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Abstract
In this paper we focus on knowledge extraction from large-scale wireless networks
through stream processing. We present the primary methods for sampling, data
collection, and monitoring of wireless networks and we characterize knowledge
extraction as a machine learning problem on big data stream processing. We show the
main trends in big data stream processing frameworks. Additionally, we explore the
data preprocessing, feature engineering, and the machine learning algorithms applied
to the scenario of wireless network analytics. We address challenges and present
research projects in wireless network monitoring and stream processing. Finally, future
perspectives, such as deep learning and reinforcement learning in stream processing,
are anticipated.

Keywords: Stream processing, Big data, Wireless, Data mining

1 Introduction
The popularization of smartphones and Internet of Things IoT devices has driven the
growth of mobile data generation via wireless networks [1]. From 2012 to 2017, mobile
networks have had a seventeen-fold cumulative growth, registering an increment of 71%
in data traffic from 2016 to 2017 alone. Recent studies also show that 54% of the traf-
fic generated by devices that supports cellular and Wi-Fi connectivity was offloaded via
Wi-Fi in 2017 and it is expected that this number increases up to 59% by 2022 [2]. As
a consequence, IEEE 802.11 networks represent the primary access network for a sig-
nificant portion of end-users in various environments. In universities and businesses,
most users connect to the Internet or internal services via the institutional wireless net-
work. For instance, the campus Wi-Fi network of the Universidade Federal Fluminense1

accounts for 547 access points, 5 Internet gateways, serving more than 60,000 users, with
peak rates of 5,000 concurrently connected users, generating over 100 Mb/s per gateway
of data to be analyzed. The data obtained from the monitoring and management of such a

1Universidade Federal Fluminense (UFF) is one of the largest universities in Brazil, considering the size of the student
body.
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large-scale wireless network is a rich source of knowledge about users, networking, usage,
and mobility patterns [3].
Wireless network monitoring presents several challenges when compared to wired net-

work monitoring. Using the same tried-and-true methods of the wired world, such as
measuring parameters after data has passed through the wired network, does not reveal
the current state of the wireless network. Those traditional methods disallow distin-
guishing, for example, an idle network from a network strongly congested where frames
are not being delivered. Proposals to assess the network state consider active measure-
ments but imply changes in the evaluated parameters, as the measurement changes the
state of the wireless network. Indirect measurements, such as measuring channel usage
through access point counters, using sensors for spectral analysis or frame capture, are
employed at the cost of some loss in the accuracy of the information. On the other
hand, collecting metadata from networks does not alter network state, and allows cre-
ating context-aware applications, aiding monitoring at all levels. Capturing beacons by
passive scanning, coupled with information about the signal power with which they were
received, allows identifying which access points are neighbors, and inferring the phys-
ical distance between them, as well as their radio coverage area. Data collection also
enables basic network operations such as service charges, threat detection, isolation,
and fault mitigation. Wireless mobile networks also add space-time information about
users and network conditions to provide the system with end-to-end visibility and intelli-
gence, enabling a better understanding of long-term network dynamics. Geolocation [4]
or user positioning information [5] allows identifying usage patterns and detect anoma-
lies, for example. Besides, analyzing the network-provided data enables self-coordination
of network functions and network entities, allowing to build more efficient and proactive
networks.
The analysis of a large volume of data from large-scale wireless networks enables iden-

tifying usage patterns, defining user profiles, detecting failures or performance drops at
specific sites in the network, and optimizing channel allocation. This analysis is challeng-
ing due to the inherent characteristics of the wireless environment, such as user mobility,
noise, and redundancy of the collected data. These characteristics directly impact the
five fundamental dimensions of big data processing: volume, velocity, variety, value, and
veracity [6]. The lack of network intelligence and fast-reaction mechanisms, often asso-
ciated with the limited view inherent to flow control tools, undermine the Quality of
Experience (QoE) of large-scale wireless network users and the extraction of knowledge
about users and networks [7]. In this sense, the monitoring of large-scale wireless net-
works requires real-time processing and immediate responses to adapt the network to
peak demand and sporadic user concentrations. Traditional big data processing tech-
niques may fit this context, but for real-time network analysis, it is mandatory to employ
big data streaming processing techniques. The big data streaming processing consists of
handling data that is potentially unbounded in the number of samples and in the num-
ber of attributes. Samples arrive continuously and unlimited in attributes space. Hence,
the universe of data attributes, as well as the statistical distribution of the attributes are
unknown. The idea of stream processing is in contrast to batch processing, in which a
limited and well-known datasets are processed at a turn by amassive data processing plat-
form. Batch processing requires a large amount of memory for data storage and implies
a higher latency in generating processing responses. Streaming data processing, in turn,
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incurs lower processing latency of each data sample and imposes no memory constraints
on the storage of incoming data.
Streaming data processing requires traditional machine learning algorithms to be

adapted to the streaming data scenario, in which the training dataset cannot be searched
due to the unlimited number of samples and the requirement of minimum latency when
processing each new sample. To this end, streaming data processing platforms, such as
Apache Spark Streaming [8] and Apache Flink [9], propose two distinct models of stream-
ing data processing: micro-batch processing or sample-by-sample processing. Machine
learning algorithms are subject to learning errors in response to concept drifts in stream-
ing input data [10]. In this sense, machine learning applications should be aware of
the statistical distribution of input data attributes and should check for changes in the
statistics of the attributes.
The purpose of this article is to survey the main real-time streaming data processing

algorithms and techniques for extracting knowledge from large-scale wireless network
monitoring, the so-called Wi-Fi Analytics. The contributions of this article are the fol-
lowing: (i) present an insightful overview of wireless network monitoring; (ii) provide a
summary of big data processing techniques and tools; (iii) review a theoretical overview
of streaming data processing and the use of real-time training machine learning algo-
rithms; and (iv) present and discuss applications in the context of Wi-Fi Analytics. The
use of streaming data processing and real-time training machine learning concerns differ-
ent application areas. We observe that the correlation of different scenarios could bring
innovative views to the Wi-Fi Analytics applications. A lesson learned when surveying
about WiFi-data’s real-time management is that this area, although already massive, still
has a place for innovative and disruptive new proposals, as we discuss along the next
sections.
The article is organized as follows. Section 3 presents tools and methods for managing

and monitoring wireless networks. Section 4 defines the steps for performing knowledge
extraction on big data. Stream-processing machine learning and incremental learning
algorithms are detailed in Section 5. The Apache Spark and Apache Flink streaming data
processing platforms are explored in Section 6. Section 7 outlines the research challenges
and future perspectives in analyzing streaming big data over wireless networks. Finally,
Section 8 concludes the article. We provide a list of acronyms used throughout this paper
to ease the reading, summarized following.

2 List of acronyms
3 Wireless networkmonitoring
Mobile Big Data (MBD) is the large data volume generated from mobile devices that can-
not be processed on a single machine [11]. Figure 1 outlines the layers that compose
the MBD. The first layer is the Collection Layer, in which Sourcing represent the variety
of mobile devices that generate data using technologies such as Wi-Fi, Global Position-
ing System (GPS), and cellular communication. The following layer is the Preprocessing
Layer, in which functionalities such as Integration and Preparation are performed. Inte-
gration is responsible for integrating data from different heterogeneous sources, being
first validated, and then unified. To this end, the data is preprocessed using different
techniques applied for cleansing and integration. Preparation, in turn, prepares the data
for consumption in the Analysis Layer. This layer implements Analytics functionalities,
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Fig. 1 The composing layers of MBD. The first layer generates the data collection. In the second layer, data is
preprocessed to be consumed by the third layer, in which different algorithms are applied to analyze the
data. Finally, in the fourth layer, different services use the results of the performed analyses

which are responsible for data analysis performed through different algorithms for pat-
tern identification, classification, among others. Finally, in the Application Layer, the
results produced on previous layers are used by different Services.
The use of machine learning techniques in wireless networks originates an entire

research area, known as Wi-Fi Analytics. Wi-Fi analytics in the context of MDB allows
characterizing IEEE 802.11 wireless networks by identifying from the collected data the
actors and factors presented in the environment. The characterization, for example, can
be used to propose solutions for positioning devices in indoor or outdoor environments
and improve spectrum management. There are multiple approaches, such as character-
ization of the network topology by monitoring access points and the characterization of
the spectrum. In any case, it is necessary to use specific tools to collect the data.

3.1 Knowledge-drive applications on wireless networks

The environment in which wireless networks are immersed changes constantly. The
access points that build the network infrastructure are usually fixed and connected to the
wired network structure. Nevertheless, user mobility causes fluctuation in the noise level
to which the access points are subjected and interferes with the radio environment, as
people’s bodies act as a barrier to microwave propagation. In large-scale networks, new
access points may be switched on and off at any time, some access points are mobile due
to the proliferation of cellular Internet via Wi-Fi sharing, and the radio environment may
constantly change, for example, by opening and closing doors. Thus, characterizing the
network becomes a complex task and requires access points to be monitored to discover
network topology, characterize the radio environment, and the users associated with the
network in a quasi-real-time manner. Table 1 summarizes the main works listed on this
section.
Neighborhood Inference and Characterization
A neighborhood study is useful to characterize a wireless network, as it allows the

researchers to discover features related to the network itself and the radio environ-
ment. One approach to this characterization of the vicinity of an access point is to
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Table 1 Summary of Knowledge-driven Applications on Wireless Networks

Reference Research opportunity Method used

Acer et al. [12] Connected Objects Fingerprint Platform to analyze Wi-Fi trace

Acer et al. [13] Crowd Behavior Data Analysis

Gómez et al. [14] User Association Wi-Fi SDN

Balbi et al. [15] Channel Allocation Metric-based Algorithm

Coronado et al. [16] Channel Allocation Wi-Fi SDN

Xu et al. [17] Vehicles Location Survey

Chen et al. [18] Traffic Jam Prediction Combine data from different
wireless sources

Leung and Kim [21] Optimal Channel Allocation –

Maturi et al. [22] Heuristic Channel Allocation Dynamic channel selection

Lin et al. [23] Channel Allocation Interference observed between APs

Luiz et al. [20] Channel Allocation Interference observed between
clients and APs

Shin et al. [24] Decrease Latency during
hand-off

Stores the set of channels each
neighbor is operating and the set of
neighboring APs on each channel

Zeljković et al. [25] Evaluates Handover
Algorithms for QoS

SDN + Machine Learning

Huang et al. [26] Monitor wireless AP MBD platforms, data analysis, and

distributed acquisition tools

Wang et al. [28] Optimize use of the wireless
spectrum

Cooperation between access
points to

perform beamforming

Ghouti [29], Noulas et al. [30],
Kulkarni et al. [31], Stynes et al.
[32], Zhang and Dai [33],
Bozkurt et al. [34]

Positioning Analysis Machine Learning

Gonzalez et al. [35] 100.000 Traces of cellphones
Dataset

–

Song et al. [36] People’s Movement Dataset –

Toch et al. [37] Classify user mobility
applications

Clusters Similar Profiles and their
future trajectory

Jiang et al. [41] Characterization and spectrum
analysis in next-generation
wireless networks Survey

collect beacons, either passively or by inducing their emission via the IEEE 802.11 probe-
requests . Every access point broadcasts beacon frames periodically, usually set at one
every 102.4 ms. Beacons belong to the management frames of wireless networks and
include a task for various mechanisms, such as synchronization process and energy sav-
ing. Therefore, access points cannot suppress sending beacons. Capturing beacons allows
the discovery of all access points in an area. Whether passive or stimulated scanning, this
type of data collection only identifies access points, as stations do not emit beacons or
respond to probe-requests.
The value of the received power of a beacon frame is an indicator of the radio distance

between the sender and the receiver. Because the environment varies continuously, a sin-
gle measurement is unreliable, but with multiple measurements, it is possible to create
a reliable map of radio distances between access points. In an institutional wireless net-
work, these measurements can be used to create channel and power configurations for
each access point, aiming to minimize interference between neighboring access points,
whether they belong to the managed network or a third-party network. Access points
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belonging to the institutional network are aware of the stations associated with them and
can exchange this information with a centralized monitoring system. It allows an opera-
tor to know the number of users associated with each access point and the global number
of users associated with the network. A wireless network, however, is generally unaware
of the stations associated with access points from another wireless network. Knowing
how many users are associated with neighboring networks requires to capture packets to
identify the source MAC addresses. To infer interference caused by wireless signals from
devices other than IEEE 802.11 devices, such as the interference caused by Bluetooth
devices, cordless phones, or microwave ovens, mechanisms such as spectral scanning are
required.
Radio Environment Network Topology and Characterization
The neighborhood study provides the discovery of the wireless topology. Such knowl-

edge allows exploring features related to the radio environment but also provides infor-
mation about users. In the context of MBD, some researches adopt Wi-Fi analytics to
locate objects or users. The idea is to usemanagement and control packets, such as probes
and beacons from IEEE 802.11 to determine the location or offset of objects or users
[12, 13]. It is possible to locate a user, with low accuracy, assuming he is in the vicinity of
the access point to which he is associated. In general, as a station is associated with only
one access point at any given time, we can use the history or sequence of access point
associations to improve location accuracy or to infer the station trajectory. Physical infor-
mation, such as signal strength contained in probes, can be obtained from Wi-Fi access
points and used to estimate, for example, how people are moving. Nevertheless, associ-
ation history has limited accuracy. The user-AP association procedure does not follow
a predefined standard, but it is a vendor’s choice. For the sake of simplicity, the user-
AP association is usually decided according to the signal strength. This approach leads
to uneven distribution of users and misuse of network resources [14]. Because the radio
environment varies continuously, and the algorithms currently used for choosing access
points rely on a single measurement, stations may change access points, even when static,
due to interference and changes in the radio environment [15], creating a movement
that does not exist. Recent proposals consider the use of Software-Defined Network-
ing (SDN) to manage joint user association and channel assignment on Wi-Fi networks.
Gómez et al. propose considering the average signal strength, channel occupation and
load of each AP to optimize user association decisions on an SDN-enabledWi-Fi network
[14]. In turn, Coronado et al. also consider an SDN-enabled Wi-Fi network and present
a user association scheme capable of detecting when traffic is not distributed efficiently
and rescheduling user association transparently to APs and clients that are hampering
network performance [16].
In the context of vehicles rather than users, location accuracy and mobility prediction

