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Abstract
Background  Infectious disease computational modeling studies have been widely published during the coronavirus 
disease 2019 (COVID-19) pandemic, yet they have limited reproducibility. Developed through an iterative testing 
process with multiple reviewers, the Infectious Disease Modeling Reproducibility Checklist (IDMRC) enumerates 
the minimal elements necessary to support reproducible infectious disease computational modeling publications. 
The primary objective of this study was to assess the reliability of the IDMRC and to identify which reproducibility 
elements were unreported in a sample of COVID-19 computational modeling publications.

Methods  Four reviewers used the IDMRC to assess 46 preprint and peer reviewed COVID-19 modeling studies 
published between March 13th, 2020, and July 30th, 2020. The inter-rater reliability was evaluated by mean percent 
agreement and Fleiss’ kappa coefficients (κ). Papers were ranked based on the average number of reported 
reproducibility elements, and average proportion of papers that reported each checklist item were tabulated.

Results  Questions related to the computational environment (mean κ = 0.90, range = 0.90–0.90), analytical software 
(mean κ = 0.74, range = 0.68–0.82), model description (mean κ = 0.71, range = 0.58–0.84), model implementation 
(mean κ = 0.68, range = 0.39–0.86), and experimental protocol (mean κ = 0.63, range = 0.58–0.69) had moderate or 
greater (κ > 0.41) inter-rater reliability. Questions related to data had the lowest values (mean κ = 0.37, range = 0.23–
0.59). Reviewers ranked similar papers in the upper and lower quartiles based on the proportion of reproducibility 
elements each paper reported. While over 70% of the publications provided data used in their models, less than 
30% provided the model implementation. Conclusions: The IDMRC is the first comprehensive, quality-assessed tool 
for guiding researchers in reporting reproducible infectious disease computational modeling studies. The inter-
rater reliability assessment found that most scores were characterized by moderate or greater agreement. These 
results suggest that the IDMRC might be used to provide reliable assessments of the potential for reproducibility 
of published infectious disease modeling publications. Results of this evaluation identified opportunities for 
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Background
Throughout the coronavirus disease 2019 (COVID-19) 
pandemic, policy makers relied extensively on epidemio-
logical, biostatistical, and computational infectious dis-
ease models to inform decisions regarding public health 
interventions [1]. Although there was interest in trans-
parent research prior to the pandemic [2], increasingly 
complex modeling methods and insufficiently detailed 
descriptions of those methods have led to reproducibility 
concerns. We recently proposed the Infectious Disease 
Modeling Reproducibility Checklist (IDMRC), a com-
prehensive set of guidelines that researchers can follow 
to publish reproducible modeling results [3]. Our goal 
in this paper is to assess the reliability of the IDMRC to 
facilitate the reporting of elements impacting the repro-
ducibility of COVID-19 research.

Reproducibility is a cornerstone of the scientific 
method, enabling the verification of discoveries and 
protecting against scientific misconduct [4]. However, 
the rapid pace of COVID-19 research has raised con-
cerns about the reproducibility of modeling results. For 
years governing bodies have published advice to enhance 
reproducibility of scientific research and proposed lists 
of elements that should be included in publications to 
ensure reproducibility have been reported [5–9]. Prior to 
our work, these initiatives have not been synthesized into 
reliable guidelines for infectious disease computational 
modeling research. We filled this critical gap in the lit-
erature by creating a framework for the implementation 
of reproducible computational infectious disease models. 
We formatted the framework into the Infectious Disease 
Modeling Reproducibility Checklist (IDMRC), a checklist 
that is applicable to varying types of infectious disease 
models with ranging complexities [3].

