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Predicting sepsis onset in ICU using ety

machine learning models: a systematic review
and meta-analysis

Zhenyu Yang', Xiaoju Cui? and Zhe Song®

Abstract

Background Sepsis is a life-threatening condition caused by an abnormal response of the body to infection

and imposes a significant health and economic burden worldwide due to its high mortality rate. Early recognition
of sepsis is crucial for effective treatment. This study aimed to systematically evaluate the performance of various
machine learning models in predicting the onset of sepsis.

Methods We conducted a comprehensive search of the Cochrane Library, PubMed, Embase, and Web of Science
databases, covering studies from database inception to November 14, 2022. We used the PROBAST tool to assess
the risk of bias. We calculated the predictive performance for sepsis onset using the C-index and accuracy. We fol-
lowed the PRISMA guidelines for this study.

Results We included 23 eligible studies with a total of 4,314,145 patients and 26 different machine learning mod-
els. The most frequently used models in the studies were random forest (n=9), extreme gradient boost (n=7),

and logistic regression (n=6) models. The random forest (test set =9, acc=0.911) and extreme gradient boost (test
set n=7,acc=0.957) models were the most accurate based on our analysis of the predictive performance. In terms
of the C-index outcome, the random forest (n=6, acc=0.79) and extreme gradient boost (n="7, acc=0.83) models
showed the highest performance.

Conclusion Machine learning has proven to be an effective tool for predicting sepsis at an early stage. However,
to obtain more accurate results, additional machine learning methods are needed. In our research, we discovered
that the XGBoost and random forest models exhibited the best predictive performance and were most frequently
utilized for predicting the onset of sepsis.

Trial registration CRD42022384015

Keywords Machine learning, Sepsis, Intensive care units, Meta-analysis

Introduction

Sepsis is a severe and potentially life-threatening con-
dition resulting from a dysregulated immune response
to infection [1]. Early detection and prompt treatment
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methods to learn from large volumes of patient data,
including vital signs, laboratory results, and electronic
health records, and to predict the onset of sepsis before
its clinical manifestations become apparent [3]. The early
identification and treatment of sepsis are related to the
improvement of patient prognosis. Machine learning-
based warning systems may shorten recognition time.
Adams R et al. [4] set up a system called the “Targeted
Real-time Early Warning System’, and they found that
early warning systems have the potential to identify sep-
sis patients early and improve their prognosis and can
identify and prioritize sepsis patients who would benefit
the most from early treatment. By enabling early detec-
tion, ML models hold tremendous potential for enhanc-
ing patient care and reducing the burden of sepsis on
health care systems worldwide.

The Sepsis-3 definitions suggest that patients with at
least two of the following three clinical variables may be
prone to the poor outcomes typical of sepsis: (1) a low
blood pressure (SBP <100 mmHg), (2) a high respira-
tory rate (>22 breaths per min), or (3) altered mentation
(Glasgow coma scale score<15). Machine learning can
utilize computers to review a large number of clinical
cases, and mature machine learning models can be used
to make real-time evaluations of whether patients will
develop sepsis, allowing for immediate intervention.

In this study, we aimed to explore the use of ML mod-
els for predicting the onset of sepsis in the ICU. Specifi-
cally, we reviewed the literature on ML models for sepsis
prediction, highlighting their strengths and limitations.
Additionally, in this article, we discuss the potential
impact of these models on patient outcomes, clinical
decision-making, and health care costs. Through this
meta-analysis, we hope to shed light on the promise of
ML models as tools for improving the management of
sepsis in the ICU and beyond.

Methods

Study design and literature search

This study retrieved relevant studies on the timing of
sepsis diagnosis by machine learning from the Cochrane
Library, Embase, PubMed, and Web of Science databases
and extracted data from these studies. The Cochrane
Library, Embase, PubMed and Web of Science databases
were searched from inception to 14/11/2022. Search for-
mulas were constructed based on combinations of MeSH
headings and free words. We did not put any restriction
on the language or region. The literature search was com-
pleted by Zhenyu Yang and Xiaoju Cui (the search detail
is shown in Supplementary file 2). All selected stud-
ies were imported to EndNote 2020. We filtered studies
according to the abstract. Duplicate articles were deleted.
Literature screening was independently performed by
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two reviewers (Zhenyu Yang and Xiaoju Cui). Any disa-
greement was settled by a third reviewer. The retrieval
formular file is presented in Supplementary material 2.

Inclusion and exclusion criteria
Inclusion criteria.

(1) Randomized controlled trials (RCTs), prospective
cohort studies, and nested case—control studies.

(2) Studies in which the predictive model was com-
pletely established.

Exclusion criteria.

(1) Studies unrelated to sepsis

(2) Studies with incomplete data

(3) Studies in which the outcome measures related to
the effectiveness of predictive measures were not
included.