from a huge data volume can be improved combining different wireless sources and tech-
nologies, such as GPS, cellular signals, such as GSM and LTE,Wi-Fi signals, among others
[17]. It is also possible to determine the location and trajectories of vehicles with external
data, such as maps. Thus, intelligent traffic systems using big data tools can analyze data
from different wireless sources to mitigate traffic jam problems [18]. If only Wi-Fi data is
available, the accuracy of the location of objects and people will depend on the density of
access points on the network. The lower the density of the network, the lower the loca-
tion accuracy. The collected mobility data is analyzed using classification and regression
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techniques to retrieve useful knowledge, such as vehicle traffic flow prediction. Among
the used algorithms, we can mention time series models, Deep Learning (DL) predic-
tion, Markov chain models and Neural Network (NN), and AutoRegressive Integrated
Moving Average (ARIMA). Other approaches also propose to manage the network based
on Simple Moving Average (SMA) or Simple Moving Median (SMM) indicators. These
approaches calculate bandwidth and latency indicators. It is worth mentioning that, when
considering latency indicators, SMM is deployed, since latency tends to suffer from the
masking effect in the presence of outliers [19]. Besides, approaches based on Weihgted
Moving Average (WMA) are also used to assign a greater weighting to the most recent
data samples, whereas distant past samples have their weight vanished.
Large-scale wireless networks can benefit from centralized control for optimizing cer-

tain tasks, such as how to utilize spectrum and allocate users. The wireless medium can
suffer interference from many sources, turning channel allocation into a challenge. The
complexity of the problem grows when adding the constraint of providing acceptable
performance for users subjected to channel overlap [20]. Nearby channels generate inter-
ference and decrease the performance of wireless networks in the vicinity. Therefore, the
wireless network design needs to consider channel allocation from both the deployed
access points and other access points already present in the area. Optimal channel alloca-
tion is an NP-hard [21] problem, but heuristics achieve good [22] channel configuration
solutions.
In large-scale wireless networks, proprietary alternatives for access point manage-

ment, and consequent channel assignment, perform well with a high financial cost
[15]. To avoid high costs, Balbi et al. propose a channel allocation algorithm that first
considers internal interference between controlled access points, and then external inter-
ference from access points with all neighboring access points. Maturi et al. propose
a dynamic channel selection scheme that allows an IEEE 802.11 network to hop over
the available channels, always choosing the one with the least usage [22]. The authors
implement the proposal and show the feasibility of frequency hopping for IEEE 802.11
networks with industry-standard equipment. Other proposals perform channel allocation
through interference observed between access points [23] and between clients and access
points [20].
It is also important to consider the impact of hand-off on large-scale wireless networks,

considering the quality of the experience perceived by the users. In this context, Shin et
al. describe the wireless network through a graph and investigate how to decrease latency
during hand-off [24]. Themain idea is to develop algorithms to allow the hand-off without
the station having to monitor all channels. To this end, the station stores the set of chan-
nels each neighbor is operating and the set of neighboring access points on each channel.
Zeljković et al. introduce an SDNmodular handover management framework, which cre-
ates, validates and evaluates handover algorithms that preserve Quality of Service (QoS)
[25]. They also propose a proactive handover algorithm based onmachine learning, which
relies on multiple metrics to predict the future state of the network and to optimize the
AP load, while preserving QoS.
Huang et al. useMBD platforms, data analysis, and distributed acquisition tools tomon-

itor wireless access points on Unicom’s 3GWCDMA network in China [26]. The authors
use a data storage and analysis platform based on the Hadoop Distributed File System
HDFS. Similar architecture can be employed to process data from other large-scale wire-
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less networks, such as institutional Wi-Fi networks. Hadi et al. survey several related
work [27].
Spectral Characterization
Successful frame capture depends on good channel reception and tuning. Thus, trans-

missions that may interfere with the wireless network, such as Bluetooth, microwave
ovens, wireless telephones, and even frames that have collided or are below the sensi-
tivity threshold given the signal-to-noise ratio, can prevent frames from being captured.
Hence, spectral monitoring is an alternative to frame capture. This kind of monitoring
captures all the energy that arrives at the antenna in the tuned spectrum range, regardless
of the source. Low-cost spectrum capture in the frequency range utilized on Wi-Fi can
be done through spectrum analyzers, e.g., WiSpy2. Spectrum capture provides a better
view of interference sources at the monitored sites and allows defining whether a source
is a transmitter from a wireless network or a Bluetooth network, for example. It is pos-
sible due to the “spectral signatures” of each technology, i.e. the format of the captured
spectrum. A limitation of spectral capture is the delayed response, as identifying the “sig-
nature” requires time integration. Besides, there is a high financial cost associated with
the use of spectrum analyzers, especially in large-scale networks.
Several works use spectrum characterization of an area as a tool to improve network

performance. Wang et al. propose optimizing the use of the wireless spectrum through
cooperation between access points to perform beamforming [28]. Access points are con-
nected via Ethernet to make information exchange faster. The proposal is based on three
pillars: (i) a cooperative scheme that allows the system to estimate phase deviations in
each transmitted symbol and dynamically adjusts the phases to ensure alignment; (ii)
an estimation mechanism that measures channel quality and (iii) a random algorithm of
user choice to perform beam formatting with a constant computational cost. The authors
show that the random algorithm can scale the network linearly and has a performance
equivalent to 70% compared to more complex algorithms.
Characterization of User Mobility
The fingerprint-based positioning analysis approach is commonly used for indoor posi-

tioning and consists of two phases: one online, also known as training and one offline, also
known as positioning. In the offline phase, a radio map is created using the Radio Signal
Strenght Indicator (RSSI) values that are measured at existing access points in the envi-
ronment. Radio maps include, in addition to RSSI values, information about the access
points at which measurements were taken. In the online phase, localization is performed
by combining the radio map RSSI values and the RSSI values measured by the mobile
unit. It is noteworthy that physical device changes between the offline and online phases
can affect positioning accuracy, as well as the choice of algorithms and their parameters
in the online phase. In the positioning literature, machine learning algorithms have wide
use in estimating these positions [29–33]. There are several algorithms suggested in this
application, and it is a non-trivial task to find the one that best behaves in a given sce-
nario. Comparing algorithms concerning positioning and computation time, Bokzurt et
al. show that the k-NN algorithm is the most appropriate [34] when compared to Decision
Tree, Naive Bayes, BayesianNetwork, SequentialMinimal Optimization (SMO), Adaptive
Boosting (AdaBoost), and Bagging algorithms.

2Available at https://www.metageek.com/products/wi-spy/

https://www.metageek.com/products/wi-spy/
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The availability of large datasets used for user location tracking has become more
common with the arrival of various telecommunications-related technologies associated
with MBD. Several works analyze mobility patterns using, mainly, statistical mod-
els to get the general properties of these observed patterns. For example, Gonzalez
et al. analyze 100.000 traces of cellphones and identify that the distance between users
follows a power-law probability distribution [35]. After identifying the main patterns of
people’s movement and the degree of predictability [36], researches began to focus on the
development of applications based on mobility analysis. Another interesting area is based
on network complexity theory and statistical tools. These studies focus on the analysis of
social relations to aggregate mobility patterns in a large data volume.
Toch et al. classify user mobility characterization applications into three categories: (i)

user modeling applications; (ii) locality modeling applications; and (iii) trajectory mod-
eling applications [37]. In (i) only one user is analyzed for a period of time, aiming to
predict his mobility pattern and future location. In (ii) only localities, or areas, are taken
into consideration to predict the number of people passing through a certain area. In
(iii) a punctual spatial-time analysis is created to identify user mobility patterns, trying to
identify the users’ clusters with similar profiles and their future trajectory.
MBD naturally associates with these applications, as well as the need for efficient

response time processing. Thus, the modeling approach is of paramount importance.
Different approaches use different methods, which directly influence the outcome. Most
methods are based on machine learning, whether supervised or not. Other methods use
nonlinear time series analysis, Markovian models, or regression [33, 38].
Next-Generation Networks
Next-generation wireless networks, such as 5G, must support extremely high data rates

and new and diverse application paradigms that will require new wireless radio tech-
nologies [39]. The challenge is to help wireless networks to learn the decision-making
process adaptively and intelligently so that the diverse requirements of such networks are
met. In this context, machine learning is one of the most promising artificial intelligence
paradigm, designed to support intelligent radio terminals [40]. Future 5G-enabled smart
mobile terminals are expected to autonomously access the best spectral bandwidths with
the aid of learning. Mobile terminals are also expected to perform sophisticated spectral
efficiency inference, controlling transmitting power, energy efficiency adjustment, and
transmission protocols based on learning and inference of QoS. In this sense, Jiang et al.
classify various topics and works related to machine learning applied to the characteriza-
tion and spectrum analysis in next-generation wireless networks [41]. The paper classifies
the techniques in supervised, unsupervised, and reinforcement learning. It is notewor-
thy that, in the context of spectrum characterization, several distinct techniques can be
applied, highlighting the supervised learning algorithms based on Bayesian networks,
regression models, K-Nearest Neighbor (KNN), and Support Vector Machine (SVM).

3.2 Main wireless network data crawling and analysis tools

Network traffic monitoring classifies into two categories: active and passive. Active
approaches, implemented by common tools, such as ping and traceroute, inject traffic
or probes into the network and observe the results, such as loss and round trip time.
Passive approaches, on the other hand, do not directly interfere with existing network
traffic. Passive tools observe the current network traffic to infer its properties. The passive
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approach may provide more information about the network traffic. Indeed, as tools can
collect all network packets, they can perform analysis on the whole traffic [42]. The col-
lecting task, however, can be costly. In this sense, exporting only the flow information is
a more scalable variation of the passive monitoring approach which makes it suitable for
the use in high-speed networks. To capture and export flow information, a tool aggre-
gates network packets into flows and the correspondent aggregated data are exported for
future analysis. A flow, in this case, is defined as a set of packets passing through an obser-
vation point on the network over a certain period of time, such that all packets have a set
of common properties [42]. These common properties may include packet header fields
such as IP source and destination, port numbers, transport protocol type, and etc. In this
article, we discuss some of the most important monitoring protocols, such as SNMP, Net-
Flow, sFlow, IPFIX, and OpenFlow, presenting their main features, limitations and use in
wireless networks, as summarized in Table 2.

Table 2 Comparison among main wireless network monitoring tools

Monitoring
Tool

Strengths Weaknesses Main features

SNMP - Simple usage - Unsuitable for large networks Collect information about
device and network states
described in MIBs using a
polling mechanism

- Large delays due to polling

- No authentication

- High computational demand

NetFlow - Flexible - Overload in routers and
switches

Protocol for flow analysis
that collects and
aggregate information in
a central server

- Granular and agreggated data
collection and analysis

- Limited visibility of traffic

- Use of templates - Proprietary protocol

sFlow - Open protocol incorporated
in devices of different
manufacturers

- Messages without encription Protocol for flow analysis
through random
sampling of data packets

- Flexible - Less packet details when
compared to NetFlow

- Low computational demand - Accuracy issues when high
sampling is required

IPFIX - Flexible - Complex multistage process
in templating

Evolution of NetFlow
which is able to export
traffic information from
Layer 2 to Layer 7

- Variable lenght fields - Delays due to miss template
packets

- Data types defined by the user

- Multi-layer packet monitoring

OpenFlow - Open protocol

- Flexible - Authentication issues Real-time traffic control
and monitoring

- Multi-layer forwarding and
monitoring table

- Not available in many
commercial network devices

- Easy adaptation to new
network requirements

INT - Based on P4 - High network overhead Reports of network state
via the data plane
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Simple Network Management Protocol (SNMP) is a management protocol in the
application layer from the TCP/IP stack that uses the UDP transport protocol services to
send and receive messages across the network [43]. In short, the protocol gets informa-
tion and data from SNMP servers through requests from a manager to an SNMP agent,
which is a special software installed on monitored network devices. Each network ele-
ment has variables that represent its information and current state. The manager accesses
information and even change a given element property. In this sense, each managed net-
work element must have an SNMP agent and a Management Information Base (MIB).
TheMIB contains information about managed objects, which are real-world abstractions,
representing the system resources that are queried or changed. Themanaged objects have
query and change permissions such as read/write permissions. Reading the current object
value is equivalent to reading its current state, and writing in object reflects in its state.
For example, SNMP accesses (read) settings from an access point, such as active inter-
faces, channels in use, and power. Currently, there are three main versions of the protocol
(SNMPv1, SNMPv2, and SNMPv3). SNMP has some well-known limitations. The pro-
tocol, for example, is not suitable for managing very large networks. Since it is based on
a polling mechanism, managing many network elements can cause an excessive delay. In
addition, basic SNMP setup has no authentication mechanisms. Finally, it is highlighted
that SNMP demands high computational resources so that applying it to wireless net-
works can deplete the resources of the network elements. In this sense, SNMP is not
suitable for wireless sensor networks or networks with limited resource devices such as
can be found in IoT deployments. Nevertheless, SNMP is still a feasible and widely used
monitoring protocol mostly available on commercial products. Widely deployed network
monitoring tools, such as Nagios3 and Zabbix4, rely on SNMP for collecting statistics
about network assets.
NetFlow is a Cisco proprietary protocol used for flow analysis. It was implemented

circa 1996 and allows the collection and aggregation of network traffic information on
network elements compatible with the protocol [42, 44]. NetFlow collects the flow infor-
mation and sends its records to a centralized location on the network. In this centralized
point, data are analyzed by a network administrator who can determine, among others,
the source and destination of traffic, the classes of service traffic on the network and the
causes of possible network congestion. In this sense, examples of the typical use of statis-
tics collected by the NetFlow protocol are: (i) monitoring the bandwidth usage of links;
(ii) detection of threats in networks, such as Denial-of-Service (DoS) attacks; (iii) record
of use and accounting of network resources; (iv) investigation of the causes of congestion
and performance degradation of network resources and applications. Figure 2 shows a
typical monitoring configuration using NetFlow, which consists of three main compo-
nents [42]. The NetFlow Exporter aggregates packets into flows and exports flow records
to one or more flow collectors. The aggregation is done based on the source/destination
IP addresses, source/destination ports, classes of service, IP protocol, and source inter-
face. The NetFlow Collector is responsible for receiving, storing, and preprocessing
flow data received from a flow exporter. Finally, the Analyzer analyzes the received
stream data, which covers specific contexts, such as intrusion detection and traffic
profiling.

