included to build the

predictive model considering each one of them individu-
ally as predictor (independent variable). Thus, the statis-
tical models tested were allowed to assign the
coefficients (for three of the methods used in this study,
see the Additional file 1) or proximity measures (for
random forest, the fourth method tested in this study as
shown in the Additional file 1) most appropriate for
each probe, with the intention of increasing the overall
accuracy of the tested models. Also, bias related to any
form of summarization of the probes can be avoided in
the comparison of the models tested. The full list of the
909 probes along with their regression coefficients is
shown in Additional file 2: Table S4. As a measurement
of importance of the 909 selected probes, variable im-
portance of projection (VIP) values were calculated
using the R library plsVarSel.

Bioinformatics analysis of the selected probes
Hierarchical clustering with the selected 909 probes was
performed with the function hclust of R, using the
Spearman correlation coefficient as distance metric
(more precisely 1—correlation coefficient) and complete
linkage. A heatmap was generated with the gplots library
from R.
For a correct interpretation of the results presented in

this work, it is worth noticing that no patient in this
study had a SUV = 0 (or “negative”). Thus, when we
speak below (and throughout this work) about genes (or
biological processes) positively or negatively correlated
with the SUV, what is implied is that positive refers to a
higher and negative to a lower SUV. In other words, all
the genes and biological processes studied here have a
clear relationship with the SUV.
The DAVID Bioinformatics Resources 6.7 (https://

david.ncifcrf.gov/) was used to study the biological
processes overrepresented among the signature selected
genes. To include additional biological processes less
represented in DAVID, another public resource used
was the Consensus Pathway Database, release 31 (http://
ConsensusPathDB.org) as a complement.
For the study and identification of potential protein-

protein interaction (PPI) networks among the genes se-
lected for the predictive signature, all the genes in each
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subnetwork (positive and negative correlation with the
SUV) were first mapped to their respective protein prod-
ucts using the bioinformatics resource STRING 10.0
(https://string-db.org). The threshold used to establish
the edges (interactions) among the nodes (proteins) of
the PPI networks was 0.7 (“high confidence”). Two sub-
networks were studied separately. One built using the
genes with positive and another with those with negative
correlation with the SUV (according to the sign of their
regression coefficients). In addition, hierarchical cluster-
ing using a fastgreedy algorithm (done separately in the
two subnetworks) was carried out with the libraries
STRINGdb (http://www.bioconductor.org) as an API to
the STRING database and igraph from R in order to as-
sign membership in the two subnetworks obtained. The
study of network characteristics such as those related
with centrality and connectivity was done with the
igraph library from R in the two subnetworks obtained.
Gene Set Enrichment Analysis (GSEA) was done using

the method single-sample GSEA (ssGSEA) as imple-
mented in the library GSVA (function gsva, method =
“ssgsea”) from R. Default parameters of this method
were used as described by Barbie et al. [23]. This method
was applied to all the normalized and filtered microarray
intensity data after summarization of the 22,814 probes
in the training set (retaining only the maximum intensity
value for those genes represented by more than one
probe and eliminating those probes without a gene
symbol). The C2 subset (curated gene sets) from the
Molecular Signatures Database (MSigDB) v5.1 main-
tained by the Broad Institute (http://software.broadinsti-
tute.org/gsea/msigdb/collections.jsp) was used. The
scores obtained with ssGSEA for each patient and each
signature used in the training set were then pairwise cor-
related independently with the corresponding trans-
formed SUV values of each patient (Pearson correlation),
and the corresponding correlation coefficients and prob-
abilities were obtained for each signature of the C2 sub-
set. To gain further insight into some specific findings
obtained with the C2 subset of MSigDB v5.1, other sub-
sets from this database were also used such as the H,
C5, and C6 subsets. Using the same ssGSEA method-
ology described, we also used the 10 genesets containing
highly selective and specific genes for 10 different cell
populations. These genesets have been validated exten-
sively in thousands of different human solid tumors
(> 19,000) to estimate the abundance of immune and
non-immune cells and have also been shown to have
a good correlation with immunohistochemistry [24].

Results
FDG-PET quantification
The characteristics of the patients (demographics and
quantification data) and biopsies are shown in Tables 1

and 2. The detailed tumor histologies can be found in
Additional file 3: Table S6. No statistically significant dif-
ferences were found between the training and validation
set (U Mann-Whitney p > 0.05 for all variables shown).
The only difference with the training set was the inclu-
sion of two aggressive locally advanced primary tumors
in the validation set: a patient with a pancreatic adeno-
carcinoma and another with a biliary duct carcinoma.