Previously developed guidelines, such as the Strength-
ening the Reporting of Observational Studies in Epide-
miology (STROBE) checklist and the EPIFORGE 2020 
guidelines for epidemic forecasting have been instrumen-
tal in enhancing the quality of modeling research [10, 11]. 
However, they focus on general recommendations for 
describing elements in a publication without including 
specific items related to data, analytical software, oper-
ating systems (including both names and version num-
bers), and other key computational components used to 
conduct the analyses. The IDMRC overcomes these limi-
tations through the inclusion of specific items relevant 
to publishing reproducible infectious disease model-
ing studies. Here, we assess the reliability of the IDMRC 
with multiple reviewers and a sample of COVID-19 

computational modeling studies. To our knowledge, this 
is the first time the reliability of a checklist used to assess 
the reproducibility of infectious disease modeling studies 
has been evaluated.

The Models of Infectious Disease Agent Study 
(MIDAS) Coordination Center (midasnetwork.us) is a 
National Institute of General Medical Sciences (NIGMS) 
funded center supporting the infectious disease research 
community. Four researchers from the MIDAS Coor-
dination Center evaluated the reliability of the checklist 
by assessing a random selection of preprint and peer-
reviewed COVID-19 modeling papers published between 
March 13th, 2020, and July 30th, 2020. The purpose of 
this study was to assess the inter-rater reliability of the 
IDMRC, rank the evaluated publications based on the 
average number of reported reproducibility elements, 
and determine which reproducibility elements are fre-
quently included or overlooked in COVID-19 computa-
tional modeling studies.

Methods
The IDMRC was previously developed as a framework for 
the implementation of reproducible computational infec-
tious disease models (Table S1) [3]. The IDMRC consists 
of 22 questions grouped into six categories: computa-
tional environment, analytical software, model descrip-
tion, model implementation, data, and experimental 
protocol (Table S2). We evaluated the performance of the 
IDMRC in the COVID-19 modeling literature by mea-
suring the agreement among four reviewers for the over-
all instrument and for individual questions. Based on the 
evaluations, we made suggested changes to the IDMRC 
(Table S3).

We performed an inter-rater reliability analysis to 
assess the concordance of the ratings of the ordinal cat-
egorical items. Reliability was assessed based on the 
mean percent agreement with Wald 95% confidence 
intervals  (CI) and Fleiss’ kappa (κ) estimates. Fleiss’ 
kappa is the observed agreement corrected for the agree-
ment expected by chance and is appropriate when there 
are more than two raters assessing ordinal or nominal 
data [12]. Fleiss’ kappa was interpreted using previously 
published guidelines: κ < 0.01 indicates no agreement; 
κ = 0.01–0.20, slight; κ = 0.21–0.40, fair; κ = 0.41–0.60, 
moderate; κ = 0.61–0.80 substantial; and κ = 0.81–1 
almost perfect agreement [13].

Using the Power4Cats function in the kappaSize pack-
age in R version 4.0.2, RStudio Version 1.3.107, we deter-
mined that a sample size of 36 publications provided 80% 

improvement to the model implementation and data questions that can further improve the reliability of the 
checklist.
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power to distinguish between fair (κ = 0.40) and moder-
ate (κ = 0.60) agreement using a two-sided hypothesis 
test with a 0.05 significance level [13, 14]. Afterwards, we 
used the FixedN4Cats function in the kappaSize package 
to assess the potential lower bound for the 95% CI for the 
final sample size.

To identify a minimum of 36 publications, we searched 
PubMed, medRxiv, arXiv, and bioRxiv using queries for 
COVID-19 modeling papers (Table S4). As preprint serv-
ers were widely used to disseminate COVID-19 mod-
els at the beginning of the pandemic [15], we included 
medRxiv, arXiv, and bioRxiv in our search. We did not 
restrict our search to a specific range of publication 
dates. Additionally, we did not restrict to certain types of 
computational modeling studies in our assessment given 
that our checklist should be applicable to all computa-
tional infectious disease modeling studies ranging from 
regression models to complex agent-based models. From 
the search results, we randomly selected 100 papers with-
out replacement using the R sample function for title 
and abstract review (Fig. 1). Fifty-two of the original 100 
papers were excluded after title and abstract review. An 
additional two papers were excluded after full text review, 
leaving 46 publications that qualified for the inter-rater 
reliability assessment (Fig. 1).