3Available at https://www.nagios.com/.
4Available at https://www.zabbix.com/.

https://www.nagios.com/
https://www.zabbix.com/
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Fig. 2 A typical flow monitoring setup using NetFlow. NetFlow-enabled devices, NetFlow exporters, create
records by aggregating packets into flows and exporting the records to flow collectors. NetFlow collectors
store and preprocess the received data and forward it to the data consuming analyzer to generate useful
knowledge

Each packet forwarded in a network element is examined and the first packet that fits
any rule triggers the creation of a record in the NetFlow cache. The packet is then for-
warded, and other packets that follow the same rule are added to the newly created flow
record. The counters in that record are updated with each new packet that matches the
rule pattern. The cached flow information is exported to the NetFlow collector which,
in turn, stores the stream data on a regular database. The NetFlow protocol uses UDP
or SCTP to transmit the records to the NetFlow collectors. Finally, Analysis Applications
analyze flows. These applications may analyze the received flow focusing on intrusion
detection or traffic profiling. The applications are also responsible for presenting the data
and creating reports.
One of the main weaknesses related to NetFlow refers to the overhead it imposes on

the network infrastructure. Collecting and sending flows add overhead to routers and
switches, which are often already overloaded. The more details administrators insert into
a single flow tuple rule, the more overhead. In many cases, network administrators disable
the protocol to improve network performance. It is noteworthy that NetFlow has limited
visibility of the traffic, or packets, forwarded. As a consequence, collateral communication
(LAN/VLAN)5 is not counted in the flows exported.
The sFlow, as well as Juniper (jFlow), Ericsson (rFlow), and Huawei (NetStream) fol-

low the same NetFlow approach. The technology sFlow6 became an industry-standard
defined in the RFC 3176 [45]. The technology uses random sampling of data packets. The
sFlow agent is incorporated into switches and routers from different manufacturers. The
agent is a software process that associates interface counters and flow samples, generating
sFlow datagrams that are immediately sent to sFlow collectors via UDP datagrams. The
sFlow datagrams contain information about the sFlow version, agent address, source IP,

5Collateral communication refers to flows that are forwarded between nodes in the Local Area Network and are not
addressed to the NetFlow-enabled gateway.
6Collectors for sFlow are available at https://sflow.org/products/collectors.php

https://sflow.org/products/collectors.php
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sequence number, number of samples and, normally, up to 10 flow samples. The immedi-
ate data sending minimizes memory and processing usage. Packets are typically sampled
using Application-Specific Circuits (ASIC) to ensure high wire-speed performance. The
sFlow data contains the complete packet header and routing information. The sFlow is
capable of running in Layer 2 and capturing non-IP traffic.
Internet Protocol Flow Information Export (IPFIX) is also an alternative tool for

NetFlow [42, 46, 47]. In sum, it is a standard derived from NetFlow v9 that is capable of
exporting any traffic information from Layer 2 to Layer 7 to the flow collector. It is a flex-
ible protocol that supports variable length fields and allows the collection of information
such as URL or host address, as well as the types of data defined by the user. More in deep,
previous versions of NetFlow (e.g., NetFlow v5) were rigid, lacking additional data types
(e.g., IPv6, MAC addresses, VLAN, and MPLS). Cisco introduced the idea of templates
to relax the flow monitor. Templates provide a less rigid basis for a collector to interpret
flow records. Templates make newer versions of NetFlow (e.g., NetFlow v9) more flex-
ible. However, while monitoring a flow, each template receives a template ID. A given
template ID might be used by multiple network equipment vendors, in which case each
vendor’s equipment would likely be crawling a different set of flows. IPFIX allows net-
working hardware vendors to specify a Vendor ID to create their proprietary information
to be exported, avoiding namespace conflicts.
Despite the advantages, IPFIX presents some cons, mostly because it is based on tem-

plates. First, templates packets are infrequent. It should be noted that, until one gets a
template packet, it is not possible to decide what the collected flow data means. As a con-
sequence, in case of a crawling process miss template packets, the flow exporting process
may considerably delay. The IPFIX protocol specifies that it is not supposed to cache tem-
plates across multiple exporting devices. The result is that figuring out which types of
flow data the collector is collecting can be a slow process. Finally, templating involves a
complex multistage process.
OpenFlow is a network standard defined by the Open Networking Foundation (ONF)7

for implementing SDN in networking equipment. The protocol defines the communica-
tion between an OpenFlow switch and an OpenFlow controller, allowing the controller
to program the switch to handle incoming traffic. The communication between the con-
troller and the switch happens through communication channels. For each packet from
the user traffic that arrives at an OpenFlow switch, the switch checks a flow table search-
ing for a matching entry. An entry in the flow table has packet match fields, priority,
counters, packet processing instructions, timeout, cookie, and flags. If a matching entry
exists, the packet is processed and forwarded according to the entry. If the packet matches
only the “table-miss entry”, it is forwarded to the controller for further action. The con-
troller, in turn, must choose to either drop the packet or create a new entry in the flow
table for this new flow. If no matching entry exists, the switch drops the packet [48, 49].
Such a protocol can be used in wireless local area networks based on SDN to monitor
network traffic [7].
OpenFlow-based networks benefit from more flexibility, agility and facilitated adap-

tation to modification of requirements. Nevertheless, one of the major drawbacks of
OpenFlow protocol is its vulnerability due to the authentication mechanisms between

7ONF is a non-profit operator led consortium driving transformation of network infrastructure and carrier business
models, its website is available on https://www.opennetworking.org/.

https://www.opennetworking.org/
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controllers and switches. Such vulnerability allows an attacker to cause a DoS attack
against the controller because the controller cannot verify the switch identifier, which can
be spoofed, involved in the OpenFlow handshake [50].
In-band Network Telemetry (INT) is a network monitoring framework that allows

collecting and reporting the network state via the data plane, independently of the con-
trol plane. It is based on P48 and can be executed on a variety of programmable network
devices [51]. Each packet has header fields that are interpreted as telemetry instructions
by network devices. As such, data packets can query the internal state of a switch, e.g.,
queue size, link utilization, and queuing latency. The response for each query is written
into the packet as it transits the network. There are three types of nodes that participate
in the INT: traffic sources, traffic sinks, and transit hops. The source is a trusted entity
capable of creating and inserting INT headers with INT instructions into the packets it
sends. The INT instructions are included in the INT header as a list of metadata to be
monitored at each hop. Transit hops are networking devices that add metadata to the
INT packet according to the INT instructions in the packet header9. The sink is a trusted
entity that extracts the INT headers and collects the path state added to the INT head-
ers. Then, it forwards the original data packet to the destination node and the header
with the collected metadata to a monitoring engine. The monitoring engine is respon-
sible for processing the metadata to obtain the real-time network information [52]. The
existing INT framework attaches the INT header and metadata stacks to all data packets,
which can result in network overhead, especially for small size packets; and overload of
the monitoring engine for flows with high packet arrival rates, increasing the processing
latency [52].

4 Big data processing
As discussed in the previous section, large-scale wireless network monitoring generates
larges amounts of data, which characterize the big data environment. Processing big data
is commonly associated with machine learning applications. Machine learning refers to
the ability of computers to learn without being explicitly programmed [53] and it is based
on probability theory and statistics, Bayes theorem, and optimization, being the basis for
analysis and data science in the big data scenario [54]. Transforming data into informa-
tion and useful knowledge through machine learning techniques is the most important
step in any big data analytics [55]. Data analytics are performed either in batch (fixed
amount of data, no real time) or stream (continuous data, real time). Before submitting
data for analysis, it is necessary to prepare it. Thus, an essential step before analysis is data
preprocessing.

4.1 Batch data analysis

Batch processing is the most traditional method of data processing. It relies on databases
that permanently register the information that is processed later through queries. In batch
processing, it is also common to use Online Analytical Processing (OLAP), data min-
ing techniques [9], and distributed processing with the aid of tools, such as Hadoop.
Traditional data processing performs operations as relational selection, projection, and

8P4 is a language for programming the data plane of network devices, specifications available on https://p4.org/.
9INT complete specification is available on https://p4.org/assets/INT-current-spec.pdf

https://p4.org/
https://p4.org/assets/INT-current-spec.pdf
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aggregation, among others. After collection, data are stored in disk and later processed,
as there is no need for real-time response.
Batch data processing is efficient to process large volumes of data when transactions

are collected over a spaced period. Thus, the data is collected, stored, processed and,
finally, the results are generated. The architecture and implementation of traditional
databases used in batch processing are not designed for fast and continuous data input
and reading [56]. This is not an issue, however, since batch processing techniques hold
flexible requirements regarding the throughput of processing results, batch processing
unpairs the real-time knowledge extraction. In the context of wireless networks control
and monitoring, batch processing is useful because archived data is processed to generate
information to be used later to enhance the network.

4.2 Real-time streaming data analysis

Applications with strict response-time requirements, whether they are executed by an
operator or automatically, need to combine streaming data collection with inference and
correlation techniques. Due to the high arrival rate of streaming data and the high vol-
ume of data on a large network, traditional processing algorithms lack responsiveness
to iterate through the data repeatedly. In these scenarios, one-pass algorithms that use
small amounts of memory are required, characterizing real-time stream data analysis.
The analysis assumes that the data volume is not static but incremental, forming a data
stream. Examples of data streams include web server text, application logs, sensing data,
and state changes in transactional databases [9]. In this sense, the use of traditional batch
processing becomes unfeasible, since processing response needs to respect a very small
time window. Strategies that group data by hours, days, or weeks generate an intrinsic
delay that renders some applications unfeasible.
Although much of the useful information to organizations with large databases may be

obtained through batch processing, some specific applications require real-time results
from the analysis of the collected data. It allows the organization to take immediate action
in situations where a very short delay is sufficient to cause problems. For example, per-
forming an intrusion detection analysis requires a rapid response so that the intrusion
avoids major losses to a machine or network. Thus, the main goal of real-time stream
processing is to extract information for decision making in a very short time window. By
performing real-time streaming data analysis, processing and memory resources become
a potential bottleneck, especially in the context of Big Data. Data arrives in large vol-
umes and may arrive in bursts, and results should be presented in real or near real-time.
Thus, the use of secondary memory (disk) is generally not possible in these scenarios [57],
as writing and reading times are high and incompatible with the application’s time con-
straints. Real-time stream processing uses the “compute-first, store-second” scheme. The
need for a very fast response regarding a large volume of data usually requires the use of
distributed systems for big data processing.
Other characteristics are also important for choosing stream processing instead of

batch processing [56]: (i) when elements arrive inline, because they should be processed
as soon as they are received; (ii) when the processing system has no control over the order
in which the elements arrive; (iii) when the amount of data is unknown, as streams have no
restrictions on size or duration; and (iv) when processed elements are usually discarded
or archived and, therefore, not easily accessible.
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Data streams are represented through different models, as follows:
• Time Series Model. A time series is a set of data samples made at constant time

intervals over a time window. Given a sample of a time series, it can be divided into
three basic components, namely: trend, related to a long-term view; seasonality,
related to systematic calendar movements; and irregularity, which is related to non-
systematic short-term fluctuations. In a university’s wireless network, for example,
the number of users on an access point often reveals seasonality, as the number of
users varies by day and night, weekends, and vacation periods. Usually, a data analysis
performs a seasonal adjustment, identifying and removing systematic and calendar-
related influences. Periods without users due to the calendar should be removed in
the analysis of the average network load for sizing and positioning of access points.
The seasonal adjustment process is important because seasonal effects can mask the
true movement of the time series as well as non-seasonal features that are of interest.

• Cash Register Model. To define this model, it is assumed that the input signal is
represented by a stream a1, a2, . . . , an, with sequential arrival and a signal A, defined
by the function A[ j] :[ 1 . . .N]−→ R. The input samples ai are increments for the
signal A[ j]. For example, let be ai = (j, Ii), Ii > 0, and A[ j]i = Ai−1 + Ii. In this case,
A is a flow in the cash register model, where A[ j]i is the signal state after the arrival
of the i -th sample [58]. This model is one of the most popular. It can represent, for
example, the total access time of each user on a network after multiple accesses, where
j represents each user, Ii is the time of each access of the user, and A[ j]i represents
the total access time of user j until the moment i. Another example is monitoring
MAC addresses that connect to an access point, where each MAC receives a different
value for j and A[ j]i represents the total number of accesses from that MAC.

• Turnstile Model. This model is more generic than the previous ones but is similar to
the cash register. In the turnstile model, however, Ii can assume positive or negative
values. This is the most appropriate model for studying broadly dynamic situations,
where elements can be inserted or removed [58].