Hierarchical clustering with the probes selected for the
elaboration of the signature
Hierarchical clustering was performed in order to check
whether the selected probes (the 909 most strongly cor-
related with FDG uptake as measured by the SUV) were
able to discriminate different groups of patients in the
training set according to the SUV values and not to
other clinical or pathological data. In Fig. 1, a heatmap is
shown with the results of the patient samples hierarch-
ical clustering with the 909 probes (as described in the
“Methods” section). Five main clusters could be easily
distinguished (C1 to C5 in Fig. 1). Comparing the aver-
age SUV values of the patient samples of each of the five
clusters (Table 3a), they were significantly different as
shown by one-way ANOVA (p = 0.001). The SUV aver-
ages of the clusters were significantly different on ac-
count of significant differences between the higher
average SUV of C1 samples versus the average SUV of
the remaining clusters (i.e., C1 vs C2, C1 vs C3, C1 vs

Table 1 Demographics and quantification data in the training
and validation sets; mean and range values are given

Training set
(n = 71)

Validation set
(n = 13)

Age (years) 58 (28–80) 58 (36–77)

Females/males 40/31 9/4

LBM 52.3 (29.5–81.8) 47.9 (32.8–60.7)

Baseline blood glucose (mg/dl) 100.8 (66–149) 100.1 (78–126)

Injected dose (mCi) 11.5 (9.9–13.4) 11.3 (10,0–12.9)

PET quantification data

Diameter of the lesion (cm) 6.4 (1.5–18.9) 8.1 (2.1–18.3)

SUVmax 11.8 (3.7–31.3) 12.3 (2.7–21.7)

SUVmed35 6.7 (2.4–16.7) 6.5 (2.0–10.7)

SULa 4.8 (1.5–11) 5.1 (2.3–8.8)

SUVglu 6.7 (2–14.9) 6.5 (2.1–11.5)

MTV (cm3)a 45.2 (0.7–434) 197.4 (2.1–1009)

TLGa 358.7 (2.3–3958.1) 1784 (4.1–9058.1)

T/B 9.5 (1.4–35.8) 10.9 (2.5–26.8)

Abbreviations: LBM lean body mass, SUVmax maximum standard uptake value,
SUVmed35 thresholded 35% medium standard uptake value, SUVglu standard
uptake value corrected for plasma glucose levels, SUL standard uptake value
normalized by lean body mass, MTV metabolic tumor value, TLG total lesion
glycolysis, T/B tumor-to-background ratio
aMissing data: 3 in the training set and 1 in the validation set
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C4, and C1 vs C5, p < 0.05 for all comparisons by the
Student t test). The C2 vs C5 comparison was found
close to significance by t test (p = 0.076). Therefore, this
unsupervised methodology is indeed able to discriminate
clusters of patients with statistically significant average
SUV values. Furthermore, none of the major tumor
types in this series was grouped in a single cluster (for
example, breast, colorectal, genitourinary, ovarian, lung
cancers, or soft tissue sarcomas). We found that as a
group in our training set, lung cancers (7 patients) had
an average SUV value significantly higher than most of
the other major tumor types. However, lung cancers
were evenly distributed in three different clusters. The
remainder of the most represented tumor types had
average SUV values that were not significantly different

among them, and nevertheless, they were distributed in
a minimum of two or more clusters. In addition, no sta-
tistically significant differences were found between the
average SUV values of the metastatic tumors located in
the liver (liver biopsies) and the rest of metastatic loca-
tions (t test p = 0.34). Likewise, the samples coming from
liver metastases were widely distributed among the five
clusters. Overall, these results point to the suitability of
these genes as building blocks of a multivariable model
to predict the SUV. As a control, hierarchical clustering
using the same methodology was also applied to the
training set with all the filtered unselected probes to
identify five clusters. However, the SUV averages of
the clusters identified with all the unselected probes
were not significantly different by one-way ANOVA
(p = 0.357), as shown in Table 3b.

Biological processes related to the selected genes
Tables 4 and 5 show the top 20 most significantly over-
represented biological processes related to the genes
with positive and negative correlation with the SUV.
Among the biological processes with positive correlation
with the SUV, it was interesting to note the RNA pro-
cessing, ncRNA processing, RNA splicing, ribosome bio-
genesis, and protein aminoacid N-linked glycosylation
via asparagine. All these processes were related to the
preliminary and required steps conducing to the synthe-
sis and processing of proteins. Cellular growth rate is
directly proportional to the number of new ribosomes
formed in a cell [25]. Among the biological processes
with negative correlation with the SUV, cell adhesion,
actin cytoskeleton organization and its regulation, regu-
lation of glycogen biosynthetic process, and ruffle
organization were noticeable.
We also checked the Consensus Pathway database

with the same genes (see Additional file 4: Table S1).
Other processes of potential interest not identified by
DAVID were noted (all with q ≤ 0.1). Regarding the
genes with positive correlation with the SUV, this database
unveils biological processes such as scavenging by class A
receptors, DNA replication, and its regulation. Other rele-
vant processes identified are those related to the immune
system: PD1 signaling, antigen processing and presenta-
tion, CD4 T cell receptor signaling, downstream TCR
signaling, phosphorylation of CD3, and TCR zeta chains
among others. Previous reports have shown that a high
glucose uptake is required for T cell activation [26].
Although less statistically significant than the afore-

mentioned biological processes, those related to the en-
ergetic metabolism of carbohydrates were apparent:
glycolysis, pentose phosphate cycle, and insulin-
mediated glucose transport. In common with DAVID,
protein processing and N-linked glycosylation were also
apparent. As far as the genes with negative correlation

