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Abstract 

Background  Diagnostics for pulmonary tuberculosis (PTB) are usually inaccurate, expensive, or complicated. The 
breathomics-based method may be an attractive option for fast and noninvasive PTB detection.

Method  Exhaled breath samples were collected from 518 PTB patients and 887 controls and tested on the real-time 
high-pressure photon ionization time-of-flight mass spectrometer. Machine learning algorithms were employed for 
breathomics analysis and PTB detection mode, whose performance was evaluated in 430 blinded clinical patients.

Results  The breathomics-based PTB detection model achieved an accuracy of 92.6%, a sensitivity of 91.7%, a specific-
ity of 93.0%, and an AUC of 0.975 in the blinded test set (n = 430). Age, sex, and anti-tuberculosis treatment does not 
significantly impact PTB detection performance. In distinguishing PTB from other pulmonary diseases (n = 182), the 
VOC modes also achieve good performance with an accuracy of 91.2%, a sensitivity of 91.7%, a specificity of 88.0%, 
and an AUC of 0.961.

Conclusions  The simple and noninvasive breathomics-based PTB detection method was demonstrated with high 
sensitivity and specificity, potentially valuable for clinical PTB screening and diagnosis.

Key messages 

•	 What is already known on this topic—Breath VOC analysis is a potential technology for PTB detection. How-
ever, it is still desirable for a real-time, robust, accurate, and simple breath analysis platform for clinical applica-
tion.

•	 What this study adds—An online breath detection for PTB was proposed and demonstrated with high sensitiv-
ity and specificity in a large clinical cohort.

•	 How this study might affect research, practice, or policy—This study may promote the application of breath 
detection in clinical TB detection and related biomarker studies.
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Introduction
Tuberculosis (TB) continues to be a major global health 
threat, with an estimated 10  million incident cases and 
1.4 million deaths per year globally. In 2019, only 57% of 
pulmonary TB cases were confirmed by bacteriological 
examination. There is still a large gap, 2.9 million cases 
in 2019, between reported and estimated cases [1]. The 
absence of available technology for the timely and accu-
rate detection of TB has been one of the major impedi-
ments to preventing and ending TB. Undiagnosed TB is 
associated with substantial morbidity and mortality and 
leads to ongoing TB transmission in the community, 
which makes improving the performance and delivery of 
diagnostic testing services a leading priority [2].

Sputum-based TB diagnostics are usually either inaccu-
rate, expensive, or complicated in their usage [3]. Sputum 
specimens are difficult to collect, process, and transport, 
and only one-third of suspected TB patients can give ade-
quate high-quality sputum samples [4], while it is even 
harder in children, HIV-infected patients, and those with 
extrapulmonary TB. Acid-fast bacilli staining of sputum 
has a high false-negative rate (up to 50%) [5]. The culture 
of sputum alone has a poor sensitivity of approximately 
30% [6, 7]. GeneXpert MTB/RIF (Xpert) achieved good 
performances in TB detection and drug resistance testing 
in the clinic and has been recommended by the WHO. 
However, it still requires good infrastructure and sputum 
samples [8, 9]. WHO has identified four high-priority 
test types for diagnostic development and created tar-
get product profiles (TPPs) for each, among which some 
non-sputum tests should be offered [10]. Thus, there is a 
greater need than ever for fast, accurate, and non-sputum 
TB detection technologies.

Breathomics, a branch of metabolomics, is a prom-
ising tool because of its significant advantages: good 
accessibility, noninvasiveness, and specificness [11, 12]. 
A breath test could diagnose TB by detecting volatile 
organic compounds (VOCs) produced by mycobacte-
rium tuberculosis (M.tb) and the infected host, which 
has been approved by many studies [13]. The most 
commonly used breath detection methods for TB diag-
nosis include gas chromatography–mass spectrometry 
(GC–MS) [14, 15] and electric or chemical sensors [16]. 
For GC–MS based studies, Phillips et al. used GC–MS 
to detect the VOCs in the exhalation of pulmonary TB 
(PTB) patients with positive culture results and healthy 
controls (HC), and the headspace air of M.tb culture 
flask. They found that patients’ expiratory VOCs were 
similar to culture VOCs in naphthalene, 1-methyl- and 