Four researchers (DP, AAQ, KC, MM) used the IDMRC 
to independently review all 46 modeling papers to 
assess which IDMRC elements were included. All four 

reviewers had a Master’s in Public Health degree and 
experience reading modeling papers. DP and AAQ were 
involved with the development of the checklist and had 
more experience using the IDMRC relative to KC and 
MM.

After the review, κ estimates were computed with linear 
weights using the wlin.conc function in the R raters pack-
age 2.0.1 [13, 14]. Monte Carlo simulations were used to 
calculate percentile bootstrap confidence intervals. Addi-
tionally, for each reviewer, we ranked the papers by the 
number of reported elements in each publication. Publi-
cations with the most elements included (as rated by the 
reviewers) were ranked the highest. We also averaged 
the reviewers’ rankings to report the average rankings of 
the 46 publications. To assess the potential impact of the 
peer review process on the number of reproducibility ele-
ments, DP independently reviewed the five highest-rated 
and five lowest-rated publications to determine (1) if any 
of the publications that were published in preprint serv-
ers at the time of the review had since been published 
in peer-reviewed journals, and (2) if the papers that had 
been published in peer-reviewed journals had reported 
more reproducibility elements. Finally, we tabulated the 
proportion of papers that reported each checklist ele-
ment as well as the proportion of checklist elements 
reported in all publications (both averaged across all 
reviewers).

Fig. 1  Publications included in the inter-rater reliability analysis of the Infectious Disease Modeling Reproducibility Checklist. Abbreviations: COVID-19, 
coronavirus disease 2019

 



Page 4 of 9Pokutnaya et al. BMC Infectious Diseases          (2023) 23:733 

Results
Four MIDAS researchers used the IDMRC to review 46 
COVID-19 computational modeling papers published 
between March 13th, 2020, and July 30th, 2020. After title 
and abstract review, 52 papers were excluded based on 
the following exclusion criteria: observational, genomic, 
immunological, and molecular studies, commentaries, 
reviews, retractions, letters to editor, response papers, 
papers not related to COVID-19, and descriptions of 
software applications. Of the remaining 48 papers, two 
publications reviewing previously developed COVID-19 
models were excluded after full text review (Fig. 1). The 
final 46 paper sample consisted of 39 (85%) publications 
published in preprint servers (n = 34 from medRxiv; n = 5 
from arXiv) and 7 (15%) from peer-reviewed journals 
(Table SS5). We estimated that 46 publications could pro-
duce κ = 0.293 as the lower bound for the 95% CI.

Inter-rater reliability of the IDMRC
The inter-rater reliability evaluation indicated that the 
IDMRC was a reliable tool with most questions char-
acterized by moderate or better (κ > 0.41) agreement 
between the four reviewers. Overall, the mean percent 
agreement ranged from 53% (model description question 
3.1) to 94% (computational environment 1.1, 1.2; model 
implementation 4.6). Fleiss’ kappa estimates ranged from 
0.23 (95%CI 0.10, 0.40) for the IDMRC data question 5.5 
to 0.90 (95%CI 0.79, 0.98) for both computational envi-
ronment questions. Several Fleiss’ kappa estimates in 
the model implementation and data categories fell below 
moderate agreement (Table 1).