Table 2 Tumor histologies and locations of the biopsies obtained
for microarray analysis of the patients in the training set

Histology Total (n = 71) Percentage (%)

Colorectal cancer 9.0 12.7

Breast cancer 8.0 11.3

Soft tissue sarcoma 7.0 9.9

Genitourinary tumor 7.0 9.9

Ovarian cancer 7.0 9.9

Lung cancer 7.0 9.9

Pancreatic cancer 6.0 8.5

Head and neck cancer 5.0 7.0

Esophageal cancer 4.0 5.6

Thyroid cancer 2.0 2.8

Bile duct cancer 2.0 2.8

Carcinoma of unknown primary (CUP) 1.0 1.4

Gastric cancer 1.0 1.4

Lymphoma 1.0 1.4

Melanoma 1.0 1.4

Mesothelioma 1.0 1.4

Merkel cell carcinoma 1.0 1.4

Kidney cancer 1.0 1.4

Locations of biopsies Total (n = 71) Percentage (%)

Liver 25 35.2

Retroperitoneal 16 22.5

Lymphadenopathy 13 18.3

Head and neck mucosa 3 4.2

Skin 3 4.2

Pleural 3 4.2

Lung 3 4.2

Breast 2 2.8

Mediastinum 2 2.8

Pancreas 1 1.4
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with the SUV were concerned, a deeper biological
insight could be obtained from the Consensus Pathway
database (all with q < 0.05). In common with DAVID, the
regulation of the actin cytoskeleton scores high. How-
ever, a relevant contribution to this regulation can be

envisaged in the identified biological pathways related to
the small GTPases RHO, RAC1, and CDC42 as they
are known potential controllers of dynamic processes
affecting the cytoskeleton such as the formation of
stress fibers (RHO), lamellipodia (RAC1), and filo-
podia (CDC42) as well as membrane ruffling (RAC1).
E-cadherin signaling, integrin, integrin-linked kinase
signaling, and focal adhesions also seem relevant to cell
adhesion processes. Muscle and smooth muscle contrac-
tion processes cannot be overlooked as they may correlate
with some of the cytoskeleton changes and with motility.
Eukaryotic translation termination is also worth mention-
ing. Another potentially relevant group of biological pro-
cesses are those related to common downstream signaling
by different growth factors particularly through RAS
and the RAF/MAPK cascade and last but not the
least, signaling by the VEGFA-VEGFR2 pathway. Sev-
eral of the processes mentioned may in fact occur in
the tumor microenvironment, like those related to
angiogenesis.

Identification of protein-protein interaction (PPI) subnetworks
among the selected genes
To identify in each subnetwork (positive and negative
correlation with the SUV) modules of relevant func-
tional (and/or physical) interactions assigning member-
ship to each of the interacting proteins, we applied a
fastgreedy clustering algorithm, disregarding the proteins

Fig. 1 Hierarchical clustering and heatmap of samples in the training set with the 909 probes of the signature. Microarray samples of the 71
patients in the training set are in columns and standardized probes in rows. The five sample clusters obtained are denoted by C1 to C5 in the
upper part of the dendrogram

Table 3 SUVmean35 (SUV) averages, standard deviations (SD),
minimum and maximum values of the samples of each of the
five clusters identified using the indicated number of probes in
the training set

Cluster n Average SUV SD Minimum
SUV

Maximum SUV

a) 909 selected probes

C1 14 9.28 2.88 5.27 16.69

C2 21 6.89 3.08 2.52 13.63

C3 11 6.46 2.86 3.78 12.08

C4 10 5.28 1.69 2.62 8.38

C5 15 5.21 2.08 2.35 9.16

One way ANOVA, p = 0.001

b) 22,814 unselected probes

C1 13 7.01 3.49 2.35 13.63

C2 11 6.38 2.74 2.61 12.08

C3 15 6.09 2.49 2.52 12.61

C4 19 7.77 3.51 2.62 16.69

C5 13 5.86 1.97 3.41 9.16

One way ANOVA, p = 0.357
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Table 4 Biological processes overrepresented in the genes with positive correlation with the SUV (from DAVID Bioinformatics Resources 6.7)

Term Percent p value Benjamini

GO:0006396~RNA processing 10.3 1.87E−08 0.000

GO:0022613~ribonucleoprotein complex biogenesis 4.8 1.09E−05 0.007

GO:0034470~ncRNA processing 4.4 8.05E−05 0.036

GO:0034660~ncRNA metabolic process 4.8 1.21E−04 0.040

GO:0046148~pigment biosynthetic process 2.2 2.23E−04 0.059

GO:0008380~RNA splicing 5.1 2.32E−04 0.051

GO:0016071~mRNA metabolic process 5.9 2.91E−04 0.055

GO:0018279~protein amino acid N-linked glycosylation via asparagine 1.5 3.24E−04 0.054