cyclohexane, 1,4-dimethyl-. Based on the small sample 
modeling on 12 identified VOCs, the author obtained 
a sensitivity of 82.6% and specificity of 100%, which 
verified the feasibility of the breath test for PTB detec-
tion [17]. They further validated the VOCs-based PTB 
detection method within a larger transcontinental and 
ethnic group of 226 symptomatic high-risk patients in 
United States, Philippines, and United Kingdom, which 
achieves an overall accuracy of approximately 85% [18]. 
Beccaria et al. also used GC–MS to analyze the VOCs 
of exhaled breath of patients with active PTB and 
health controls in South Africa, achieving a sensitiv-
ity of 100% and specificity of 60% via the random for-
est method [19]. In addition, they performed another 
validation study using two-dimensional GC–MS for 
breath analysis on PTB and PTB-free patients in Haiti 
and found that a random forest model based on 22 
characteristics VOCs can distinguish well between PTB 
and PTB-free patients, in which 2-butyl-1-octanol was 
the most expressed in the breath of TB positive popu-
lation and was detected in 85% of this group (12/14), 
while only in 50% in the control group (10/20) [20]. 
2-butyl-1-octanol was also identified by fuzzy logic 
analysis as the best discriminator between patients 
whose sputum cultures were positive or negative for 
Mycobacteria in Phillips’s study [17]. Bobak et al. con-
ducted an exploratory study on the exhaled diagnosis 
of PTB in 31 children in South Africa and found that 
PTB could be identified with 90% accuracy from other 
respiratory infections based on four VOCs, including 
decane and 4-methyloctane[21]. Furthermore, the sen-
sor based breath test method also achieved good per-
formance on TB/PTB detection. For example, Marcel 
et  al. constructed and evaluated a DiagNose (C-it BV) 
based TB diagnosis method on 194 participants, and 
achieved a sensitivity of 93.5% and a specificity of 85.3% 
in discriminating TB patients and HC, and got a sen-
sitivity of 76.5% and specificity of 87.2% when identi-
fying TB patient within the entire test-population [22]. 
Morad et  al. evaluated a nano-sensor based TB detec-
tion method on 60 blinded validation datasets, and 
achieved a specificity, positive predictive value (PPV), 
and negative predictive value (NPV) of 88%, 76%, and 
94%, respectively [23]. In 2017, Mohamed et al. distin-
guished TB patients (260) from HC participants (240) 
for multiple biological samples (blood, breath, spu-
tum, and urine) with sensitive and specificity > 95% via 
e-Nose analyses [24]. The above studies proved the fea-
sibility of breath VOCs based PTB detection.
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GC–MS has advantages in the qualitative and quan-
titative detection of substances. However, the selection 
of chromatography columns and the complex proce-
dures limited the detection scope of GC–MS. Besides, 
the consistency of reported VOCs from different studies 
is poor, since GC–MS analysis requires complex proce-
dures and specialized skills [13]. The sensor based solu-
tion usually uses a single or a series of sensor to identify 
the response pattern to breath without considering the 
specific compositions. It is fast but easily affected by 
other interference factors such as the environment [13]. 
Thus, it is still desirable for a real-time, robust, accurate, 
and simple breath analysis platform for VOC detection. 
The online mass spectrometry platform could meet such 
requirements.

Recently, different online mass spectrometry technolo-
gies have been developed to analyze exhaled breath, such 
as proton transfer reaction MS (PTR-MS) [25], second-
ary electrospray ionization MS (SESI-MS) [26, 27], and 
high-pressure photon ionization time-of-flight mass 
spectrometry (HPPI-TOF-MS) [28]. The HPPI-TOFMS 
platform is designed and developed by our team and has 
been used for lung cancer and esophageal cancer detec-
tion [29–31] and achieved good performances with sen-
sitivity and specificity > 90%. In this study, we aimed to 
develop a breathomics based PTB detection and investi-
gate its performance on the clinical data set in this study.

Methods
Study design and participants
We conducted a cross-sectional study from 1 March 
2020 to 31 March 2021 at The Third People’s Hospital of 
Shenzhen. The study was approved by the Ethics Com-
mittee of The Third People’s Hospital of Shenzhen (num-
ber: 2020-012). Written informed consent was obtained 
from all participants.