4.3 Data preprocessing techniques

Raw data collected from numerous heterogeneous sources comprise a large amount of
worthless or unnecessary information. It results in datasets with different quality levels,
which vary according to their completeness and quantity of redundancy, noise, and incon-
sistencies [55]. Raw data, also known as primary data [59], are of poor quality and when
directly processed result in the use of large storage space and generate poor quality infor-
mation. Thus, data quality directly impacts the performance of the employed processing
algorithms and the quality of the obtained results. Thus, one of the first steps to which
the collected data is submitted before analysis is preprocessing. The purpose of prepro-
cessing is to increase the quality of the dataset and possibly reduce its volume by cleaning
up inconsistencies and noise, eliminating redundancy and integrating data to provide a
unified view. This step occurs either before or after data transmission, but it is best suited
prior to data transmission due to bandwidth and storage space requirements [55].
After preprocessing, the obtained dataset is considerably reliable and suitable for the

application of datamining algorithms [59]. Data preprocessing is of particular importance
for large wireless networks due to a large amount of collected data and the redundancy
therein. For example, two distinct access points may collect data about the network in
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a region where there is coverage overlap. The data collected by both access points for
this common region is strongly redundant and does not need to be stored completely.
Moreover, if the data is processed in the presence of redundancy, the conclusions tend to
be biased.
Preprocessing includes several techniques to promote data cleansing, integration,

shrinking, and transforming [55, 60]. Data cleansing techniques determine the accuracy
and completeness of the data, fixing any problem by removing or adding data to the orig-
inal dataset, and resolving inconsistencies. Actual datasets are often incomplete due to
failures in the data collection process, limitations in the data acquisition process, or cost
constraints, which prevent the storage of some values that should be present in the dataset
[60]. Also, data errors need to be addressed by documenting both occurrences and error
types so that procedures can be modified to reduce future errors [55].
The first step of the cleansing search for outliers using various commercial scrubbing

and auditing tools. Data scrubbing tools use simple knowledge of data mastery to detect
and correct errors by employing parsing and fuzzy matching techniques. Data auditing
tools[10]−[14], some of which have more than just data auditing capabilities, discover rules
and relationships, identifying data that violates the conditions encountered. Thus, they
employ, for example, statistical analysis to identify correlations, and grouping algorithms
to identify outliers.
When identifying missing data, the trivial solution is to drop the sample, but it may

result in misrepresentation of the learning process and discarding important information.
Another approach is to manually complete the data, which may be impractical. A global
constant may also be used to complete missing data, potentially resulting in a misinter-
pretation of the data. Instead of a constant, a central trend value for the feature, such
as mean or median, may also be used. The most widely used strategy is to determine
the missing value through approximate probabilistic models, using maximum likelihood
procedures [60].
The presence of errors, or noise, in data is handled through two main approaches: data

polishing and noise filters. Both results are similar, producing smooth output through
regression techniques, outliers analysis, and data binning techniques. Extra significant
computational overhead may be added depending on the complexity of the used model.
Thus, it is necessary to strike a balance between the additional cost of cleaning the data
and improving the accuracy of the obtained results [55].
The data integration techniques combine data from different sources, unifying the

information and reducing redundancy. Redundancy is also eliminated through redun-
dancy detection and data compression techniques, reducing the overhead of data trans-
mission and storage. Redundancy may be spatial, temporal, statistical, or perceptual and
is strongly present in video and image data. Techniques for handling redundancy in these
cases are already well known, such as JPEG and PNG for image and MPEG-2, MPEG-
4, H.263, and H.264/AVC for video. Nevertheless, they do not apply to the data analysis
context over large-scale wireless networks. In this case, duplicate removal techniques are
more appropriate.

10WizRule fromWizSoft, available on https://www.wizsoft.com/products/wizrule/.
11IDEA products, available on https://idea.caseware.com/.
12DataSunrise Data Audit for MongoDB, available on https://www.datasunrise.com/audit/mongodb/
13Oracle Warehouse Builder 10g Release 2, available on https://www.oracle.com/technical-resources/articles/rittman-
owb.html
14IBM SPSS, available on https://www.ibm.com/analytics/spss-statistics-software

https://www.wizsoft.com/products/wizrule/
https://idea.caseware.com/
https://www.datasunrise.com/audit/mongodb/
https://www.oracle.com/technical-resources/articles/rittman-owb.html
https://www.oracle.com/technical-resources/articles/rittman-owb.html
https://www.ibm.com/analytics/spss-statistics-software
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During preprocessing, each instance can be composed of several features or attributes
from different sources and which may have different schemas. Feature metadata becomes
important to avoid errors during schema integration. Features that can be derived from
other features or a feature set should be eliminated if they can be considered redundant.
Redundancy is assessed by correlation analysis, which uses the chi-square test (χ2) for
nominal features, and the correlation and co-variance coefficients for numerical features.
Data duplicationmust also be observed at the integration stage and data consistencymust
be ensured. Hence, during data integration it is necessary to detect and resolve conflicts in
the feature values [60]. Two strategies for data integration include the use of Data Ware-
house and Data Federation [55]. In the data warehouse, the integration happens through a
three-stage process called Extraction, Transformation, and Loading (ETL) of data. In the
extraction, the data required for the analysis is selected, then it is modified in the trans-
formation stage by applying a set of rules, converting the data into a standard format.
Finally, in the loading stage, the transformed data is imported into the storage infrastruc-
ture and usually comes from a single source [55]. In the data federation, a virtual database
is created to query and aggregate data from different sources. The virtual database con-
tains only information or metadata about the actual data and its location, not actually
storing the data. These approaches are suitable for batch data processing but inefficient
for streaming data.
Data reduction techniques aim to decrease the volume of the dataset while maintain-

ing the result produced after processing. Techniques include strategies for reducing the
number of dimensions and the number of samples. Data compression techniques are also
used to reduce data volume. Dimension reduction seeks a compressed representation of
the original data, focusing on decreasing the number of random variables or features con-
sidered. For this purpose,Wavelet Transforms, Principal Component Analysis (PCA), and
Feature Selection (FS) are used. Genetic algorithms can also be employed to optimally
reduce the size of the dataset [61]. In number reduction, the data is replaced by alter-
native, smaller-format representations, using parametric or non-parametric techniques.
Parametrics, such as regression and log-linear models, estimate the data and store only
the parameters of the model that describe it. Non-parametric techniques include his-
tograms, clustering algorithms, sampling techniques, and data cube aggregation. Among
the reduction techniques, it is worth discussing the wavelet transforms, the PCAmethod,
and feature selection.
Wavelet Transform is a linear signal processing technique in which the signal is repre-

sented by a sum of simpler wave-forms. The wavelet transform aims to capture trends
in numeric functions by decomposing the signal into a set of coefficients. Thus, the data
vector is now represented by a vector of wavelet coefficients of the same length. There is
a family of wavelet transforms that can be used for data preprocessing, the most popular
being Haar-2, Daubechies-4, and Daubechcies-6 [62]. The lower coefficients may be dis-
carded without significant impairment to the recovery of the original data. By storing a
small fraction of the higher intensity coefficients, the original data is obtained by applying
the inverse transform.
PCA creates a smaller set of variables that allows representing the original data and

it is considered a feature extraction method. Data is described using a n-feature or n-
dimension vector. PCA combines the essence of the original features using k orthogonal
vectors of n dimensions, with k ≤ n, which best represent the data to be reduced. As the
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dimensional projection space of the data is smaller, the number of dimensions of the data
is reduced. In this new dimensional space, PCA reveals relationships that were previously
unclear, allowing interpretations that would normally be ignored.
Feature Selection removes redundant or irrelevant features while maintaining aminimal

set of features that results in a probability distribution close to the original distribu-
tion. Feature selection reduces the risk of overfitting data mining algorithms and reduces
search space, making the learning process faster and consuming less memory [60]. Data
is represented by a n-feature vector, which has 2n possible subsets. From these subsets,
the algorithm chooses an optimal amount to represent the data. Due to a large number
of possibilities to be exploited to reach the optimal result, heuristics that exploit a small
set of search spaces are generally used. In such cases, greedy algorithms are often used
[63], which always choose local optimal solutions, such as step-wise forward selection,
step-wise backward elimination, a combination of the previous two, and decision tree
induction [64–66]. Another approach uses the chi-square independence test to decide
which features should be selected.
Data transformation standardizes data representation and generally uses methods to

reduce the complexity and dimensionality of the dataset [59], and may also be included
in the data reduction step [60]. The main strategies for transforming data are smoothing
techniques, feature construction, aggregation, normalization, discretization, and genera-
tion of concept hierarchies for nominal data. Smoothing removes noise from data using,
for example, regression and grouping techniques. Feature construction aims at creating
new features based on other features to improve the accuracy and understanding of large
dimensional data. Along with feature selection, feature construction integrates a grow-
ing area of research known as feature engineering. Feature selection procedures identify
and remove as much redundant and irrelevant information as possible [60], while extrac-
tion and construction combine the features of the original set to obtain a new set of
less redundant variables. In aggregation, data are summarized resulting in a new repre-
sentation. The summary relies on mean, variance, maximum, or minimum of values of
the data. For example, daily energy consumption may be aggregated to show the maxi-
mum monthly or average annual consumption. Normalization changes the scale of the
data to fit a smaller range of values. Discretization replaces the representation of numeric
values with numeric ranges or conceptual labels. Finally, the generation of concept hier-
archies for nominal data creates multiple levels of granularity into which data can be
nested.
Although the area of data preprocessing is already well-explored, there is still a lot of

research activity to seek for new methods and refine existing methods so that they can
cope with the ever-increasing volume of data available and the need for real-time knowl-
edge generation. Some works study new methods for, for example, splitting data between
processors on cloud systems [67] and performing feature selection on streaming data [10].

4.4 Machine learning

After data preprocessing, big data analytics transforms data into knowledge using
machine learning techniques. Machine learning applications are designed to identify and
discover hidden patterns in data, to describe the result as a grouping of data in clustering
problems, to predict the outcome of future events in classification and regression prob-
lems, and to evaluate the result of a data sample sequence for rule extraction problems
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[53]. Thus, in a simplified way, there are four categories of machine learning problems:
clustering, classification, regression, and rule extraction.
Clustering problems aim to minimize the distance between data samples with simi-

lar characteristics in the same group while maximizing the separation between distinct
groups. Classification problems are characterized by mapping inputs into output target
classes that are represented by the discrete set of output values. The cohesion of the
results of the classifiers and clusters often uses as a parameter the Sum of Squared Errors
(SSE), Eq. 1, which takes into account the number of clusters, k; the volume of data in the
i-th cluster, ni; the j-th data given in the i-th cluster, xij; the average of the data in the i-th
cluster, ci, as in Eq. 2; and the volume of data, n [59].

SSE =
k∑

i=1

ni∑

j=1
D(xij − ci) (1) ci = 1

ni

ni∑

j=1
xij. (2)

The most common distance metric, D, is the Euclidean distance, defined in Eq. 3,
where pi and pj are positions of two different data points. Other distances metrics are
the Manhattan andMikowski distances. Manhattan distance is suitable to work with high
dimensional data, while Minkowski distance is used when the variables of interest are
measured on ratio scales with an absolute zero value.

D(P − i, pj) =
⎛

⎝
d∑

l=1
|pil, pjl|2

⎞

⎠

1
2

(3)

Metrics used to evaluate classification results are accuracy (Eq. 4), precision (Eq. 5),
recall (Eq. 6), specificity 7, and F1 score (Eq. 8), which allow to find the hits, i.e., True
Positives (TP) and True Negatives (TN), and the mismatches, i.e., False Positives (FP) and
False Negatives (FN). Mismatches are known as FP when data that does not belong to
the group is incorrectly classified as belonging to it, and as FN when data that belongs
to the group is classified as not belonging to the group. This interpretation is summa-
rized through a classifier’s confusion matrix, as indicated in Table 3. Another important
metric to evaluate classifiers is the Receiver Operating Characteristic (ROC) area, which
is known as the Area Under the ROC Curve (AUC). The AUC checks the compro-
mise between the true positive rate and the false positive rate. The AUC size is directly
proportional to the classifier performance [56].

acc = TP + TN
P + N

. (4)

p = TP
TP + FP

. (5)

r = TP
TP + FN

. (6)

e = TN
FP + VN

. (7)

F = 2pr
p + r

. (8)

Regression problems tend to generate mathematical models, which, in turn, tend to
behave as multivariate functions where input values are mapped to continuous out-
put values. The extraction problems are different from the others, as the purpose of
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Table 3 Confusion Matrix shows the interpretation of successful hits, and mismatches of a classifier

Positive classification Negative classification

Positive (P) True positive (TP) False Negative (FN)

Negative (N) False Positive (FP) True Negative (TN)

these problems is not to infer output values for each input set, but to identify statistical
relationships between the data.
The main machine learning paradigms are supervised, unsupervised, semi-supervised,

and reinforcement learning. Defining the learning paradigm to be used in a machine
learning application determines how data should be collected, the establishment of the
ground truth responsible for entering data labels, and the feature engineering responsi-
ble for establishing data features and what should be explored in the application. Figure 3
shows stream and batch processing with processes that represent the four machine learn-
ing paradigms. Supervised learning relies on a labeled dataset, called a training dataset,
to create the data classification or regression model. This learning paradigm requires the
existence, a priori, of a labeled dataset for model creation. In turn, the semi-supervised
learning paradigm supports the use of training datasets withmissing or incomplete labels.
Unsupervised learning, on the other hand, seeks patterns in the training dataset and there-
fore does not require the existence of labeled data. Unsupervised learning is suitable for
clustering problems where a data clustering pattern is sought to maximize the distance
between groups while minimizing the distance between data within the same group.
Finally, the reinforcement learning paradigm is an iterative process, in which agents effec-
tively learn new knowledge in the absence of any explicit system model, with little or no
knowledge of the environment [68]. The central idea of reinforcement learning is that
agents learn based on examples from the training dataset that interact with the outside
world. The learning process happens from reinforcements provided by the environment,
which may be rewards or penalties. Thus, the training dataset consists of pairs of data
samples and reinforcements, whether rewards or penalties. Feedback from the environ-
ment drives the agent to the best sequence of actions. Reinforcement learning is suitable
for decision-making, planning, and programming problems [68].
Establishing the ground truth consists of the formal description, also called labels, given

to the classes of interest. The methods for labeling datasets using the characteristics of a

Fig. 3 Representation of the four machine learning paradigms in a batch and stream data processing system.
The continuous and unlimited feature of data enables incremental learning where the model learns from
incoming data. In batch processing, model training is only performed on stored historical databases
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class are numerous. The most elementary method is manual labeling by specialists, with
the help of specific tools that, for example, perform Deep Packet Inspection (DPI) [10],
pattern matching as in intrusion detection systems, or unsupervised techniques such as
raw data grouping [69]. An alternative to manual models is the development of statistical
and structural models that describe data to infer a class of interest. However, the defini-
tion of ground truth in establishing the training set is closely related to the accuracy and
precision of the machine learning model. The inherent mutual dependence of the train-
ing data size of one class of interest on the others impacts the performance of the model.
Manymachine learning techniques assume that interest classes have a similar distribution
in the training dataset.
Machine learning is a powerful tool for gaining insight from data collected in a given

scenario. Data from wireless networks can carry much hidden information. Specifically
for Wi-Fi networks, by collecting and analyzing data, it is possible to discover network
usage profiles [70, 71], determine the location of users [72], and monitor displacement
[73], even allowing users to discover behavior patterns in user movement [74], activity
recognition [75], and user identification [76].