Characterization of papers based on reviewer rankings
Reviewers identified similar publications as reporting the 
most reproducibility elements (i.e., reviewers reported 

Table 1  Infectious Disease Modeling Reproducibility Checklist elements reported in COVID-19 modeling papers
Question Mean Percent 

Agreement
(95% CI)

Fleiss Kappa
(95% CI)

Computational Environment
1.1) Is the operating system documented? 0.94 (0.87, 1.00) 0.90 (0.81, 0.97)

1.2) Is the operating system version documented? 0.94 (0.87, 1.00) 0.90 (0.79, 0.98)

Analytical Software
2.1) Is the name of the analytical software documented (e.g., the programming language name)? 0.88 (0.79, 0.97) 0.82 (0.71, 0.92)

2.2) Is the analytical software accessible for free? 0.82 (0.71, 0.93) 0.68 (0.54, 0.81)

2.3) Is the version of the analytical software documented? 0.79 (0.67, 0.90) 0.75 (0.64, 0.85)

2.4) Do the authors include a specific identifier (DOI, URL, citation) that points to the analytical software that was 
used?

0.76 (0.64, 0.89) 0.72 (0.61, 0.81)

2.5) Is the analytical software installation guide accessible online? 0.89 (0.80, 0.98) 0.75 (0.60, 0.89)

Model Description
3.1) Is the complete, structured model description provided in the publication, supplement, or referenced 
publication?

0.53 (0.38, 0.67) 0.58 (0.51, 0.66)

3.2) Is the model specified in the publication or supplement (contrary to being referenced in other papers)? 0.91 (0.83, 0.99) 0.84 (0.70, 0.94)

Model Implementation (“Code”)
4.1) Is the model implementation (e.g., code, workflow) openly accessible online?

0.86 (0.75, 0.96) 0.86 (0.77, 0.94)

4.2) Does the model implementation (e.g., code, workflow) have a version or modification date? 0.84 (0.73, 0.94) 0.69 (0.55, 0.84)

4.3) Does the model implementation (e.g., code, workflow) have an identifier? 0.79 (0.67, 0.90) 0.74 (0.62, 0.85)

4.4) Is the computer language of the model implementation (e.g., code, workflow) documented? 0.62 (0.48, 0.76) 0.39 (0.22, 0.54)

4.5) Are all model implementation (e.g., code, workflow) dependencies clearly specified in either the publication 
or supplemental files?

0.69 (0.56, 0.83) 0.63 (0.50, 0.75)

4.6) Are the model implementations (e.g., code, workflow) annotated with comments? 0.94 (0.87, 1.00) 0.80 (0.66, 0.92)

Data
5.1) Does the model in the publication use input data?

0.75 (0.62, 0.87) 0.59 (0.47, 0.70)

5.2) Has the source and content of the input data been described in the publication or supplement? 0.59 (0.45, 0.74) 0.36 (0.20, 0.52)

5.3) Does the paper cite a specific, unique, and persistent identifier to refer to each input dataset? 0.54 (0.39, 0.68) 0.36 (0.20, 0.52)

5.4) Is the input data openly accessible? 0.66 (0.52, 0.80) 0.34 (0.16, 0.52)

5.5) Is the data in a format that can be easily re-formatted (or “parsable”) to meet the input specifications of the 
model implementation?

0.55 (0.41, 0.69) 0.23 (0.10, 0.40)

Experimental Protocol
6.1) Are all the mentioned parameter values for the model implementation (e.g., code, workflow) documented 
in a single location (e.g., table or list in the publication or supplement)?

0.65 (0.51, 0.79) 0.69 (0.60, 0.77)

6.2) Is there an explanation of how the described/mentioned categories (computational environment, analytical 
software, model implementation, and data) were used together to create the results (e.g., figures and/ or tables)?

0.50 (0.36, 0.64) 0.58 (0.52, 0.64)

Abbreviations: CI, confidence intervals.