The total participants consisted of a case group and 
a control group. For the case group, confirmed PTB 
patients were prospectively and consecutively recruited 
based on the following criteria: (1) aged 18–70  years 
old; (2) diagnosed by Xpert and/or culture, with sug-
gestive clinical and radiological findings; (3) anti-TB 
treatment not initiated or started less than 2 weeks. The 
control group consists of two parts: healthy controls with 
no pulmonary diseases (HC) and patients with pulmo-
nary diseases (unhealthy controls, UHC) which could be 
noninfectious diseases or infectious diseases other than 
PTB. HCs were simultaneously recruited and under-
went a physical examination with the following criteria: 
(1) aged 18–70  years old; (2) no respiratory symptoms 
(e.g., cough, sputum, hemoptysis, shortness of breath, 
dyspnea, or chest pain); (3) no pulmonary lesions by 
chest imaging (chest X-ray or computed tomography). 

For UHC, they should: (1) aged 18–70 years old; (2) have 
pathogenic confirmed infectious diseases or treatment 
response suggestive of pulmonary infectious diseases, or 
have chronic noninfectious diseases, without evidence 
of infection. Both the case group and the control group 
would be excluded if the airbag leaked or were unable to 
take enough breath volume. The participant enrollment 
flow is illustrated in Fig. 1a. A total of 518 PTB patients 
and 887 controls with 77 UHC and 810 HC were enrolled 
in this study.

The physicians were responsible for making a clinical 
diagnosis and for the collection of the breath samples. 
The other researchers performed the VOCs detection 
and ML modeling and were blinded to clinical data and 
other test results. Additionally, the physicians were also 
blinded to the breath test results. The demographic and 
clinical characteristics of all participants were collected 
and summarized in Table  1, including age, sex, and 
antituberculosis therapy.

Sampling procedures
All breath samples were collected using a predefined pro-
tocol and tested within twenty-four hours. The sampling 
apparatus was composed of a disposable gas nipple and a 
sampling bag made of polyether-ether-ketone (PEEK). In 
this study, we set standard sampling demands and pro-
tocols to minimize the influence of the daily diet. Firstly, 
we conducted sampling at a second visit if he/she was 
an inpatient and informed the participants to prepare 
for sampling in advance: no smoking, alcohol, or diets 
within an hour before sampling. Secondly, participants 
were required to rinse their mouths with purified water 
instantly before sampling to minimize the influence of 
diet, smoking, etc. Thirdly, all samples are required to be 
collected in the same environment, which could mini-
mize the effects of environmental facts. With a deep 
nasal inhalation, participants completely exhaled the air 
into the sampling bag with over 1.2 L volume.

Breath sample detection
HPPI-TOFMS, which consisted of a vacuum ultraviolet 
(VUV) lamp-based HPPI ion source and an orthogo-
nal acceleration time-of-flight (TOF) mass analyzer, was 
used to detect and analyze the breath samples. A com-
mercial VUV-Kr lamp with a photon energy of 10.6  eV 
was adopted in this platform. Most VOCs with an ioniza-
tion potential lower than 10.6 eV were ionized in the ion-
ization region directly [32]. Breath samples were directly 
introduced through a 250 μm i.d. 0.60 m long stainless-
steel capillary. The HPPI ion source works in soft HPPI 
ionization mode, which will produce mostly radical cati-
ons (M+) by ionization reaction as M + hγ → M+  + e. 
Then, the ion transmission system effectively transferred 
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these ions from the ion source into the orthogonal accel-
eration, reflection TOFMS mass analyzer. The TOFMS 
signals were recorded by a 400 ps time-to-digital conver-
sion rate at 25 kHz, and all the mass spectra were accu-
mulated for 60  s. Thus, it takes 1  min for one sample 

to go through a detection. A spectrogram with 31,666 
data pairs was extracted from each exhaled breath sam-
ple. Based on the flight time and m/z calibration on the 
standard gas with nine compounds at a concentration of 
1 ppmv, the timeline of flight can be transferred as m/z, 

Fig. 1  The flow of participants enrollment and PTB detection model construction and test

Table 1  Demographic characteristics of participants

Bold p-value shows that there are significant differences between PTB and controls