GO:0018196~peptidyl-asparagine modification 1.5 3.24E−04 0.054

GO:0042254~ribosome biogenesis 3.3 3.70E−04 0.055

GO:0042440~pigment metabolic process 2.2 4.42E−04 0.058

GO:0006397~mRNA processing 5.1 7.42E−04 0.088

GO:0009101~glycoprotein biosynthetic process 3.3 0.002 0.203

GO:0070085~glycosylation 2.9 0.002 0.228

GO:0006486~protein amino acid glycosylation 2.9 0.002 0.228

GO:0043413~biopolymer glycosylation 2.9 0.002 0.228

GO:0065003~macromolecular complex assembly 7.4 0.003 0.273

GO:0006487~protein amino acid N-linked glycosylation 1.8 0.004 0.277

GO:0008033~tRNA processing 2.2 0.005 0.329

GO:0000375~RNA splicing, via transesterification reactions 2.9 0.007 0.409

Table 5 Biological processes overrepresented in the genes with negative correlation with the SUV (from DAVID Bioinformatics Resources 6.7)

Term Percent p value Benjamini

GO:0007160~cell-matrix adhesion 2.9 9.20E−07 0.002

GO:0031589~cell-substrate adhesion 2.9 2.61E−06 0.002

GO:0030029~actin filament-based process 4.2 1.27E−05 0.008

GO:0007155~cell adhesion 8.0 1.46E−05 0.007

GO:0022610~biological adhesion 8.0 1.47E−05 0.005

GO:0007015~actin filament organization 2.2 4.01E−05 0.012

GO:0030036~actin cytoskeleton organization 3.8 7.40E−05 0.019

GO:0051493~regulation of cytoskeleton organization 2.9 7.46E−05 0.017

GO:0051017~actin filament bundle formation 1.3 9.63E−05 0.019

GO:0005979~regulation of glycogen biosynthetic process 1.1 2.34E−04 0.042

GO:0032885~regulation of polysaccharide biosynthetic process 1.1 2.34E−04 0.042

GO:0010962~regulation of glucan biosynthetic process 1.1 2.34E−04 0.042

GO:0048771~tissue remodeling 1.8 2.91E−04 0.047

GO:0032881~regulation of polysaccharide metabolic process 1.1 3.14E−04 0.046

GO:0031529~ruffle organization 0.9 9.29E−04 0.121

GO:0043244~regulation of protein complex disassembly 1.6 0.001 0.132

GO:0043255~regulation of carbohydrate biosynthetic process 1.1 0.001 0.138

GO:0008015~blood circulation 2.9 0.001 0.138

GO:0003013~circulatory system process 2.9 0.001 0.138

GO:0035150~regulation of tube size 1.6 0.001 0.134
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with no interactions. After applying the procedure, we
selected those clusters containing at least three proteins
in each of the two subnetworks. Ten clusters of these
characteristics were isolated in the subnetwork of pro-
teins with positive correlation with the SUV and 16 clus-
ters in the subnetwork of those with negative
correlation. All the isolated clusters were highly signifi-
cant in their PPI enrichment value, as defined by the au-
thors of [27] (the cluster range of PPI enrichment p
values was from 0.00277 to < 5 × 10−16). This means that
there were more interactions among the proteins in each
of the clusters considered than would be expected by
chance alone in a random set of proteins of similar size
extracted from the genome, suggesting a functional
cooperation among them. Some potentially relevant
clusters are shown in Additional file 5: Figure S1.
Among the clusters obtained from the subnetwork of
genes with positive correlation with the SUV, clusters 1,
4, 6, and 8 are shown. Cluster 1 is shown containing
proteins related to the folding and processing of proteins
(HSP90B1, DNAJA1, CALR), transport of proteins
(CLPB), proteins with special relevance in hypoxia-like
HYOU1, the gene that encodes ORP150, that is overex-
pressed in many tumors and it is tightly correlated with
invasion and tumor progression [28–30] and proteins in-
volved in the glycosylation of proteins (RPN1, STT3A,
MAGT1, and DDOST). Overall, this cluster has to do
with different stages of protein processing. Cluster 6
shows ribonucleoproteins with a role in the different
stages of preparation of the pre-mRNA, like the assem-
bly (NHP2L1 and HNRNPL), elongation (EFTUD2), and
splicing (SUGP1, TXNL4A). Cluster 4 contains mainly
proteins related to the biogenesis of ribosomes (PES1,
RRP1, RRP1B, BMS1, EBNA1BP2). And cluster 8 shows
glycolysis enzymes (GPI, PFKP, and HK3). Among the
clusters obtained from the subnetwork of genes with
negative correlation with the SUV in Additional file 5:
Figure S1, cluster 11 is also shown. It contains proteins
associated with cellular adhesion and the reorganization
of the cytoskeleton (MAPK3, RHOC, RHOA, RAC1,
MYL, CTNNB1, and CTNNA1 among others) and also
angiogenesis (TEK, FGFR1, HGF). Some of these pro-
cesses occur in the tumor microenvironment. Cluster 16
contains large ribosomal proteins (RPL9, RPL12, RPL14,
RPL19, RPL21, RPL24) and translation termination
(ETF1). Of particular interest is cluster 19 containing
proteins related to autophagy (ATG5, ATG7, SQSTM1),
a homeostatic process that can function in both tumor
and stromal cells under conditions of low input of nutri-
ents; in tumors, it has also been related to therapeutic
resistance to some antineoplastic agents such as tyrosine
kinase inhibitors [31]. It is also interesting to underline
that autophagy is not a hit in any other method used in
this study.