5 Big data stream processing
The stream processing model expects data to arrive in real-time and, therefore, the sys-
tem does not have control over order nor frequency in which sampĺes arrive. Samples
arrives in a continuous and unbounded way, and the size and type of data are unknown. In
real-time stream processing, the sample is processed only once since the system must be
available for new data [56]. Samples can be temporarily stored in memory, but the mem-
ory is small compared to the potential size of the data arriving in the streams. Thus, to
achieve the goal of real-time data processing, stream processing imposes restrictions on
processing time per sample because, if the data arrival rate is greater than the processing
service rate, the waiting queue for data to be processed grows indefinitely. As a conse-
quence, data would be discarded. Therefore, one approach to provide efficient stream
processing is to use distributed processing platforms and approximation techniques to
speed up data processing.
Traditional machine learning methods are based on systems that assume that all col-

lected data is fully loaded in a single batch and, thus, it can be centrally processed [77].
As the volume of data increases, however, the existing machine learning techniques fail
when faced with unexpected volumes of data and also with the requirement to return the
processing output as quickly as the data is generated. Thus there is a need for developing
newmethods of machine learning with faster response and adaptive behavior to meet the
demands of processing big data in real-time [56].
In many cases, certain patterns and behaviors are lost or hidden in the middle of a large

volume of data. Machine-learning-based systems help to discover this lost or hidden
information. This is possible because, when new information becomes available, decision
structures are reviewed andupdated. Severalmodels update their parameters considering one
sample at a time. These models are: incremental learning, online learning, and sequen-
tial learning [78]. Incremental methods do not have time or sample order restrictions,
while online methods require samples to be processed in order and only once, according
to the time of arrival. Many incremental algorithms can be used in an online manner, but
algorithms intend to model a behavior over time require samples to be in order.
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In dynamic and non-stationary environments, the distribution of data may change
over time, producing the phenomenon of concept drift. Concept drift refers to changes
in the conditional distribution of the output, that is, the probability of belonging to
a target class vary, given the vector of input features, while the distribution of the
features remains unchanged [78]. An example of concept drift is a change on the
customer consumption patterns. The buying preferences of a customer may change
over time, depending on the day of the week, availability of products, or salary
changes. In the security area, the models to detect threats become obsolete with min-
imal variations in the composition of the attacks [79]. The concept drift affects the
performance of most learning algorithms making them less accurate over time. An
effective predictor must be able to track these changes and quickly adapt to them. A
hard problem when dealing with concept drift is to distinguish between noise and an
actual change. Some algorithms excessively react to noise, misinterpreting it as con-
cept drift. Others are highly robust to noise, adjusting to changes very slowly. The
four different types of known concept drift are shown in Fig. 4: (i) sudden or abrupt
change; (ii) incremental change; (iii) gradual change, and (iv) recurring or cyclical
change.
Different approaches to detect concept drift can be used depending on the classification

domain [10]. The first and simplest assumes that the data is static and, therefore, there
is no change in the distribution of the data. It is possible to train the model only once
and use the same model for future data. Another approach is to periodically update the
static model with more recent historical data, also known as incremental learning. Some
machine learning algorithms such as regression algorithms or neural networks make it
possible to assess the importance of input data. In these algorithms, it is possible to use
a weighting inversely proportional to the history of the data, so that more recent data is
more important, with greater weight, and less recent data is less important, with smaller
weight. Another approach is to use classifier sets algorithms such as AdaBoost or Random
Forest. Thus, the static model remains intact, but a new model learns to correct the pre-
dictions of the static model based on the most recent data relationships. Finally, it is also
possible to detect concept drift using heuristics or intrinsic data statistics. Heuristics such
as accuracy or precision are mainly used in a supervised learning scenario in which data
labels are present during training and classification. However, the presence of labels dur-
ing classification is not usual in a production environment. In the unsupervised learning
scenario, the statistical comparison of incoming samples, or the grouping of samples, with
the samples used to train the system, assume that a concept drift is detected whenever
new groups are found [80]. These methods of detecting changes tend to be more com-
putationally intensive since measures based on distances are performed on the samples
obtained.

Fig. 4 Types of concept drift. In dynamic environments the data distribution can change over time,
producing the phenomenon of concept drift)
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5.1 Techniques for mining data streams

Gaber et al. categorize solutions for handling streams as data-based or task-based [81].
Data-based solutions aim to decrease the data representation, either through horizontal
transformations, decreasing the number of features to handle, or vertical transformations,
selecting a subgroup of samples to handle, also known as sampling. Task-based solutions
focus on deploying computational techniques to find efficient solutions in terms of both
time and storage space while data-based techniques rely on summarizing data or choos-
ing subsets of data from the input data stream. Some of the data-based solutions are
summarized as follows.
Data Sampling represents data samples as tuples, which are either selected for pro-

cessing or discarded randomly. In the case of data arriving at a rate higher than the
system can process promptly, sampling reduces the data arrival rate by discarding tuples.
A possible usage scenario for data sampling is when collecting data on a high speed net-
work. Instead of processing every single data sample, we process an approximate result
of the collected data, without indefinitely increasing the queue of pending samples, and
with less resource constraints than the complete operation [56]. The classic algorithm for
maintaining online random sampling is the reservoir sampling technique. The algorithm
maintains a sample of size s, called a reservoir. When new data streams arrive, each new
element is likely to replace an old element in the reservoir. An extension of this algorithm
is to keep samples of the most recent data of size k over a sliding window of size n.
Load Shedding refers to the process of discarding sequences of data streams when the

input rate exceeds the processing capacity of the system. Thus, the system achieves an
adaptive behavior to meet the latency requirements. This technique also causes loss of
information. It generally applies to dynamic query systems. In data mining, load disposal
is difficult to use, as the disposal of data blocks from the stream can lead to the loss of
useful data for building models. It can also discard patterns of interest in a time series.
Sketching is the process of designing a random subset of attributes, or domain, of the

data. The key idea is to produce faster results with mathematically proven error limits.
The sketch does a vertical sampling, excluding attribute columns, of the data that arrives
as a stream. Sketching’s main disadvantage is the loss of accuracy because the results
are an approximation. As an alternative to sketching on machine learning applications
over data streams, there is the PCA, in which instead of using a subset of the attributes,
a linear combination of attributes reduces the data dimensions while maximizing data
variance.
Synopsis Structures are in-memory data summary structures. The key idea is to gen-

erate an approximated result while reducing memory complexity. The hash sketches
proposal, for instance, creates a vector of bits with size L, where L = log(N), and
N is the number of data samples. Let lsb(y) be the function that denotes the position
of the least significant bit 1 in the binary representation of y. The incoming x data
is mapped into a position of the bit vector using a uniform hash(x) function and the
lsb(hash(x0)) function, which marks in the bit vector the occurrence of the data sam-
ple. From this proposal, it can be defined that since R is the position of the rightmost
zero value in the bit vector, it is possible to estimate the number of elements in the bit
vector as E[R]= log(φd), where φ = 0.7735, and d = 2R/φ. The use of histograms
to estimate the relative frequency of samples in streams also constitute synopsis data
structures.
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Aggregation is the technique of summarizing incoming data. The summary may
assume the form of average, variance, maximum, or minimum. The memory cost when
using this technique is very low, but the technique fails if the data stream varies widely. It
is worth mentioning as aggregation techniques the recursive average calculation, given by

xi = (i − 1) × xi−1 + xi
i

, (9)

where xi is the current average, after i rounds, and the recursive variance calculation,
given by

σi =
√(∑

x2i −
(∑

xi
)2

/i
)

/(i − 1). (10)

Wavelets is a transform in which the signal is represented by a sum of waveforms,
simpler and more defined in the construction of the transform, in different scales and
positions. The wavelet transform aims to capture trends in numerical functions, decom-
posing the signal into a set of coefficients. Similar to the feature reduction using PCA, the
lowest-order coefficients can be discarded. The reduced set of coefficients is used in algo-
rithms that operate on the data stream. The most used transform in the context of data
stream processing algorithms is Haar wavelet.
Task-based data processing techniques are methods that modify existing techniques,

or create new ones, to meet the computational challenge of stream processing. The key
task-based solutions follow.
Approximation algorithms return approximate computation results limited by error

thresholds [81]. In streaming data mining, in particular, algorithms with approximate
results are commonplace, as results are expected to be generated continuously, quickly,
and with limited computational resources.
Timewindows are commonly used to resolve queries on stream data with an undefined

end. Instead of performing a computation on the complete data, it runs over a subset of
data, possibly more than once over the same data. In this model, a timestamp is associated
with each incoming data. The timestamp defines whether a data sample is inside or out-
side the window being considered. The computation is performed only on the data sample
that is within the considered window. Some alternate approaches to time windows are the
landmark window, the hopping window, the sliding window, and the tilted window.
The landmark window identifies relevant points in the data streams and, from there on,

calculates the aggregation operators from that landmark. Successive windows share the
same beginning and are of increasing size. A landmark may be, for instance, the start of
a new day for daily data aggregation. The hopping window is a structure that considers
a certain fixed number of samples and, when a subsequent set with a sufficient number
of samples arrives, the previous ones are discarded, and computation is done on the new
sample set. The hopping window uses the fixed sample size set only once, and each sample
is only used in one set. The sliding window, in turn, is a data structure of fixed size that
inserts more recent samples and removes the oldest samples in a similar way to the model
of “first in, first out”. Such a structure is computationally interesting since, in most cases,
the whole past is not as relevant as the recent past. Thus, the sliding window considers
only a fixed number of samples in the most recent past. The sliding window structure is
widely used for calculating moving averages. Finally, the tilted window creates different
resolutions for aggregating the data. Unlike previous windows, where samples were either
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inside the window or outside, in the skewed window, the most recent samples are treated
with fine granularity, while samples from the past are grouped with lower granularity. The
farther in the past, the coarser the grouping granularity of samples.