Discovery data set Test data set

PTB (N = 361) Control (N = 614) p-value PTB (N = 157) Control (N = 273) p-value

Age

 Median (min.–max.) 36 (18–70) 28 (18–69)  < 0.001 32 (18–70) 28 (18–70)  < 0.001
  < 30 (%) 115 (31.9) 345 (56.2) 0.008 64 (40.8) 169 (61.9) 0.258

  ≥ 30 (%) 246 (68.1) 269 (43.8)  < 0.001 93 (59.2) 104 (38.1) 0.009
Sex

 Male (%) 223 (61.8) 325 (52.9) 0.009 101 (64.3) 142 (52.0) 0.004
 Female (%) 138 (38.2) 289 (47.1) – 56 (35.7) 131 (48.0) –
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which is in the range of (0, 350). The TOFMS signals were 
positively correlated with the concentration of the VOC 
ions. The detection limit is down to 0.015 ppbv (parts 
per billion by volume) for aliphatic and aromatic hydro-
carbons [28]. The gas-phase breath sample was directly 
inhaled into the ionization region through a 250 μm i.d. 
0.60  m long capillary from the sampling bag. The TOF 
signals were recorded by a time-to-digital converter, and 
all the mass spectra were accumulated for 60  s. Mass 
spectrum peaks with m/z < 350 were detected by HPPI-
TOFMS for each exhaled breath sample. The noise-
reducing and base-line correction were implemented 
via anti-symmetric wavelet transformation, which was 
achieved by Python package pywavelets [33]. To trans-
fer the discrete signal of mass spectra data to standard 
breathomics data, we calculate the area of the strongest 
peak in the range of [x −  0.1, x + 0.1) as the feature of 
VOC with m/z close to x. In this study, 1500 breathom-
ics data were detected for machine learning (ML) model 
construction in the ions m/z range of [20, 320) with an 
interval of 0.2. A statistical analysis based feature selec-
tion was executed to avoid model over-fitting, in which 
the features without significant difference (p > 0.05) were 
excluded before model training.

PTB detection model construction
As illustrated in Fig.  1b, all the enrolled participants 
were randomly split into two groups: 70% of them for 
model construction and the remaining 30% of them 
for model blinded testing. Thus, 361 PTB patients and 
614 controls were randomly selected as the discovery 
data set. Through 100 times of 7:3 randomization, the 
discovery data set was further divided into a training 
subset and an internal validation subset. On the train-
ing subset, several popular ML models including Ran-
dom Forest (RF) [34], Support Vector Machine (SVM) 
[35], Logistic Regression (LR) [36], eXtreme Gradient 

Boosting (XGB) [37], and Decision Tree (DT) [38] were 
employed as the classifier to distinguish PTB patients 
and controls. The descriptions and main parameter 
settings of these ML models are illustrated in Table  2. 
Then, the optimal classifier for distinguishing PTB 
patients and controls is selected according to the model 
performance in the internal validation subset, which is 
named as “BreaTB”.

Performance evaluation and statistical analysis
As BreaTB is constructed, the most important features 
can be confirmed based on the feature importance or 
coefficient in model training. Feature differences anal-
ysis was also implemented on the relative density of 
VOCs among different patient groups.

BreaTB was applied and evaluated on the blinded 
testing data set, which consisted of 157 PTB patients, 
248 HC, and 25 UHC. The model detection results 
were compared with the clinically confirmed diagnosis 
results. Furthermore, we also assessed the performance 
of BreaTB stratified by clinical characteristics. We cal-
culated the sensitivity, specificity, PPV, NPV, accuracy, 
AUC (the area under the receiver operating charac-
teristic curve (ROC)), and the relative 95% confidence 
interval (CI) were calculated to evaluate the perfor-
mance of BreaTB.