Gene Set Enrichment Analysis (GSEA)
In order to characterize further the biological and signal-
ing pathways related to the uptake of FDG as measured
by the SUV, we performed single sample GSEA
(ssGSEA) in our whole filtered training dataset as ex-
plained in the “Methods” section, with the C2 subset of
the Molecular Signatures Database (MSigDB) v5.1. The
significant results obtained (p < 0.05) are reported in
Additional file 6: Table S2. This method (ssGSEA) can
identify coordinated changes of genes belonging to a
gene set in a more sensitive way than other over-
representation methods (more centered on individual
genes) like the ones mentioned above, that could miss
some signaling or biological pathways. That is why we
also used this method to complement the methods com-
mented above. Nonetheless, the results were consistent
with those of DAVID, Consensus Pathways, and
STRING PPIs databases. Just to mention a few, in com-
mon with these databases pathways involved in motility
(KEGG_vascular_smooth_muscle_contraction, r = −
0.3827), reorganization of the cytoskeleton (KEGG_regu-
lation_of_actin_cytoskeleton, r = − 0.269), cell adhesion
(st_integrin_signaling_pathway, r = − 0.3382), and angio-
genesis (pid_lymph_angiogenesis_pathway, r = − 0.25)
were identified as negatively correlated with the SUV in
a statistically significant manner. Another significant
gene set identified as positively correlated with the SUV
that is worth mentioning is the reactome_facilitative_na
_independent_glucose_transporters (r = 0.2496). ssGSEA
indeed identified statistically significant relevant signal-
ing pathways missed by the other methods used above.
Particularly relevant, the activation of c-MYC is posi-
tively correlated with the SUV in some of the genesets
of the C2 subset of MSigDB studied (dang_regulated_-
by_myc_up, r = 0.2839, coller_myc_targets_down, r = −
0.274, and dang_myc_targets_up, r = 0.2436). To
strengthen this relationship, we also used ssGSEA with
the C6 (oncogenic signatures) and the H (hallmark
genesets) subsets of MSigDB v5.1. We found that the
single geneset related to upregulation of MYC of the C6
subset, MYC_UP.V1_UP, was significantly associated
(p = 0.031) with the SUV (r = 0.25) and that
HALLMARK_MYC_TARGETS_V2 was also borderline
significantly associated with the SUV (r = 0.23, p =
0.052). The hallmark subset contains just an
additional HALLMARK_MYC_TARGETS_V1 geneset
which, although not significant, it was also positively
correlated with the SUV (r = 0.12). Overall, this in-
silico results on MYC targets appear to suggest that
MYC targets are positively associated with higher
SUV levels, although experimental confirmation
would be required for specific tumor types. MYC up-
regulation is related to the metabolism reprogram-
ming in cancer cells, influencing a variety of aspects
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[32]. Overall, the biological processes mentioned
above seem to fit the hallmark of several of the stress
phenotypes of cancer [33].
As mentioned above in the section “Biological pro-

cesses related to the selected genes,” several biological
processes related to the immune system were found sig-
nificantly associated with higher SUV values in the
Consensus Pathway database. We explored whether
these biological processes were related to a change in
the population abundance of specific immune cells in as-
sociation with the SUV. For this purpose, we also used
likewise ssGSEA with 10 genesets reported by [24]. A
statistically significant association of the abundance of
cytotoxic lymphocytes with higher SUV values was
found (r = 0.29, p value = 0.013). Cytotoxic lymphocytes
comprise T cells and NK (natural killer) cells. This cor-
relation appears to suggest that there is a trend towards
a recruitment of these cytotoxic lymphocytes in tumors
with a higher uptake of FDG. The other finding of inter-
est was a borderline statistically significant association of
the abundance of endothelial cells in tumors with lower
SUV values (r = − 0.23, p value = 0.055). This result is in
agreement with the findings reported above, linking
angiogenesis with lower SUV values.