5.2 Online machine learning methods

A first approach for handling streaming big data is the use of learning methods capable
of learning from infinite data in finite time. The central idea is to apply learning methods
that limit the loss of information when using models with finite data in relation to models
with infinite data. For this purpose, the loss of information is measured as a function
of the number of samples used in each learning step and, then, the number of samples
used in each step is minimized maintaining the loss threshold limit. The resolution of
the problem of how much information is lost when decreasing the number of samples is
given using the Hoeffding bound [78]. Considering a random variable x, whose value is
contained in the interval R, it is assumed that independent observations of the variable are
made and the mean r̄ is computed. The Hoeffding bound ensures that, with probability
1 − δ, the true variable mean is given by at least x̄ − ε, where

ε =
√
R2ln(1/δ)

2n
. (11)

The Hoeffding bound is independent of the distribution that generates the variable x.
From this result, machine learning algorithms for training with stream data are developed.
It is worthmentioning, however, that the values generated by the variable x are assumed to
come from a stationary stochastic process. In cases where there is a change in the process
that generates the variable used in the training of stream learning methods, a concept
drift occurred and, therefore, it is necessary a new training of the learning method [82].
Typical approaches to learning new information involve maintaining the stochastic

behavior of the data or discarding the existing classifier and, consequently, retraining with
the data accumulated so far. Approaches that consider the end of the statistical stabil-
ity of the data, i.e., the process is no longer stochastic, result in the loss of all previously
acquired information. This phenomenon is known as catastrophic forgetfulness. Polikar
et al. define that incremental learning algorithmsmust satisfy the following requirements:
obtaining additional information from new data; not requiring access to the original data
used to train the existing classifier; preserving previously acquired knowledge, i.e., it
should not suffer catastrophic forgetting; and accommodating new classes that new data
can introduce. Thus, classifiers that adopt incremental learning do not require training of
the entire classifier in the event of a change in the steady behavior of the streaming data.
Incremental decision tree online algorithms
These algorithms are divided into two categories: (i) trees built using a greedy search

algorithm, in which the addition of new information involves the complete restructuring
of the decision tree, and (ii) incremental trees that maintain a sufficient set of statistics at
each node of the tree to perform a node split test, making the classification more specific,
when the accumulated statistics at the node are favorable to the division. An example
of this type of incremental tree is the Very Fast Decision Tree (VFDT) algorithm [83].
The purpose of VFDT is to design a decision tree learning method for extremely large,
potentially infinite datasets. The central idea is that each sample of information is read
only once and in short processing time. It makes possible to directly manage online data
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sources, without storing samples. To find the best attribute that should be tested on a
given node, it may be sufficient to consider only a small subset of the training samples
that pass through that node. Thus, given a stream of samples, the first sample will be
used to choose the root test; once the root attribute is chosen, subsequent samples are
transmitted to the corresponding leaf nodes and used to choose the appropriate attributes
on those nodes, and so on, recursively.
In a VFDT system, the decision tree is learned recursively, replacing leaves with deci-

sion nodes. Each leaf stores sufficient statistics on attribute values. Sufficient statistics
are those required by a heuristic evaluation function that assesses the merit of node split
tests based on attribute values. When a sample is available, it traverses the tree from the
root to a leaf, evaluating the appropriate attribute on each node and following the branch
corresponding to the attribute value in the sample. When the sample reaches the leaf, the
statistics are updated. Then, the possible conditions based on the values of the attributes
are evaluated. If there is sufficient statistical support in favor of a value test of one attribute
concerning the others, the leaf is converted into a decision node. The new decision node
will have as many descendants as possible values for the chosen decision attribute. Deci-
sion nodes maintain only information about the split test installed on the node. The initial
state of the tree consists of a single leaf that is the root of the tree. The heuristic evalua-
tion function is the Information Gain, denoted byH(·). The statistics that are sufficient to
estimate the merit of a nominal attribute are the counters, nijk , that represent the number
of examples of the class k that reach the leaf, where the attribute j receives the value i. The
information gainmeasures the volume of information needed to classify a sample arriving
at the node: H(Aj) = inf (samples) − info(Aj). The j attribute information is given by

info(Aj) =
∑

i
Pi

(
∑

k
−Piklog2(Pik)

)
, (12)

where Pik = nijk∑
a najk

is the probability of observing the value of the attribute i given the

class k, and Pi =
∑

a nija∑
a
∑

b najb
is the probability of looking at the value of the i-th attribute.

In the VFDT system, the Hoeffding threshold given in Eq. 11 is used to decide how
many samples are necessary to observe before installing a separation test on each leaf. Let
H(·) be the attribute evaluation function for the information gain, thenH(·) is log2(||K ||),
where K is the set of classes. Let xa be the attribute with the highest value of H(·), xb the
attribute with the second-highest value of H(·), and �H = H(xa) −H(xb), the difference
between the two best attributes. Hence, if �H > ε, with n samples observed on the
leaf, the Hoeffding threshold defines with probability 1 − δ that xa is the attribute with
the highest value in the evaluation function. Thus, the leaf must be transformed into a
decision node that divides in xa.
The function evaluation for each sample can be costly and, therefore, it is not efficient to

compute H(·) on the arrival of each new sample. The VFDT proposal only computes the
attribute evaluation function when a minimum number of samples, defined by the user,
is observed since the last evaluation. When two or more attributes have the same values
ofH(·) continuously, even with a large number of samples, the Hoeffding threshold is not
able to decide between them. Then, VFDT introduces a constant τ where �H < ε < τ .
Hence, the leaf is converted into a decision node and the decision test is based on the
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best attribute. Gama et al. generalize the functioning of the VFDT system for numeric
attributes [78].
Incremental Naive Bayes
Given a training set χ = (x1, y1), · · · , (xN , yn), where x ∈ R

D are samples with D-
dimensions in the attribute space and y ∈ {1, · · · ,K} are the classes corresponding to a
classification problem, Bayes’ Theorem is formulated as

p(y = i|x) = p(i)p(x|i)
p(x)

, (13)

where p(i) is the a priori probability of a sample of the class occurring, and p(y|x) is the
unknown probability distribution of the x attribute space and marked with class i. An
estimate for the unknown distribution is to assume the independence of the attributes
given the marking of the class, leading to

p(x1, x2, · · · , xD|i) p(x1|i)p(x2|i) · · · p(xD|i), (14)

where xd represents the d-th dimension in the x attribute array. Thus, the Bayesian
classifier is described as

F(x) = arg max
i

D∏

d=1
p(xd|i). (15)

Hence, the classification is calculated by multiplying all the probabilities of the classes
for each value of the sample attributes [84].
The incremental version of the Bayesian classifier predicts updating the values of

the class probabilities by attributes according to the processing of new samples. One
approach to allow efficient storage of probability functions as samples arrive is to
discretize and store attribute histograms [10]. The Incremental Flexible Frequency Dis-
cretization (IFFD) proposal presents a method for discretizing quantitative attributes in
a sequence of flexible size intervals [85]. This approach allows the insertion and division
of intervals.

Incremental Learning by Classifier Aggregates
The Adaptive Ressonance Theory Mapping (ARTMAP) algorithm [86] is based on the

generation of new decision clusters in response to new patterns that are sufficiently differ-
ent from previously seen instances. The difference between an already known pattern and
a new one is controlled by a user-defined surveillance parameter. Each grouping learns in
a hyper-rectangle that is a different portion of the feature space, in an unsupervised way,
which is then mapped to target classes. Clusters are always maintained as ARTMAP to
avoid catastrophic forgetting. In addition, ARTMAP does not require access to previously
seen data, and can accommodate new classes. However, ARTMAP is very sensitive to the
selection of the surveillance parameter, the noise levels in the training data, and the order
in which the training data arrives.
The AdaBoost algorithm generates a set of hypotheses and combines them through the

voting of a weighted majority of the classes predicted by each individual hypotheses [87].
The hypotheses are generated by training a weak classifier15 using instances extracted
from a periodically updated distribution of training data. This distribution update ensures
that instances poorly classified by the previous classifier are more likely to be included in

15Classification algorithms whose accuracy is close to random classification.
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the training data of the next classifier. Thus, the training data of consecutive classifiers is
aimed at instances that are increasingly difficult to classify.
The Learn++ incremental learning algorithm is inspired in AdaBoost and was orig-

inally developed to improve the classification performance of weak classifiers [88]. In
essence, Learn++ generates a set of weak classifiers, each trained using a different dis-
tribution of training samples. The outputs of these classifiers are then combined using a
majority voting regime to obtain the final classification rule. The use of weak classifiers is
interesting, as the instabilities in building their decisions is sufficient for each decision to
be different from the others so that small changes in their training datasets are reflected
in different classifications.
Incremental K-Means
The k-means clustering algorithm performs an iterative optimization using the sum

of the squared distances of all points at the center of each cluster. In the case of an
unsupervised machine learning clustering problem, N is defined as the set of entries
x1, x2, · · · , xN , where xi ∈ Rn. The problem then is to find K << N clusters c1, c2, · · · , ck
with centers in ω1,ω2, · · · ,ωk , respectively, such that the distance D from the squared
sum of the data distances to the centers of the clusters to which they belong is minimal.
The distance D is equivalent to the Mean Square Error (MSE) and is given by

D = 1
N

K∑

j=1

∑

x∈cj
(x − ωj)

2. (16)

The iterations of the classic algorithm consist of an initialization, in which K centers
are chosen, and the elements are classified by the rule of the nearest-neighbor. Afterward,
the centers of the clusters are updated by calculating the centroid of each cluster. In the
following iterations, the data is reclassified according to the new calculated centroids. The
iterations are performed until the convergence of the algorithm, which is achieved when
the centers of the clusters calculated in iteration i are identical to those of iteration i + 1.
The adaptation of the k-means algorithm for sequential treatment of data consists of

recalculating the centers of the clusters whenever a new sample arrives. This depends on
all data already processed being accessed again to recalculate the centers of the clusters,
which generates a substantially high demand for computational resources, making its use
unfeasible. The variation of the algorithm using sequential blocks, in turn, enables the use
of the k-means online algorithm since the clustering is performed on accumulated data
blocks. Each block is used for l times of the k-means algorithm, and the results of the
cluster centers of block i are used as the initial centers of the iteration over block i + 1.
The incremental variation of the algorithm defines that the block is used only once [89].
The validity of the result of the incremental algorithm lies in the fact that the probability
distribution of the sample attributes does not change, or changes slowly, between blocks.

5.3 Reinforcement learning

Reinforcement Learning (RL) is based on an agent interacting with the environment to
learn an optimal policy by trial and error, for sequential decision-making problems in
the fields of natural and social sciences and engineering [90]. The reinforcement learning
agent interacts with the environment over time. At each step t of time, the agent applies
a policy π(at|st), where st is the state that the agent receives from a state space S, and at
is an action selected by the agent in an action space A. The agent maps the state st into
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an action at to receive a reward, or penalty, rt , escalate rt , and transition to the next state
st+1. The transition occurs according to the dynamics or the model of the environment.
The function R(s, a) models the agent’s reward and the function P(st+1|st , at) models the
probability of transition between agent states. The agent continues the execution until it
reaches a terminal state when the cycle is restarted. The return Rt = ∑∞

k=0 γ krt+k is the
accumulated reward discounted by a factor γ ∈[ 0, 1). The central idea of reinforcement
learning is that the agent maximizes the expectation of a long-term return for each state.
It is worth mentioning that reinforcement learning mechanisms assume that the problem
satisfies Markov’s property, in which the future depends only on the current state and
action, and not on the past. Thus, the problem is formulated as aMarkov Decision Process
(MDP), defined by the 5-tuple (S,A,P,R, γ ).
Temporal difference learning is one of RL’s pillars, as it refers to the learning methods

for assessing the value function, StateActionRewardStateAction (SARSA) andQ-learning.
Temporal difference learning discovers the value function V (s) directly from experience
using the time difference error, with model-free initialization, online, and fully incremen-
tal. Temporal difference learning is a prediction problem. The update rule is V (s) ←
V (s) + α[ r + γV (s′) − V (s)], where α is the learning factor and r + γV (s′) − V (s) is the
so-called temporal difference error. The use of the generalized gradient descent algorithm
guarantees the convergence of time difference learning problems [79].
The problem of policy forecasting or evaluation with reinforcement learning consists of

calculating the state or action-value function for a policy. The control problem is to find
the optimal policy. The SARSA algorithm evaluates the policy based on samples of the
same policy and refines the policy using a greedy methodology with the action values. In
off-policy methods, the agent learns a value function or ideal policy, maybe following an
unrelated behavioral policy. The Q-learning algorithm, for example, tries to directly find
action values for the optimal policy, not necessarily adjusting to the policy that gener-
ates the data. Thus, the policy found by Q-learning is generally different from the policy
that generates the samples [90]. The notions of in-policy and off-policy methods relate
to the ideas of evaluating the solutions found with the same policies that generate the
data or evaluating with slightly different policies. Evaluating with different policies refers
to using a model to generate the data, while in methods with no model, the agent learns
through trial and error in the actions taken. Reinforcement learning algorithms can run
in online or offline mode. In online mode, the training algorithms are executed on data
acquired in sequential streams. In offline or batch mode, models are trained on the entire
dataset.
Reinforcement learning is present in works that carry out knowledge extraction and

decision making in wireless networks [91–94]. Liu and Yoo propose a scheme that uses
the Q-learning algorithm to dynamically allocate blank subframes so that both LTE-U
and Wi-Fi systems can successfully coexist [91]. The adjustment technique is based on
reinforcement learning. The proposal introduces a new LTE-U frame structure, which in
addition to allocating blank subframes, also reduces the LTE delay. In the proposal, the
actions of the algorithm are modeled through a tuple that contains the total number of
subframes in a block of frames and the portion of subframes for LTE-U. The states are
modeled as the set of all actions taken up to that state. Tabrizi et al. argue that next-
generation communications tend to use an integrated network system, in which Wi-Fi
access points and cellular network base stations work together to maximize the QoS of
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the mobile user [92]. Thus, the authors propose that mobile devices with different access
technologies easily switch from one access point or base station to another to improve
user performance. The proposal is based on network selection to maximize QoS, for-
mulated as a MDP. Therefore, they use an algorithm based on reinforcement learning
designed to select the best network based on the current network load and also possi-
ble future network states. Chen and Qiu propose an approach for cooperative spectrum
sensing using Software-Defined Radio (SDR) based on the Q-learning algorithm [93]. In
sensing the spectrum using Q-learning, the state set consists of all combinations of a bit
vector where each user sets a bit and the set of actions is 0, 1, where “0” means that the
channel is in the “available” state for secondary users, and an action with index “1” means
that the channel is in the “busy” state, unavailable for secondary users. In the proposed
algorithm, the rewards are positive when the action is in accordance with the occupation
of the channel and negative, otherwise. Besides, Santos Filho et al. introduce a bandwidth
control mechanism for cloud providers based on the Q-Learning algorithm [94]. San-
tos Filho et al. constantly adapt parameters on the cloud network infrastructure to meet
the clients’ Service Level Agreement, while the cloud provider maximizes the network
occupancy and, thus, the provider’s revenue.