All statistical analyses were performed using SAS 
version 9.4 (SAS Institute Inc., Cary, NC, USA) and 
Origin software (version 2018). Descriptive statistics 
were reported as frequencies (percentages) for cat-
egorical variables or median (minima to maxima) for 
continuous variables. We compared the demographic 
characteristics among different patient groups using 
the Mann–Whitney U test for continuous variables 
and the chi-square test for categorical variables. A 

Table 2  The descriptions and main parameter settings of the employed ML models

a These algorithms were achieved based on python packages: xgboost (https://​xgboo​st.​readt​hedocs.​io/​en/​stable/​python/​python_​intro.​html) and sklearn (https://​
scikit-​learn.​org/​stable/​user_​guide.​html)

ML models Descriptions Main parameter settingsa

RF A meta estimator that fits a number of decision tree classifiers on 
various sub-samples of the dataset and uses averaging to improve 
the predictive accuracy and control over-fitting

n_estimators = 100, max_features = 0.5, min_samples_split = 4, 
min_samples_leaf = 10, criterion = "entropy"

SVM Solves the separation hyperplane which can divide the training data 
set correctly and has the maximum geometric interval

penalty = "l2", loss = "squared_hinge", tol = 1e−5, C = 5.0, max_
iter = 1e + 5

LR Estimates the probability of an event occurring based on a given 
dataset of independent variables

tol = 1e−5, C = 5.0, max_iter = 1e + 4

XGB A boosting algorithm based on gradient boosted decision trees 
algorithm

booster: "gbtree", max_depth: 8, n_estimators: 100, min_child_
weight: 3, gamma: 0.15, lambda: 2

DT Employs a divide and conquer strategy by conducting a greedy 
search to identify the optimal split points within a tree

criterion = "gini", splitter = "best", min_samples_split = 2, min_
samples_leaf = 1

https://xgboost.readthedocs.io/en/stable/python/python_intro.html
https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/user_guide.html
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p-value < 0.05 was considered statistically significant in 
all analyses. All the tests were two-tailed.

Results
For different ML models, the mean performance met-
rics of 100 models on randomly selected training sets 
were illustrated in Table 3. Since the scale of the dataset 
enrolled is relatively large in this study, these basic clas-
sifiers such as SVM, LR, and DT all perform well in the 
PTB detection task. As the meta and boosting classifiers 
of DT, the RF and XGB based PTB detection models have 
superior performances. Based on the validation results, 
the best-performing RF and XGB based PTB detection 
models were selected for further testing. The results in 
Table 3 showed the XGB model has better performance 
than the RF model in the validation data set. However, 
the RF model performs superior to the XGB model in 
the blinded test data set with an accuracy of 92.6% (95% 
CI 90.1–95.0%), a sensitivity of 91.7% (95% CI 88.5–
95.0%), and a specificity of 93.0% (95% CI 88.9–97.2%). 

It implies that the RF model is more robust than XGB. 
Thus, we only further analyze the RF-based PTB detec-
tion model (termed as BreaTB). Figure  2 illustrated the 
prediction scores of BreaTB on all tested samples, which 
represent the probability of PTB infection. The cut-off 
line(threshold = 0.5) divides the PTB patients from con-
trols well with fewer false positives and false negatives.

As shown in Table  1, in the training data set, the 
median age of PTB patients was significantly higher than 
that of controls (36 (18–70) vs. 28 (18–69) years old), and 
there were more males in PTB patients than in controls 
(61.8% vs. 52.9%). The distribution of age ≥ 30 and gen-
der in the test data set is as same as that in the training 
data set, except for that in age < 30. Thus, it is necessary 
to evaluate the influence of these clinic characteristics on 
model performance. As illustrated in Fig. 3 and Table 4, 
the ROC curve showed that BreaTB achieved an AUC of 
0.975 (95% CI, 0.961–0.998) in the overall test data set. 
The diagnostic performance of BreaTB was fairly consist-
ent across different subgroups based on demographic 

Table 3  Performance metrics (mean ± STD) of difference ML models for PTB detection in internal validation and blinded test dataset

Bold values represent the best performance metrics achieved among differences mahcine learning methods

Data sets Models Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) AUC​

Validation (n = 295) RF 90.6 ± 3.1 90.6 ± 2.4 85.1 ± 3.2 94.3 ± 1.7 90.6 ± 1.7 0.960 ± 0.011

SVM 67.7 ± 20.0 83.4 ± 12.6 74.3 ± 10.4 83.1 ± 7.6 77.6 ± 4.8 0.755 ± 0.061

LR 78.6 ± 4.4 82.0 ± 4.1 72.2 ± 4.7 86.8 ± 2.5 80.8 ± 3.1 0.856 ± 0.030

XGB 88.1 ± 3.0 93.6 ± 2.1 89.0 ± 3.2 93.1 ± 1.6 91.5 ± 1.6 0.969 ± 0.010
DT 76.1 ± 5.0 90.5 ± 2.8 82.6 ± 4.2 86.7 ± 2.4 85.2 ± 2.5 0.833 ± 0.028