Building a signature to predict the SUV
After the selection of features and the study of their bio-
logical meaning, we fitted and compared four different
models: partial least squares (PLS), principal compo-
nents regression (PCR), support vector machine (SVM),
and random forest (RF) to the training set (n = 71) by
tenfold cross-validation (CV) repeated five times (tenfold
CV × 5), selecting the best parameters that for each
model minimize the RMSE and maximize R2. Fifty
resamples per model were generated with their respect-
ive RMSE and R2 values as metrics of performance. A
summary of the results obtained is shown in Table 6.
For the pairwise comparison between models of the
RMSE and R2 values, a t test or a Wilcoxon test (both
with Bonferroni correction) were used respectively, and
the results are also shown in Table 7. PLS and PCR were
the models with the best performance (lower RMSE and
higher R2), and there were no statistically significant dif-
ferences between them. For the final selection of the
model, we also took into account the number of

components needed to achieve the lowest RMSE be-
tween the two best performing models. Hence, PLS re-
quiring three components (PLS-3) was preferred over
PCR (which required 18) on the basis of the statistical
principle of parsimony.
Additional file 5: Figure S2 shows the goodness of fit

of the predictions of the SUV made by PLS-3 in the
training set, as this fit would be used to validate the
model in our independent validation set (n = 13). As a
more realistic estimate of the goodness of fit in an inde-
pendent validation set, we performed a tenfold CV in
the training set (Additional file 5: Figure S2c).

Measurement of performance of the PLS-3 signature in
an independent validation set
The characteristics of the patients of the validation set
along with the actual measured and predicted SUV
values (by PLS-3) are shown in Additional file 7: Table
S3. As mentioned in the “Patients and Methods” section,
one of the patients in this validation set can be consid-
ered an influential observation as her measured SUV
was below the range of SUVs measured in the training
set (patient 9 in Additional file 7: Table S3). The mea-
sured SUV in this patient was 1.96, and the prediction
made by PLS-3 was actually suboptimal: 6.43 (i.e., 3.28-
fold higher than the measured value). Taking into ac-
count this patient, the RMSE obtained in the validation
set (n = 13) was 0.645 which nevertheless is within the
95% confidence interval of the tenfold CV × 5 used to
select the best model (see Table 6). Excluding this pa-
tient, the RMSE of the validation set (n = 12) would be
0.454 and quite similar to the mean RMSE value esti-
mated by tenfold CV × 5 (0.443 as seen in Table 6).
Therefore, the estimates of performance of PLS-3 ob-
tained by tenfold CV × 5 were accurate in predicting the
performance of the signature in our independent test
set. The inclusion of the influential observation worsens
the performance of the signature. Using as a benchmark
the RMSE values of the validation set with (n = 13) and
without (n = 12) the influential observation using the
909 probes of the original signature, we next tested the
performance and stability of the PLS-3 signature by both
reducing and increasing the number of probes.

Table 6 Summary statistics of metrics RMSE and R2 in the four
models tested in the training set (50 resamples)

Models R2 SD CI (95%) RMSE SD CI (95%)

PLS 0.567 ± 0.234 (0.035–0.886) 0.443 ± 0.119 (0.257–0.662)

PCR 0.576 ± 0.228 (0.072–0.891) 0.431 ± 0.111 (0.228–0.611)

RF 0.461 ± 0.273 (0.043–0.873) 0.526 ± 0.120 (0.337–0.719)

SVM 0.501 ± 0.260 (0.037–0.895) 0.476 ± 0.128 (0.274–0.659)

Table 7 Results of pairwise comparisons between methods

Models RMSE
(t test adjusted p values)

R2

(Wilcoxon test adjusted p values)

PLS vs PCR 0.08936 0.3108

PLS vs RF 5.3E−07 0.01667

PLS vs SVM 0.0002238 0.000962

PCR vs RF 2.087E−11 5.925E−5

PCR vs SVM 2.198E−07 0.001221

RF vs SVM 5.05E−06 0.2839
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In addition to the 149 and 249 probe signatures (only
with positive regression coefficients) and the 201 and
301 probe signatures (only with negative regression coef-
ficients) commented in Additional file 1, we also tested
the signatures containing probes with an absolute re-
gression coefficient varying by 0.1 intervals (i.e., includ-
ing probes with both positive and negative regression
coefficients. In Fig. 2, a graph showing the RMSE results
of the different PLS-3 signatures tested in the validation
set with (n = 13) and without (n = 12) the influential ob-
servation is shown. All signatures were first trained by
PLS-3 in the training set, and then, the model generated
was tested in the validation set.
It was noticeable that all tested signatures perform

worse in the full validation set containing the influential
observation (n = 13) than in the same validation set
without it (n = 12). Therefore, it is not advisable to in-
clude such observations in future testing of the predict-
ive signature. Further, a trend towards a degradation of
performance is apparent in the tested signatures with an
increasing number of probes in the full validation set.
However, a clear picture emerges by seeing the perform-
ance RMSE results of Fig. 2 in the validation set when
the influential observation is omitted (n = 12). The signa-
tures containing exclusively probes with positive regres-
sion coefficients (the 149 and 249 probe signatures)
perform worse than all the remainder (RMSE = 0.59 and
0.57 respectively). The signatures containing exclusively
probes with negative regression coefficients (the 201 and
301 probes signatures) perform the best in the validation
dataset (RMSE = 0.39 and 0.38 respectively) and perform
better than the results obtained with signatures contain-
ing a mixture of probes with both positive and negative
regression coefficients. Moreover, the performance of
the original signature (909 probes) is not degraded by

either increasing (the 0.8 and 0.9 threshold signatures)
or reducing (the 1.1 and 1.2 threshold signatures) the
number of probes. The RMSE for the original PLS-3
signature with 909 probes (1.0 threshold) is approxi-
mately the same (between 0.45 and 0.46) as the 0.8
(2248 probes), 0.9 (1461 probes), 1.1 (547 probes), and
1.2 (323 probes) threshold signatures. Only the 1.3
threshold signature (174 probes) has a worse
performance (RMSE = 0.52).