5.4 Deep learning

Deep Learning (DL) is a class of machine learning techniques that explores multiple
layers of nonlinear information processing to transform and extract higher-level informa-
tion from original data [95]. It may be either supervised or unsupervised. In particular,
DL is in the intersections among the research areas of neural networks, artificial intelli-
gence, graphics modeling, optimization, pattern recognition, and signal processing. DL is
generally used in the image, sound, and text processing [96].
The key idea of DL is to generate new representations of data for each layer, increasing

the degree of abstraction of data representation. The increasing popularity of DL tech-
niques occurs due to the accelerated increase in the processing capacity of chipsets, such
as Graphic Processing Unit (GPU); the significant increase in the data available for train-
ing models; and recent advances in machine learning research [96], which has allowed the
exploration of complex non-linear composition functions, distributed and hierarchical
learning, and the effective use of labeled and non-labeled data.
DL architectures and techniques are used for data synthesis/generation or recog-

nition/classification and, therefore, are generally classified in [97]: Deep generating
architectures, which characterize the high order correlation properties of the observed
data for pattern analysis or synthesis and/or joint statistical distributions characterization
of the observed data and their associated classes. Deep discriminative architectures,
which provide values to perform the discrimination of data into classes of patterns and,
sometimes, characterizing the distributions a posteriori of classes conditioned to the
observed data. Deep hybrid architectures, which discriminate data in classes assisted
with the results of generating architectures through optimization and/or regularization,
when discriminative criteria are used to learn the parameters in generative models. Gen-
erating architectures are associated with the identification and recognition of hidden
patterns in observed data, while discriminative architectures are associated with the
classification of observed data into defined classes. It is noteworthy that the generat-
ing architectures are related to problems of unsupervised learning, while discriminative
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architectures are related to problems of supervised learning. In the unsupervised learning
process, there is no labeled data and, therefore, the main goal is to generate labeled data
using unsupervised learning algorithms, such as Restricted Boltzmann Machine (RBM),
Deep Belief Network (DBN), Deep Neural Network (DNN), generalized AutoEncoders,
and Recurrent Neural Network (RNN) [96].
RBMs are generative probabilistic models capable of automatically extracting char-

acteristics from the input data using completely unsupervised learning algorithm [98].
RBMs consist of a hidden layer and a visible layer of neurons with connections between
the hidden and visible neurons represented by an array of weights. To train an RBM,
samples from a training dataset are used as input to the RBM via visible neurons, and
the network generates samples alternately back and forth between the visible and hidden
neurons. The purpose of the training is to learn weights of the connections between vis-
ible and hidden neurons and to learn the neuron activation bias so that the RBM learns
to reconstruct the input data during the phase when the visible neurons of the hidden
neurons are sampled. Each sampling process is essentially a multiplication of matrices
between a batch of training samples and the weight matrix, followed by a neuron activa-
tion function, which in many cases is (1/(1 + e−x)). Sampling between the hidden and
the visible layers is followed by a slight change in the parameters, defined by the learning
rate α, and repeated for each batch of data in the training dataset, and for as many times
as necessary to achieve convergence [98].
TheDBN consists of multiple layers of stochastic and hidden variables and is related to

the RBM, as it consists of the composition and stacking of several RBMs. The composition
of multiple RBMs allows many hidden layers to efficiently train data through activations
of an RBM for additional training stages [96, 98].
Convolutional Neural Network (CNN) represent one of the most common forms of

DNN [99]. CNNs have multiple convolutional layers and each layer generates a map
of characteristics, a higher-level abstraction of the input data, which preserves essen-
tial and unique information. Each of the convolutional layers in CNN presents, mostly,
high-dimension convolutions, in which the input layer activations are structured as a set
of input maps of characteristics, called a channel. For this reason, CNNs are generally
used in signal processing. Each channel is converted with a different filter from the fil-
ter stack. The result of this computation is the output activations that creates an output
characteristics map channel. Finally, several input feature maps can be processed together
in batch to potentially improve the reuse of the filter weights.
AutoEncoder has traditionally been used for dimensionality reduction and feature

learning. The fundamental idea of AutoEncoder is the presence of a hidden layer h that
refers to the input, and two other main parts: the encoding function h = f (x), and
decoding or reconstruction function r = g(h). The encoder and the decoder are trained
together and the discrepancy between the original data and its reconstruction is then
minimized. The deep AutoEncoder is a part of an unsupervised model [96].
Conventional Neural Networks are based on the principle that all data points are inde-

pendent. For this reason, if data points are related in time or space, the chance of losing
the state of the network is high. RNN are based on sequences so that they can model
inputs or outputs composed of several independent elements. RNN can be used in unsu-
pervised or supervised learning. When used in unsupervised learning, the prediction of
the data sequence from previous data samples is possible, but it is difficult to train [96].
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DL methods are usually trained with the descending stochastic gradient approach [79],
in which a training example, with a known label, is used to update the model parameters.
The strategy fits online stream learning. A strategy to speed up learning is to carry out
updates onmini data batches instead of proceeding sequentially with one sample at a time
[100]. The samples in each mini-batch are as independent as possible to provide a good
balance between memory consumption and runtime.
Recent work use DL to infer the characteristics and behavior of wireless networks.

Wang et al. developed an algorithm based on DL to explore bi-modal data [101]. The
goal is to estimate the phase angle of arrival and average amplitudes on the 5 GHz
radio interface for wireless networks. Their algorithm generates the indoor location
fingerprints of devices. DL produces feature-based fingerprints from bi-modal data in
the offline training stage. The weights in the deep AutoEncoder network are the fin-
gerprints based on characteristics for each position. Wang et al. compare two indoor
location approaches using DL, one with AutoEncoder and the other with Convolutional
Neural Networks [102]. The authors conclude that the approach based on AutoEn-
coder presents less error in the inference of the indoor position. Turgut et al., in
turn, use deep AutoEncoder to perform the indoor localization of devices, consider-
ing as initial characteristics the signal strength received from 26 access points [103].
Wang et al. use DL to recognize more accurate and robust activity on wireless chan-
nels. The central idea is to actively select available Wi-Fi channels with good quality
and switch between adjacent channels to form an extended channel. Authors search
for sequential patterns of channel usage, then, adopt a model of a Recursive Neural
Network [104].
GPU improves performance in data consumption tasks using parallel computing. GPUs

allow running a large number of threads in parallel, making it attractive for the com-
putationally intensive tasks of state-space exploration such as DL [105]. OpenCL [106]
and Compute Unified Device Architecture (CUDA)[107] are the main Application Pro-
gramming Interface (API) to program and manage GPUs. CUDA platform, developed
by Nvidia, and OpenCL give access to the GPU’s virtual instruction set to run parallel
tasks. The CUDA platform works with programming languages such as C, C ++, and
Fortran. Some extensions are currently working with dynamically-typed languages, such
as Python, with pycuda, pyopenCL [108], or numba [109]. A single GPU system com-
putes a throughput of approximately 15 TFlops. Nevertheless, current solutions create a
cluster of GPUs, increasing up to 2.6 times the speedup for a 4-GPU cluster [110], improv-
ing Distributed Deep Learning (DDL) tasks performance up to 5.5 times in a 100-GPU
cluster[111].
Table 4 presents a qualitative comparison of the main techniques to process large

streaming data discussed in this paper.

6 Big data processing tools
In wireless networks, stream processing is the most suitable model for big data processing
due to its dynamic characteristics and the unrestricted generated data volume. In this
scenario, new opportunities arise for industry and research to generate knowledge and
intelligence. However, the large amount of data also poses a number of computational
challenges, since the processing capacity of a single machine has not kept pace with the
growth of data volume. Thus, to analyze wireless big data there is a need for a distributed
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processing system [112]. In this context, countless computational cluster programming
models have emerged aiming at the treatment of several workloads [113–115].
Stream processing enables real-time data analysis, such as real-time log server file

analysis or network flow analysis as packets reach devices. Batch data processing tools
are used to work with static big data. The most widely used batch data processing
tool is Hadoop [115]. Streaming data processing tools are required to analyze network
data, as network flows that have a dynamic nature. Several open-source platforms for
stream processing exist, such as Apache Spark Streaming [112], Apache Storm [116] and
Apache Flink [117]. Apache Storm, and its upgraded version Apache Heron [118], are
widely used, but Flink performs better and Spark has a superior failure recovery system
[119, 120].

6.1 Apache spark

Apache Spark Streaming is a widely used distributed data processing tool for big data
analytics. Spark is a batch distributed processing tool that has extensions to support a
variety of workloads. Spark has Structured Query Language (SQL), machine learning,
graph processing, and stream processing extensions using micro-batches concept [112].
Apache Spark also has YARN and Mesos modules for the computational cluster manage-
ment, allowing the users to focus on new applications programming without worrying
about infrastructure problems such as the location of data or on which node the data
will be processed. Spark’s general-purpose contributes to several benefits: (i) application
development efficiency, provided by Spark’s unified API; (ii) greater efficiency in pro-
cessing tasks performance and memory storing. Spark performs many functions on the
same data, while in regular memory, as opposed to other systems requiring nonvolatile
memory data writing for access by other mechanisms; and (iii) possibility of creating new
applications, such as interactive graphs queries and online machine learning, which is not
possible with other tools.
Spark has a programming paradigm similar to Hadoop’s MapReduce but has its own

data-sharing abstraction, called Resilient Distributed Dataset (RDD). RDD is Spark’s core
data structure and is responsible for memory data storage and distribution, ensuring
resilience [56]. For data storage resilience, Spark can use HDFS or Simple Storage Ser-
vice (S3), which are file systems for splitting, spreading, replicating, and managing data
on computer clusters [56]. Thereby, stored disk data is distributed across multiple clus-
ter nodes as well as data processed in memory, creating a fault-tolerant ecosystem. For
each data transformation such as map, filter, and groupBy, a new RDD is created.
Spark has an API for RDDs manipulation and is available in Scala, Java, Python, and R
languages, where users execute local functions in the cluster. Data sharing is the main dif-
ference between Spark and other MapReduce-based platforms. Therefore, Spark is faster
than other streaming platforms for interactive queries and iterative algorithms such as
machine learning [121].
Distributed computing systems often provide fault tolerance through data replication

or using checkpoints. Spark uses a different approach called lineage. Each RDD stores
a graph containing all transformations used to build it and stores these operations in a
database for future restoration in case of data loss. Lineage recovery is significantly more
efficient than replication, saving time because transferring data across the network is
slower than writing to RAM. Recovery is much faster than merely rerunning the program
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because the failed node often has multiple RDD partitions, and these partitions can be
rebuilt in parallel with other nodes [122].
Apache Spark has four high-level libraries that use the RDD framework for a variety

of functions. SparkSQL implements queries in SQL in a relational database. The cen-
tral idea of this library is to have the same analytical database layout within the RDDs
data structure. SparkSQL provides a high-level abstraction for data transformation called
DataFrames, which are common abstractions for tabular data in Python and R, with
programmatic methods for filters and aggregates. GraphX provides a graph-based oper-
ation computing interface similar to Pregel [123] and GraphLab [124] and implements
the positioning optimization of these systems through its partitioning function option
for RDD [125]. The MLlib is the library that implements machine learning functions
and algorithms. It has classification, regression, clustering, collaborative filters, feature
engineering, pipelines, among other functions. It allows machine learning algorithms to
operate in a distributed fashion across a cluster, it is written in Scala and uses native C++
based on linear algebra libraries and has APIs for Java, Scala, and Python and is distributed
as part of the Spark project [126]. It has a rich documentation describing all supported
methods and sample code for each supported language.
The fourth high-level library enables Spark for streaming data processing. Spark

Streaming implements a Discretized Streaming (D-Streams) processing model, which
manages fault tolerance and stragglers data introduced by slower nodes [8]. Spark Stream-
ing consists of three components: (i) The Master node, which monitors the D-Stream
lineage graph and arranges the samples to calculate new RDD partitions; (ii) Worker
nodes, which receive and process the data, and also store the input partitions and calcu-
late the RDDs; and (iii) Client nodes, which send data to the Spark Master node. Spark
Streaming modifies and adds several components to Spark to enable stream processing.
Figure 5a shows the new and modified Spark Streaming components. Network commu-
nication, for instance, is rewritten to allow tasks with remote entries for fast recovery.
There aremodifications in the lineagemechanism, such as removing graphs from lineages
that already have checkpoints, thus preventing graphs from growing indefinitely. From an
architectural standpoint, the division of computational tasks into deterministic, short, or
stateless instances is what sets Spark Streaming apart from other tools. Each task can be
performed at any node in the cluster, or even at multiple nodes. D-Stream discretizes a
data stream into small batches called micro-batches to the suitable computational tasks
handle them.
Big data applications often use two approaches to tackle fault tolerance: replication and

upstream backup. The replication approach uses two copies of the processed data and
replicates the input records to other nodes. Nevertheless, replication alone is not enough.
A synchronization protocol is also required to ensure each operator’s copies perceive
inherited data in the same order. Replication is computationally expensive, but recov-
ery is fast. In the upstream backup approach, each node retains a data copy sent from a
given checkpoint. When a node fails, a standby machine assumes its role, and the par-
ent nodes reproduce messages to the previously standby machine to change its state.
Both approaches have disadvantages. Replication has a large consumption of hardware
resources, and upstream backup is slow to recover. Both approaches cannot handle strag-
gler data. The D-Stream idea is to compute stateless stream data using deterministic batch
computing at short time intervals. D-Stream computes the structures as follows: (i) the
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Fig. 5 Apache Spark Streaming architecture, and D-Stream lineage graph

state at each time step is deterministic to the input data, abolishing the need for synchro-
nization protocols; (ii) the dependency between the current and the old state is granularly
visible. D-Stream gives Spark Streaming an excellent recovery mechanism, similar to
batch systems, that outperforms replication and upstream backup. D-Stream presents
low latency because it uses the RDD data structure, which computes the data in memory
and uses the lineage approach, as illustrated in Fig. 5b. D-Stream has rapid recovery from
faults and straggler data because it uses determinism to provide parallel recovery. When a
node fails, each cluster node works to compute again and retrieve the failed node’s RDDs,
resulting in significantly faster recovery than the other two traditional approaches [8]. D-
Stream recovers from straggler data using speculative execution [115]. Each D-Stream is
immutable, as RDDs, so each transformation generates a new D-Stream. A D-Stream is a
set of RDDs sequences that can be influenced by the deterministic transformation.