Page 5 of 9Pokutnaya et al. BMC Infectious Diseases          (2023) 23:733 

“yes” for more questions) or the least number of ele-
ments (i.e., reviewers reported “yes” less often). KC and 
MM, the two reviewers with the least experience using 
the IDMRC, agreed upon eight publications in the top 
25% (n = 13) and the eight publications in the bottom 
25% (n = 13) (Table S6). DP and AAQ, the two review-
ers with more experience using the checklist, agreed on 
nine publications in the top 25% and ten publications in 
the bottom 25% (Figure S1). All four reviewers agreed on 
six publications in the top 25% and seven publications 
in the bottom 25% (Table S6). The publications with the 
most reproducibility elements based on average scores 
(publications 9, 15, 16, 19, and 27) and the least reported 
reproducibility elements (2, 12, 20, 23, and 37) were all 
originally published as preprints (Fig.  2). Four publi-
cations (2, 19, 20, and 27) have since been published in 
peer-reviewed journals. An independent review of these 
four papers by DP determined that, apart from publica-
tion 27 providing the specific identifier that points to 
the analytical software, the peer-reviewed versions did 
not increase the number of reported reproducibility 
elements.

Average proportion of papers that reported each checklist 
item
Rates of inclusion of the 22 checklist elements varied 
from 2% of papers reporting the operating system version 
(question 1.2) to 92% providing the model description 
in the journal or publication as opposed to referencing 
a previously developed model (question 3.2, Fig.  3A). 
50% (n = 23) of publications provided less than 40% of all 
checklist categories (Fig. 3B). Over 94% of studies did not 
provide either the name or the version of the operating 
system used in their analysis (questions 1.2, 1.3, respec-
tively) (Fig.  3A). The analytical software name (e.g., R, 
STATA, SAS) was provided in 62% of publications (ques-
tion 2.1), but only 41% of the software tools were openly 
accessible without a licensing fee (question 2.2). Most 
studies provided the input data (70%; question 5.4); how-
ever, only 25% provided the model implementation, or 
code, used to generate the data (question 4.1). Averaged 
across the raters, over 50% of the publications provided 
all five data elements (questions 5.1–5.5), but less than 
50% of the publications provided all six model implemen-
tation elements (questions 4.1–4.6). Thirty-nine percent 
of the publications provided the parameters used in their 
models (questions 6.1) while 19% provided a clear expla-
nation for how categories 1–5 were used together to cre-
ate the model results (question 6.2).

Discussion
Improved reproducibility of infectious disease computa-
tional models will help researchers efficiently build upon 
previous studies and accelerate the pace of scientific 

advancements. We previously developed the Infectious 
Disease Modeling Reproducibility Checklist (IDMRC) to 
enumerate the elements necessary to support reproduc-
ible infectious disease computational modeling studies 
[3]. Our evaluation indicated that the IDMRC is a reliable 
tool with the majority of the inter-rater reliability esti-
mates reporting moderate or greater agreement between 
the four reviewers. Participating reviewers placed similar 
publications in the top and bottom reproducibility score 
quantiles based on the number of elements missing in 
each publication. The two experienced and the two nov-
ice checklist users had more similar rankings, suggest-
ing that formally training researchers to use the IDMRC 
prior to evaluating a study may produce more consistent 
results. Furthermore, revisions to the checklist questions, 
primarily in the model implementation and data sections, 
may increase reliability of future evaluations.

Our experience with the application of the checklist 
suggests that the question ordering may have impacted 
reliability. The question regarding whether the model 
implementation computer language was documented 
(question 4.4) may have received a lower score due to its 
positioning after the analytical software name question 
(question 2.1). In most instances if a publication reported 
the analytical software name (e.g., R, STATA), the model 
implementation computer language would be evident 
(e.g., R uses R coding language, STATA uses STATA cod-
ing language). However, occasionally the two may differ, 
such as when researchers use their own developed soft-
ware or utilize packages to develop scripts in languages 
that are not original to the analytical software (e.g., writ-
ing Python scripts in R with the use of the reticulate 
package). Additionally, if a reviewer had already selected 
“no” or “not applicable” for a prior model implementa-
tion question (questions 4.1–4.3), the reviewer may have 
automatically selected the same response for question 4.4 
without independent thought to the question. Moving 
the question from the model implementation section to 
the analytical software section (after question 2.1) could 
improve the checklist reliability. We propose a revised 
version of the checklist which includes question 4.4 
directly after question 2.1 (Table S3).