Evaluation of the importance of the probes comprising
the PLS-3 signature by using the variable importance of
projection (VIP)
As a measurement of importance of the PLS-3 probes,
we estimated the VIP values of the third component of
our PLS model, which are useful to evaluate the relative
contribution of each probe to the model. In
Additional file 8: Table S5, the 320 probes of the signa-
ture with VIP values ≥ 1 are shown. This threshold is fre-
quently chosen to select the most relevant features that
contribute to PLS models. The higher the VIP value for
a specific predictor (in our case probe), the more rele-
vant it is for the PLS model. In Additional file 8: Table
S5, 14 probes not matched to a symbol have VIP values
≥ 1, and 2 of them are among the top 10 probes with the
highest VIP values. It is interesting to note that the pro-
portion of probes not matched to a symbol in the whole
signature is not significantly different from this propor-
tion in the selected probes with VIP values ≥ 1 (p =
0.137, by Fisher exact test). These results show that the
selection of probes according to VIP values is not
enriched in probes matched to a symbol as compared
with the whole 909 probe signature, and therefore that
unmatched probes seem to also have a similar relevant

Fig. 2 RMSE values in the validation set (with or without influential observation) of PLS-3 signatures with different number of probes ((+) only probes with
positive regression coefficients, (mix) probes with both positive and negative regression coefficients, and(−) only probes with negative regression coefficients)
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contribution to the PLS-3 model as matched ones with
the same characteristics of VIP values.
Just to mention a few putative relevant genes among

the probes matched to a symbol, TEK (also called TIE2)
scores high (VIP = 2.06). TEK is a kinase that is
expressed in endothelial cells and is involved in angio-
genesis. Other selected probes are also related to signal-
ing pathways involving angiogenesis such as NRP2, HGF,
and FGFR1. EDNRA and EDNRB have also been found
expressed in endothelial cells in different human tumors
and a role in angiogenesis and cancer metastasis has
been reported [34, 35]. It is also interesting to find RHOJ
that is known to be enriched in tumor endothelial cells
and to be involved in their motility and in tumor pro-
gression, and it is also considered a selective antiangio-
genic target [36]. Several genes related to autophagy
(ATG7, SQSTM1, ULK2), the glycolytic enzyme HK3
and cytoskeleton organization like RAC1 among others
were also selected.

Discussion
One of the most relevant contributions of this study is
the generation and validation of a novel genomic signa-
ture using methods of regression not previously reported
for the prediction of FDG uptake in diverse metastatic
tumors. We reasoned that by predicting the intensity of
FDG uptake, we could derive a better understanding of
the glucose requirements of the biological processes op-
erating in different metastatic tumors. We found that
the best performing model in our dataset was PLS-3.
We acknowledge that the small size of our independent
validation set (n = 13) might have been a limitation of
our study. Notwithstanding the PLS-3 signature has also
been thoroughly validated by tenfold CV × 5 in a bal-
anced training set (n = 71). Tenfold CV × 5 was accurate
in estimating the performance of the signature in the in-
dependent validation set. The PLS-3 signature has a high
stability, as shown by similar performance in the valid-
ation set using a wide number of probes (from 323 to
2248, see Fig. 2 without the influential observation). And
also, the possibility of using a reduced version of the sig-
nature with a lower number of probes seems to be
feasible.
It was also of interest to note that PLS-3 explained

89% of the SUV variance. It must be taken into consider-
ation that the SUV has some known and definite sources
of irreducible error. Among these, methodological as-
pects related to the preparation of the patient and his/
her own physiology, and also those related to the quanti-
fication and processing of the PET study which can ac-
count for up to 20% of the variation obtained when
acquiring the SUV value [1]. The interobserver reprodu-
cibility of the SUV (≈ 10%) is also a known issue [37].