Test (n = 430) RF 90.7 ± 1.5 92.1 ± 1.5 86.9 ± 2.1 94.5 ± 0.8 91.6 ± 1.0 0.970 ± 0.005

SVM 69.4 ± 20.4 83.6 ± 12.7 74.5 ± 9.7 84.3 ± 7.8 78.4 ± 5.2 0.765 ± 0.066

LR 82.5 ± 3.3 83.2 ± 4.0 74.1 ± 4.5 89.2 ± 1.8 82.9 ± 2.8 0.877 ± 0.021

XGB 88.1 ± 1.7 94.6 ± 1.2 90.5 ± 2.0 93.2 ± 0.9 92.2 ± 0.9 0.970 ± 0.004
DT 75.3 ± 4.1 89.4 ± 1.9 80.5 ± 3.0 86.3 ± 2.0 84.3 ± 1.9 0.824 ± 0.023

Fig. 2  Predictive score of BreaTB on the test data set
Fig. 3  Performance of the BreaTB on different tuberculosis 
subgroups
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and clinical baseline characteristics, such as age, gender, 
and anti-tuberculosis therapy. The results demonstrated 
that age, sex, and anti-tuberculosis therapy have no evi-
dent influence on BreaTB. In detail, BreaTB has superior 
performance on participants with age < 30 than those 
with age ≥ 30. For different genders, BreaTB also per-
forms slightly differently with superior sensitivity and 
inferior specificity in females than in males. After the 
anti-TB therapy, the PTB patients are more difficult to be 
distinguished from the controls for BreaTB. Except for 
the general characteristics, we also analyzed the PTB dis-
tinguish performance against HC and UHC. BreaTB had 
a sensitivity of 91.7% (95% CI 87.4–96.0%), and a speci-
ficity of 93.5% (95% CI 90.5–96.6%) for the identification 
of confirmed PTB from HC, which is a quasi-screening 
scenario. In contrast, inferior specificity of 88.0% (95% CI 
75.3–100%) was achieved by BreaTB in distinguishing TB 
from UHC, which is a quasi-diagnosis scenario.

In this study, over 30 VOC ions were selected via statis-
tical analysis for the BreaTB model training in each itera-
tion. To analyze the importance of different VOC ions for 
PTB detection, we selected the best VOC ion combina-
tions through RF model based feature selection for 100 
iterations. Then, all selected VOC ions were ordered by 
the selection frequency in RF modeling. As shown in 
Fig. 4a, there are five VOC ions with m/z of 72, 68, 65, 67, 
and 65.2 selected at each iteration. There are eleven VOC 
ions selected in over 90 iterations. Thus, we analyzed the 
most important eleven VOC ions between confirmed 
PTB patients and controls. Figure  4b shows the mass 
spectrum examples of a PTB patient and control indi-
vidual. It demonstrates that there are some differences 
in the top eleven VOC ions, which are shown in color 
bars. To further explore these VOC ions, we analyzed the 

group differences between PTB and controls and evalu-
ated the performance of each VOC ion in discriminating 
the PTB and controls. As demonstrated in Fig. 4c, d, all 
these eleven VOC ions are significantly different between 
the PTB group and controls with a p-value < 0.05 (the 
blue line in Fig. 4c). The discernibility (AUC in discrimi-
nating PTB group and controls) of VOC ions is related 
to the scale and significance of group differences. The 
ROC curve in Fig. 4d shows the discrimination of a single 
VOC ion is limited (AUC < 0.75). However, the combina-
tion of all eleven VOC ions performs well on the test data 
set with an AUC of 0.905(95% CI: 0.878–0.933). It implies 
that the panel of VOC ions is the basis for breathomics 
based PTB detection. The heat map in the PTB group, 
UHC, and HC illustrated the patterns of these eleven 
VOC ions are visually different.