6.2 Apache flink

Apache Flink [117] supports stream and batch processing, making it a hybrid processing
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platform. Flink’s architecture depicts four layers, named Development, Core, APIs, and
Libraries, as shown in Fig. 6a.
Flink’s core is the distributed data stream engine, which runs the developed code. Flink’s

analytics abstracts its tasks in a Directed Acyclic Graph (DAG) consisting of four com-
ponents: sources, operators, sinks, and records that go through the graph. The graph in
Fig. 7 consists of: (i) stateful operators and (ii) data streams, representing data produced
by an operator and available for consumption by other operators. As data stream graphs
run in parallel, operators are parallelized in one or more instances, called subtasks, and
streams are divided into one or more partitions. State operators, which may be stateless
in special cases, implement all processing logic, such as the operations: filter, map,
hash join, window, etc. Streams distribute data between production and consump-
tion operators in various patterns, such as peer-to-peer, broadcast, spread, fan-out, and
merge.

Fig. 6 Apache Flink architecture and working mode
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Fig. 7 Data flow graph. Adapted from [117]

Flink has two base APIs: the DataSet API for static and finite data processing, often
associated with batch processing, and the DataStream API for dynamic and potentially
unlimited data processing, often associated with stream processing. Flink has API spe-
cific libraries, FlinkML for machine learning, Gelly for graph processing, and Table for
processing SQL operations.
A Flink cluster works on amaster-slave fashion, as shown in Fig. ??, and consists of three

process types: Client, Job Manager, and at least one Task Manager. The client transforms
the Flink program into a dataflow chart and sends it to the job manager. The job man-
ager coordinates the data stream distributed execution. It tracks the status and progress
of each operator and stream, schedules new operators, and coordinates checkpoints and
recovery. In a high availability configuration, the job manager requires a minimal set of
metadata at each checkpoint for fault-tolerant storage, so that a standby job manager can
rebuild the checkpoint and resume execution from that point. Data processing occurs in
task managers. A task manager runs one or more operators that produce streams and
reports about their status to the job manager. Task managers maintain buffers for storing
or creating streams and network connections for exchanging data streams between oper-
ators [117]. The data stream abstraction in Flink is called DataStream, and it consists of a
partially ordered sequence of records. It is partially because there is no guarantee of order
if an operator element receives more than one data stream as input [56].
Flink offers reliable execution ensuring the consistency of the “exactly-once” processing

semantics, and it handles checkpoint failures and partial re-execution. The consistency of
the “exactly-once” processing semantics is guaranteed through a verification mechanism
that relies on distributed snapshots. The possibly limitless nature of a data stream turns
unfeasible the recomputation on recovery, as likely it will take a long time to repeat a long
task. To reduce the recovery time, Flink obtains a snapshot of operators, including the cur-
rent position of the input streams at regular intervals. Flink uses a snapshot mechanism
called Asyncrhonous Barrier Snapshotting (ABS) [117]. The barriers are control records
injected into the input streams that correspond to a logical time, and logically split the
stream into the part whose effects will be included in the current capture and the part
that will be captured later. An operator receives upstream barriers and performs an align-
ment phase, making sure all input barriers have been received. Then, the operator writes
its state, such as contents of a sliding window or a custom data structure in a durable file
system, e.g., HDFS. Failure recovery reverts all operator states to their respective states
taken from the last successful snapshot, and it restarts input streams from the last barrier



Medeiros et al. Journal of Internet Services and Applications            (2020) 11:6 Page 40 of 48

for which there is a snapshot. The maximum load of recalculation required for recovery is
limited to the number of entry records between two consecutive barriers. Moreover, par-
tial recovery of a failed sub-task is possible by reproducing unprocessed records stored in
buffers for upstream sub-tasks.

7 Discussion, trends, and research challenges
Despite the fast development of tools to deal with big data and streaming data, there
are still many challenges to provide efficient wireless network real-time management
and control. The main applications based on autonomous approaches for monitoring
wireless network are anomaly detection; user, application, station, and network profiling;
behavioral applications; network visualization; and optimization [45]. Network monitor-
ing provides information about network elements and the network consolidated view.
These data is used to detect problems and propose efficient solutions. Application mon-
itoring provides information about network usage that enables resource planning and
allocation. Station monitoring provides information about the user, network, and appli-
cation usage patterns and it is used for network planning, access control, and for checking
security policy violations. Application behavior classification allows the discrimination of
the current applications, even when traffic is encrypted. Another application using the
monitoring of streaming data is the inference of user identity based solely on the behav-
ior of communication flows on the network. Indeed, the use of streaming data processing
is an important component for providing network security by identifying anomalies or
classifying traffic for worm signatures, port scanning, botnets, denial of service attacks,
as well as the validation of new network policies.
There are still research challenges for handling big data in real-time. The main chal-

lenges of streaming data processing for wireless networks report to the five major
dimensions of processing big data: volume, speed, variety, veracity, and value [100]. Each
of these dimensions brings different issues when applied to the wireless network scenario.
Other important challenges include:

• Estimation of data errors. It relates to the granularity of measurements made by
network monitoring protocols such as SNMP, Netflow, and OpenFlow. Errors can
occur in the sampling, transport, or collection processes and therefore are associated
with data accuracy. The application of confidence interval estimation methods, good
sampling practices, and error characterization have been studied and proposed to
mitigate the errors in sampling network data [45].

• Data significance. It relates to the semantics of the data. Indeed, most monitoring
data come from different sources and, therefore, the meaning of the collected data
may be slightly different at each source. It can significantly affect the quality of
machine learning results. Ontology, web semantic, and other techniques are
proposed to mitigate such issues. Based on ontology modeling and semantic
derivation, valuable patterns or rules can be discovered. Nevertheless, ontology and
web semantic techniques are still not enough mature.

• Pattern recognition training. It consists of using labeled patterns to train learning
algorithms. Obtaining labels, however, involves time and computational costs,
particularly for streaming big data and carries the challenge of how to reduce the
introduction of bias in the training. In addition, obtaining labels is impacted by both
the volume and speed of the data stream. Another training-related challenge is the
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balance between cost and accuracy, known as overfitting, which is still a critical open
issue.

• Data integration techniques. They consist of the aggregation of data mining
techniques, knowledge discovery, cloud computing, and machine learning. They
relate to the variety of data, the speed with which new data is created, and the volume
of streaming data arriving. A research trend is the adoption of hybrid approaches
composed of several techniques, as each technique presents advantages and
disadvantages.

• Standard datasets and research environments. They are essential for identifying
current wireless network issues. Data collected from research environments can be
used in supervised and unsupervised machine learning algorithms. Moreover,
reinforcement learning can also benefit from artificially collected and labeled data
[127].

• Data security and privacy. The use of data mining and machine learning
technologies in big data processing to analyze personal information can produce
overly relevant and interconnected results that undermine the privacy of individuals.
Personal information not provided a priori can be inferred by correlating data from
different sources. One of the key challenges of big data processing is to define
efficient and effective methods that generate accurate knowledge while still ensuring
the protection of sensitive personal information.

Other open challenges are identified by Sun et al. [127]. To implement supervised and
unsupervised machine learning techniques in wireless networks, it is essential to create
labeled/unlabeled datasets. For reinforcement learning-based approaches, network con-
trol problems should be constructed in well-defined environments. Transfer Learning
promises to transfer knowledge learned from one scenario to another similar scenario,
avoiding the need to train models from scratch for each scenario. Hence, the learning
process in new environments is accelerated, and the machine learning algorithm can per-
form well even with a small amount of training data. Therefore, the transfer learning is
fundamental for the practical implementation of learning models considering the cost of
training without prior knowledge. Using transfer learning, network operators can solve
new but similar problems without incurring high costs.
Heterogeneous backhaul/fronthaul machine-learning based controls can be applied in

wireless network management. In future wireless networks, various backhaul/fronthaul
solutions will co-exist, including fiber and cable, as well as wireless such as the sub-6 GHz
band [127]. As each solution consumes different quantities of power and bandwidth,
machine learning techniques can be used to select appropriate backhaul/fronthaul solu-
tions based on the extracted traffic patterns and user performance requirements. In
this sense, future updates of wireless network infrastructure will be developed based on
optimization techniques supported by machine learning.
Another proposal to deal with the challenges of monitoring large-scale wireless net-

works is to slice the network on a per-service basis [19, 128, 129]. Hence, the network
slices take different forms depending on each service in question. The main idea is to allo-
cate appropriate resources, including computing resources, caching, backhaul/fronthaul,
and radio on demand, to ensure the performance requirements of different isolated wire-
less network services, each one in an isolated slice. Network slicing benefits frommachine
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learning inmapping service demands into resource allocation plans [94], and also employ-
ing transfer learning, as knowledge of resource allocation plans for different use cases
in an environment can act as useful knowledge in another environment, accelerating the
learning process.

7.1 Research projects

Research projects focus both on big stream data processing and on the development of
large-scale experimentation networks based on wireless network technology. The experi-
mentation infrastructures allow experimenting on federated networks including different
types of wireless devices:

• OneLab16 is a European initiative proposing to provide federated experimentation
environments with different access technologies. OneLab brings together IoTLab-
based experimentation environments, a wireless experimentation environment with
Wi-Fi a/b/g/n nodes (NITOS), and the European PlanetLab Environment (PLE).

• w-iLab.t17 is a wireless testbed developed under the Fed4FIRE testbed federation in
Europe. It is located at IBBT office in Ghent, Belgium, and offers different wireless
node technologies for experimentation, including SDR and mobile wireless nodes.

• FIBRE18 is an open experimentation infrastructure that acts as a large-scale virtual
lab for new applications and network architecture models. It is organized as a
federation of 11 local experimentation islands, among which there are wireless
network experimentation islands, such as the one available at the UFF, which also
allows mobile indoor experimentation.

• FIT19 is an open large-scale testing infrastructure for wireless and sensor systems
and applications. FIT offers a wide range of technologies, such as the Internet of
Things, wireless networking, and cloud computing, as well as a single system access
interface and a large number of configuration and monitoring tools.

• FUTEBOL20 is a cooperation project between Brazil and Europe to develop and
implement an experimentation infrastructure that enables research on the
convergence point between optical and wireless networks.

• PrEstoCloud21 focuses on researching cloud computing technologies and real-time
data analysis to provide a dynamic, distributed architecture for proactive data
management. PrEstoCloud combines big data research, cloud computing, and
real-time cloud computing.

Some projects provide frameworks to process big stream data. Metron22 is a security
analysis framework based on big data processing. The key idea of the framework is to
allow the correlation of security events originating from different sources. To this end, the
framework employs network sensors, action logs, and telemetry as data sources.

16Available at https://onelab.eu/.
17Available at https://www.fed4fire.eu/testbeds/w-ilab-t/
18Available at https://fibre.org.br/.
19Available at https://fit-equipex.fr/.
20Available at http://www.ict-futebol.org.br/.
21Available at http://prestocloud-project.eu/.
22Available at http://metron.apache.org/.
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8 Conclusion
Wireless access networks are growing in number, variety, and speed. Several studies show
that data from these networks are of critical value to network monitoring, management,
and control. Nevertheless, these data also allows attackers to infer knowledge about users’
infrastructure, mobility patterns, preferences, quality of experience, and services. The
analysis of the data generated in a large-scale wireless access network is a problem of big
data processing. The big data processing paradigm requires efficient storage, processing,
and protection in terms of processing latency, memory storage space, and transmission
bandwidth on the network. Moreover, large-scale wireless networks are sources of unin-
terrupted data that generate potentially infinite data with a wide variety of attributes.
Therefore, it requires the use of streaming big data processing tools. In this sense, this
article discussed key tools for wireless networkmonitoring and network analytics applica-
tions, such as machine learning, which is an important approach applied in classification,
pattern discovery, and network security. We also discussed concepts related to stream-
ing data processing and presented incremental machine learning algorithms. Incremental
learning algorithms usually assume that the probability distribution of the attributes con-
sidered in the model does not vary over time. Nevertheless, in the event of a variation,
i.e., a concept drift, either abrupt or dampened, incremental learning algorithms tend to
fail to extract knowledge from incoming data. One of the key challenges for data stream
processing, then, is the detection of changes in the statistics of attributes of the incom-
ing data, and the development of machine learning algorithms that can respond to such
changes.
In this article, we also analyzed the state-of-the-art applications of machine learn-

ing in wireless networks. Clusters of classifier, DL, and reinforcement learning are
promising tools for knowledge extraction applications of future generation networks.
There are new applications that adopt knowledge transfer learning, where knowledge
extracted from one context is transferred to another application running in another
context. Thus, knowledge transfer learning avoids training models from scratch and
accelerates the learning process in new environments, because they perform well even
with a small volume of data. Therefore, transfer learning is critical to the practical
implementation of machine learning models, considering the cost of training with-
out prior knowledge. Using transfer learning, network operators can solve new but
similar problems more economically. Yet, the negative effects of prior knowledge on
system performance requires further investigation. When considering DL proposals,
the adoption of mixed techniques that combine deep and reinforcement learning is
a trend. In addition, deep belief networks, which combine several layers of neural
networks, are used in new applications, creating even deeper neural networks with
more deep intermediate layers and different connections between neurons in each
layer.
The stream processing of big data in wireless networks presents significant challenges

for DL, due to large scale, heterogeneity, labeling noise, and non-stationary distribution of
attributes. Thus, there is a need to address technical challenges with innovative proposals
and transformative solutions to use the potential of streaming big data analytics in large-
scale wireless networks. Research on the challenges posed by knowledge extraction in
streaming big data is not only timely but necessary for many fields of knowledge beyond
the management of wireless networks.
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