Reliability assessments can also help highlight ambigui-
ties in definitions commonly used in infectious disease 
computational modeling literature. Lower κ estimates 
in the data section may have been due to uncertainty 
regarding the definition of input data (question 5.1). For 
example, some of the publications described suscep-
tible-infected-recovered (SIR) compartmental models 
which can be parametrized using input data, simulated 
data, or by referencing previously reported parameters. 
In these situations, reviewers may have not considered 
parameters as input data. To improve the reliability of the 
checklist, we defined input data as “any data, including 
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Fig. 2  Average quantitative paper ranking (n = 46) among four reviewers. Green bars correspond to the average number of reported elements in each 
publication (“yes” responses); yellow indicates partially reported elements; red indicates not reported elements, gray indicates not applicable responses
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parameters, used to generate a model or initial condi-
tions” in the updated version of the checklist (Table S3). 
Furthermore, we originally included a “not applicable” 
answer choice in question 5.1; however, after the reli-
ability assessment, we deemed that this answer choice 
was not warranted because a response of “yes” or “no” 
should capture all possible answer choices. Thus, we 
removed the “not applicable” answer choice from ques-
tion 5.1 in the revised version of the checklist (Table S3). 
Given that conditional nature of the checklist questions 
(i.e., subsequent checklist questions are affected by prior 
responses), including a definition of the input data as well 
as correcting the answer choices in question 5.1 could 
improve the reliability of the following data questions.

The computational environment, which comprises the 
operating system name and version, was least reported. 
Failure to reproduce modeling studies, even if the data 
and code have been made available, can be due to incom-
patibilities or specific requirements in the computa-
tional environment [16]. For example, SAS software is 
not compatible with the macOS operating system unless 
it is run in a virtual machine. Software developed by the 
authors of a given paper or analyses that require high-
performance computing may also require specific types 

of operating systems to be functional. We recommend 
including a short statement specifying the name and ver-
sion of the operating system in future infectious disease 
computational modeling studies .

Two of the top qualitatively ranked publications (19 and 
27) as well as two of the lower ranked publications (2 and 
20) were initially published in medRxiv, during the time 
of review, but have since been published in peer reviewed 
journals. An independent review by DP indicated that the 
peer reviewed versions of these paper did not include sig-
nificant improvement in the number of reported repro-
ducibility elements. This suggests that the peer review 
process does not necessarily improve the reproducibil-
ity of papers in our sample. Despite an increase in the 
adoption of data and code sharing policies by journals, 
stricter application of the IDMRC or similar guidelines 
may be needed to further improve reproducibility during 
the peer review process [17]. Some suggestions include 
the complementary submission of checklists, such as the 
IDMRC, or dynamic computational notebooks [17, 18].

Over 70% of the publications provided the data used 
for their analysis. Our estimate was similar to the 60% 
(n = 29) of CDC-compiled COVID-19 modeling studies 
analyzed by Jalali et al. and much higher than the 24.8% 

Fig. 3  Proportion of coronavirus disease 2019 (COVID-19) modeling publications (n = 46) that reported each infectious disease modeling reproducibility 
checklist (IDMRC) component elements. A, average percentage of papers that reported each checklist element; B, average proportion of checklist ele-
ments that were reported in all publications. Dashed line in B indicates the mean
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(n = 332) reviewed by Ioannidis et al. that reported to 
share their data. However, Ioannidis et al., used a text 
mining algorithm which may not have picked up publica-
tions that shared their data [19, 20]. Many journals now 
require researchers to provide a data availability state-
ment when submitting a publication but allow research-
ers to circumnavigate the provision by stating “the 
datasets and code are available from the corresponding 
author on reasonable request.” Some publishers require 
authors to make their publication data publicly available 
[21]. As of January 25, 2023, National Institute of Health-
supported research requires researchers to include a plan 
for data sharing within their funding applications. While 
our review included publications published on preprint 
servers, which have less strict reporting guidelines, we 
reason that preprint COVID-19 computational models 
should have been just as transparent with their data as 
peer-reviewed publications given their widespread use 
by policymakers and news outlets during the start of the 
pandemic [15].