Since the qualitative ability of the TOF mass spectrom-
eter is limited, we can just infer the possible chemicals 
of these PTB related VOC ions based on their m/z (72.0, 
68.0, 65.0, 67.0, 65.2, 69.0, 66.0, 59.0, 61.0, 53.0, 58.0), 
correlation-ship (Fig.  4e), intensity distribution (Fig.  5), 
other published potential biomarkers, and the human 
breathomics database [39]. Considering the ions intensity 
distribution similarity and the relationship of m/z values, 
the VOC ions with m/z of 68 and 69 could be isoprene 
and its protonated cation. The VOC ions with m/z of 58 
and 59 could be acetone and its protonated cation. Iso-
prene and acetone are common metabolites in human 
breath [40]. Isoprene is proven to be related to oxidative 
stress responses [41, 42]. Acetone is related to diabe-
tes [43], and tuberculosis patients have a high incidence 
of diabetes [44]. The VOC ion with m/z of 72 could be 
2-butanone, which is also found as the top eleven bio-
markers for PTB in Machel Phillips’s study [17]. The 

Table 4  Performance metrics (95% CI) of BreaTB on the test data set and on different subgroups

Groups Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) AUC​

Overall

 Test (n = 430) 91.7 (87.4–96.0) 93.0 (90.0–96.1) 88.3 (84.5–92.2) 95.1 (91.8–98.4) 92.6 (90.1–95.0) 0.975 (0.961–0.990)

Age, year

 < 30 (n = 233) 90.6 (83.5–97.8) 91.7 (87.6–95.9) 80.6 (74.4–86.7) 96.3 (91.9–100.0) 91.4 (87.8–95.0) 0.972 (0.951–0.993)

 ≥ 30 (n = 197) 92.5 (87.1–97.8) 95.2 (91.1–99.3) 94.5 (90.2–98.8) 93.4 (88.3–98.5) 93.9 (90.6–97.2) 0.978 (0.958–0.999)

Sex

 Male (n = 243) 90.1 (84.3–95.9) 95.1 (91.5–98.6) 92.9 (88.7–97.0) 93.1 (88.1–98.1) 93.0 (89.8–96.2) 0.975 (0.955–0.994)

 Female (n = 187) 94.6 (88.7–100) 90.8 (85.9–95.8) 81.5 (74.7–88.4) 97.5 (93.8–100) 92.0 (88.1–95.9) 0.981 (0.962–1.000)

Anti-TB

 Untreated (n = 385) 92.9 (88.1–97.6) 93.0 (90.0–96.1) 84.6 (80.2–88.9) 96.9 (93.9–100) 93.0 (90.4–95.5) 0.978 (0.964–0.993)

 Treated (n = 318) 88.9 (79.7–98.1) 93.0 (90.0–96.1) 67.8 (62.1–73.5) 98.1 (94.6–100) 92.5 (89.5–95.4) 0.968 (0.949–0.987)

Controls

 HC (n = 405) 91.7 (87.4–96.0) 93.5 (90.5–96.6) 90.0 (86.2–93.8) 94.7 (91.2–98.2) 92.8 (90.3–95.4) 0.977 (0.962–0.991)

 UHC (n = 182) 91.7 (87.4–96.0) 88.0 (75.3–100.0) 98.0 (93.3–100) 62.9 (55.0–70.7) 91.2 (87.1–95.3) 0.961 (0.933–0.989)
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Fig. 4  Investigations of breath VOC ions and PTB. a The volcano plot shows the group changes and differences in breath VOC ion intensity 
between PTB and controls. b The performances of the top eleven VOC ions in distinguishing PTB patients and controls. c The heatmap of the top 
eleven VOC ions in PTB, UHC, and HC, shows the pattern differences of VOC ions

Fig. 5  Intensity comparison of VOC ions between PTB group and controls
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VOC ion with m/z of 61 could be the protonated ions of 
acetic acid, which was proven related to tuberculosis in 
skin samples [45]. The VOC ion with m/z of 65, 65.2, and 
66 could be the fragment ion of 4-nitrophenol and the 
corrspounding protonated cation, respectively. The VOC 
ion with m/z of 67 could be Pyrrole or 3-Butenenitrile. 
The low peak intensity VOC ions with m/z of 53 could be 
the fragment ion of other unknown VOC with low con-
centration. These VOCs would be potential biomarkers 
of TB.