It was of interest to note that biological processes pre-
viously described as relevant to FDG uptake, like gly-
colysis and glucose transport, were identified in the
bioinformatics analysis carried out in the present work.
These findings lend credence to the methodological ap-
proach followed in this study. Moreover, another rele-
vant contribution of this study is the identification in a
variety of metastatic tumors of multiple common
biological processes beyond glycolysis correlated with
different SUV values (higher or lower) through a
bioinformatics analysis of the signature genes. The
knowledge acquired in this study could be of use to de-
sign specific targeted therapies based on SUV values or
on its variation in response to antineoplastic treatments.
As could be expected, the different bioinformatics

methods used (DAVID, Consensus Pathway and
STRING databases, and ssGSEA) in this study show
some degree of overlapping in the biological processes
identified, but they are complementary as each one also
finds some relevant unique biological processes not
identified by the others. This makes worthwhile the
combined use of all of them for a thorough view of the
biological landscape of FDG uptake. There seems to be
among the biological processes correlating with lower
SUV values a preponderance of biological processes re-
lated with the tumor microenvironment and its inter-
action with tumor cells (such as cell adhesion, cell
motility, cytoskeleton reorganization, autophagy, and
lymphangiogenesis). Of special interest are the processes
related to angiogenesis and specifically neolymphangio-
genesis. Recently, it has been shown that in primary mel-
anomas, distant lymph nodes and organs may increase
their lymphatic vessel density as a pre-metastatic niche
to favor and promote distant metastases through the
tumor secretion of midkine (encoded by MDK) [38].
Consistent with these data, MDK is weakly correlated
with lower SUV values in our training dataset, and it is
known that this heparin-binding factor is also secreted
by several cancer types (e.g., pancreatic carcinoma) [38].
Hence, it could be inferred that neolymphangiogenesis
occurs not only at the pre-metastatic stage, but also at
the initial stages of the metastatic process when appar-
ently a lower uptake of glucose is required and/or
available.
Among the biological processes correlated with higher

SUV values, the predominant biological processes have
to do mainly with the tumor compartment (like
ribosome biogenesis, DNA replication, and RNA pro-
cessing and splicing) and also with the immune system.
These data suggest that as metastatic tumors evolve
through the acquisition of new mutations towards more
advanced stages of the metastatic process, which seem
to require a higher glucose uptake, they also generate
neoantigens capable of inducing effective T cell
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responses which may compete with the tumor for a
higher glucose uptake.
To the best of our knowledge, only a few previous

reports have characterized signatures predicting FDG
uptake from microarray data [14, 15, 39]. In common
with our study, Palaskas et al. [39] used samples (clinical
and cell lines) from different histological origins finding
in all, enrichment of glucose metabolic pathways (e.g.,
glycolysis/gluconeogenesis, pentose phosphate pathway)
in samples with “high” versus “low” FDG uptake. They
also elaborated a classifier by weighted gene voting [40]
using as training set 11 primary breast cancer patients (5
with “high” and 6 with “low” FDG uptake) and tested it
in 7 breast cancer cell lines. Although with different
methodology, we also found among our samples from a
diverse variety of metastatic tumors, most of the same
top enriched metabolic pathways, including upregulation
of MYC.
The other two studies on signatures predicting FDG

uptake in non-small cell lung cancer (NSCLC), which in-
cluded regression studies, were from the same group
[14, 15]. In [14], models are built to predict radiologic
image features (114 plus PET SUVmax) in terms of 56
metagenes (defined as the first principal component of
each one of the corresponding 56 most homogeneous
clusters of coexpressed genes) derived from matched
microarray and CT imaging data. Using the same meth-
odology and developing further this model to predict
specifically 14 FDG uptake features, Nair et al. [15]
trained a linear regression model in their study cohort of
patients (n = 25) with NSCLC with the metagenes most
significantly associated with the FDG uptake features.
The range of accuracies reported in their study cohort
(as defined in (14)) was from 0.725 to 0.875. Using this
metric, the higher accuracy values the better perform-
ance of the model tested (maximum around 1). When
using the same metric (the accuracy) in our dataset
(instead of RMSE), we obtained values of 0.95 in our
training set and 0.78 in our validation set. These values
compare favorably with those reported by Nair et al. [15].
Only one of the signatures reported in [15] was found

statistically significant in a multivariable Cox regression
model in their external cohort (n = 63), but not in their
validation cohort (n = 84). This signature predicted the
SUVmax by means of a linear regression of 15 meta-
genes, comprising 508 genes.
We wondered whether the genes selected for the elab-

oration of our predictive signature were able, in an un-
supervised manner, to separate patients with different
prognosis. For this purpose, we performed hierarchical
clustering in a previously published large microarray
series of primary breast cancer patients (n = 850) with
availability of distant metastases-free survival data
(DMFS) [41]. The clustering technique was the same

used in the training set of this study. Statistically
significant differences in DMFS were found among the
clusters identified with the signature probes by logrank test
(p = 0.001). However, in agreement with Nair et al. [15] in
NSCLC, we also found that a multivariable Cox regression
analysis adjusted for known prognostic factors in breast
cancer failed to show an independent prognostic value in
this primary breast cancer series (data not shown).

Conclusions
In summary, we obtained and validated PLS-3 predicting
accurately FDG uptake intensity in different metastatic
tumors. The PLS-3 genes allowed us to understand bet-
ter the biological processes underlying the different re-
quirements of FDG uptake in such tumors. FDG-PET
might help in the design of specific targeted therapies di-
rected to counteract the malignant biological processes
more likely activated in a tumor as inferred from the
SUV and also from its variations in response to antineo-
plastic treatments.
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