Although providing data access is becoming a com-
mon practice in infectious disease computational studies, 
progress in sharing model implementations is lagging. 
In our sample, most papers provided the model descrip-
tion; however, the code used to implement the model 
and create the results was reported in less than 25% of 
the studies. In the previous review of COVID-19 com-
putational modeling studies, researchers found that a 
similar 21.5% of publications reported the code (n = 288) 
[20]. With increasingly complex computational method-
ologies in infectious disease modeling literature, with-
holding the exact data manipulation and analysis steps 
can impede the consistent regeneration of modeling 
results. Researchers should aim to provide open-source 
access to appropriately versioned model implementations 
accompanied by comprehensible annotations in online 
repositories.

Sharing a reproducible model consists of more than 
just sharing the data or code. Each component in the 
checklist works together to produce the final modeling 
result. With each additional missing component, the time 
and effort that it takes for future reproduction attempts 
increases [22]. Amid a pandemic, timely, reproducible 
research is critical in informing policies and life-saving 
interventions.

The present study has several limitations. First, the 
inter-rater reliability assessment began on September 
3rd, 2020. To conduct our review, we sampled COVID-
19 computational modeling studies published early in the 
pandemic when authors may have reported fewer repro-
ducibility elements compared to publications published 
in later periods. In future work, assessing the reproduc-
ibility of publications reported during various stages of 
the pandemic may lead to insights regarding timing of 

publications and reproducibility of modeling literature. 
Additionally, assessing whether certain types of model-
ing studies (e.g., agent-based, compartmental, regression 
models, etc.) are more likely to include reproducibility 
elements could help direct efforts to improve reproduc-
ibility of specific studies. Second, with a sample size of 46 
publications, we were able to estimate a potential lower 
bound for a 95% CI of κ = 0.293; however, “fair” agree-
ment ranges from κ = 0.21–0.40. Thus, we may not have 
had enough power in our study to precisely distinguish 
between elements that had “slight”, “fair”, or “moder-
ate” agreement. However, we were able to distinguish 
between elements that had “slight” and “substantial” 
agreement. Future reliability assessments should increase 
the sample size to achieve more precise κ estimates. 
Third, given that the authors of this publication were also 
reviewers in the inter-rater reliability assessment, this 
may have introduced bias. Two of the reviewers also had 
limited experience using the IDMRC prior to the assess-
ment, we may have underestimated the true reliability of 
the IDMRC. Furthermore, differences in reviewer expe-
rience may have led to an under- or over-estimation of 
the average number of reported reproducibility elements 
in our sample of publications. Future assessments may 
include external reviewers that all undergo standardized 
checklist training. Finally, while the reliability assessment 
of the IDMRC goes a step beyond most checklists, we did 
not assess the reliability of the proposed changes to the 
IDMRC.

Conclusions
Our review focused on evaluating the performance of the 
IDMRC in COVID-19 computational modeling publica-
tions. Additional rounds of review with more reviewers 
and modeling studies outside of COVID-19 might gener-
alize reliability. Furthermore, lower inter-rater reliability 
scores on some of the elements may have impacted the 
reported frequencies of missing reproducibility elements. 
To address these issues, we proposed a revised version 
of the IDMRC. Tools such as the IDMRC can encourage 
the documentation and sharing of all elements necessary 
to reproduce a computational modeling study, thus sup-
porting reproducible computational infectious disease 
studies and accelerating scientific discoveries by allowing 
others to validate results as well as by providing resources 
that might be reused in future studies.
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