Discussion
In this study, for the first time, we explore the diagnostic 
value of breathomics data detection on HPPI-TOF–MS 
for PTB in a large cohort. The results demonstrated that 
the developed BreaTB model performs well in distin-
guishing PTB individuals and control with high sensitiv-
ity and specificity of 91.7% and 93.0%. It implies that the 
proposed breathomics method via online HPPI-TOF–
MS could be a potentially feasible diagnostic or screening 
tool in the clinical setting.

In the past decades, no breathomics-based method has 
been translated into clinical practice for the diagnosis of 
TB, which is primarily due to the complexity and the high 
cost of existing spectrometers and the limitations of sen-
sor technologies [13]. Compared with past research on 
PTB detection, there are several advantages in our study. 
Firstly, the diagnostic accuracy of our VOCs-based PTB 
detection method was high, with  sensitivity and speci-
ficity of 91.7% and 93.0%. Furthermore, our study was 
tested on a large-size patient cohort. As participants were 
stratified based on their demographic and clinical char-
acteristics: age, sex, and anti-tuberculosis therapy, the 
diagnostic performance was fairly consistent. Thirdly, 
TB diagnostic methods using non-sputum samples are 
strongly advocated by the WHO [46]. Breath sampling 
has excellent clinical accessibility, especially for certain 
categories of patients whose sputum is difficult to collect. 
Fourthly, the breath sample detection on HPPI-TOF-MS 
only takes about one minute. Thus, the total time cost 
from breath sampling to getting PTB detection results is 
about five minutes.

However, there are several limitations in our study. 
Firstly, the qualitative and metabolic pathways of ions 
have not been defined. Thus, the logical and mechanis-
tic evidence of the breathomics-based PTB detection 
method is not enough to make it clinically convincing, 
although it performs well in clinical data. Further chem-
ical composition analysis via GC–MS is the focus of our 
future works. Fortunately, many studies have demon-
strated the VOCs similarities and differences between 
the breath of PTB patients and M.tb culture-released 
gases. For example, Phillips et  al. found the common 

compounds: 1-methyl- and cyclohexane, 1,4-dimethyl- 
in the breath of PTB patients and headspace air of cul-
ture [17]. Using computational approaches, Purva et al. 
proposed putative biosynthetic pathways in M.tb for 
three VOCs(methyl nicotinate, methyl phenylacetate, 
and methyl p-anisate), and methyl nicotinate was also 
found in the exhaled breath of patients with tuberculo-
sis [47]. Kuntzel et al. detected and analyzed the head-
space VOCs of 17 different mycobacteria and control 
strains. Their result demonstrated the feasibility of 
identifying M.tb from other pathogens based on their 
metabolism of VOC [48]. Our team is also working on 
finding the links between the VOCs in the breath sam-
ples of PTB patients and the VOCs in the headspace air 
of M.tb culture. Secondly, the control group contained 
only a small sample of patients with pulmonary dis-
eases other than PTB. Thus, the performance needs to 
be further evaluated in detecting PTB from other pul-
monary diseases. Thirdly, our enrollment was restricted 
to adults with possible PTB. Similar independent vali-
dation studies are needed for children whose diagnos-
tic tools are even more urgently needed [21], as well as 
patients living with diabetes or HIV and patients sus-
pected of EPTB. At last, this is a single-center study 
conducted in a TB specialist hospital, which may limit 
the universality of the research results.

Conclusion
In conclusion, we developed a breathomics model: 
BreaTB for PTB detection, which achieved high diagnos-
tic accuracy on clinical data set with a sensitivity and a 
specificity of 91.7% and 93.0%, respectively. Due to its 
simplicity and low cost, the breathomics-based PTB 
detection model on online breath analysis platforms such 
as HPPI-TOF-MS has the potential to meet the ongoing 
demand for TB diagnosis that would not require sputum 
and may work in active case finding in large populations, 
especially in resource-limited settings where it is urgently 
needed [12]. However, more clinical and basic researches 
are needed to evaluate this method in patients with more 
complex health conditions and with various lung dis-
eases. Last but not least, more studies are needed to con-
firm the TB-specific breath biomarkers and clarify their 
metabolic pathways.
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