(4) Animal studies, reviews, conference abstracts,
guidelines, letters, comments, and meta-analyses

(5) Non-RCT research designs

(6) Non-English articles

(7) Basic articles on pathology, physiology, and bio-
chemistry

(8) Duplicate publications

Data extraction

The data extraction form was detailed according to the
Modified CHARMS checklist. The checklist included
the name of the first author, publication date, nationality,
duration of data collection, study design, type of valida-
tion (internal, external, random split and time split) and
sample size (total number of participants, development
and testing clusters).

Risk of bias assessment

We used PROBAST and an external prognostic validity
model to assess the risk of bias of the selected studies [5].
PROBAST is a checklist designed for systemic reviews of
diagnostic or prognostic prediction models. The risk of
bias was assessed independently by two reviewers (Zhe
Song and Zhenyu Yang). PROBAST consists of two parts:
A. an overall bias risk assessment (including research
objects, predictors, results and statistical methods) and
B. an overall applicability assessment (research objects,
predictors and results).

Statistical analysis

We performed descriptive statistics to summarize the
characteristics of the models. For prediction models that
were evaluated in more than two independent datasets, a
random effect meta-analysis was conducted to estimate
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Fig. 1 PRISMA Study Selection Flowing Chart. This figure is a flowchart of the inclusion article after screening based on the inclusion and exclusion

criteria in this study

their performance and accuracy. If a measure of uncer-
tainty, such as the standard error or 95% confidence
interval, was unavailable for the mean C-index, we com-
puted it based on the number of events and participants.
All data analyses were carried out using R software ver-
sion 4.1.1.

Results

Study selection

A total of 422 articles were identified through vari-
ous databases, including the Cochrane Library (n=12),
Embase (7=150), PubMed (n=74), and Web of Science
(n=186) databases. After eliminating 15 duplicate arti-
cles and excluding ineligible records using automation
tools, we browsed 387 articles. Ultimately, 23 articles met
the inclusion criteria and were included in our study [2,
6-27]. Figure 1 displays the PRISMA flow diagram illus-
trating our study selection process. The selection was
conducted independently by two reviewers (Zhenyu Yang

and Xiaoju Cui). Any discrepancies were resolved by a
third reviewer.

Characteristics of included studies

A total of 1,287,160 individuals were included in this
study, with 167,338 individuals included in the valida-
tion set. All articles analysed were published within the
past 5 years, indicating a growing interest in the use of
machine learning for sepsis prediction. Our research
identified 81 prognostic models, including 5 based on
deep learning, 4 based on InSight, 10 based on logistic
regression, 6 based on multilayer perceptron, 8 based on
neural networks, 8 based on support vector machines, 14
based on XGBoost, 15 based on random forest, and 11
based on SOFA. Detailed characteristics of the included
studies can be found in Table 1.

Quality assessment
The quality assessment was conducted independently
by two reviewers (Zhenyu Yang and Xiaoju Cui), and
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any discrepancies were resolved by a third reviewer. The
results of the quality assessment are presented in the risk
of bias picture (Fig. 2). Two studies (8.6%) were deemed to
have a high risk of bias in the participant domain, 13 stud-
ies (58.3%) were deemed to have a high risk of bias in the
analysis domain, and two studies (8.6%) were deemed to
have a high risk of bias in the outcome domain. No stud-
ies were deemed to have a high risk of bias in the predictor
domain. A high risk of bias in the analysis domain may be
attributed to an inadequate sample size, insufficient events
per variable (EPV), improper handling of missing data,
~ or failure to report how missing data were handled. The
PRISMA checklist can be found in Supplementary file 1.

Outcome indicators

AUROC
Sensitivity
Specificity
AUROC
AUROC
Sensitivity
Specificity
AUROC
Sensitivity
Specificity

Number of
variables
29

0
37

Predictors

Age, creatinine levels, and sodium levels were the most
| | | frequently used predictors (n=12), followed by blood
pressure and platelet levels (n=11) and heart rate (n=9).
The remaining predictors were ranked in descending
order of frequency as follows: lactate levels and tempera-
ture (n=9), the WBC count (n=38), the respiratory rate
and SOFA score (n=7), glucose, haemoglobin, MCHC,
| ‘ ‘ and PaO2 levels (n=6), the GCS score, ICU LOS, lym-
phocyte count, and PaCO2 levels (n=5), and BUN lev-
els, cancer, and sex (n=4). These results are presented
in Fig. 3.

Test set number

7419

number
2351

Training set and test set accuracy

In the training set, the random forest model was the
most frequently applied machine learning model
(n=9), with an accuracy of 0.911 (0.485, 0.991). The
XGBoost model showed the best predictive perfor-
mance (n=6), with an accuracy of 0.970 (0.487, 0.997).
In the test set, the random forest model was also the
most frequently applied machine learning model
(n=7), with an accuracy of 0.795 (0.638, 0.895). The
deep learning model showed the best predictive per-
formance (n=3), with an accuracy of 0.830 (0.814,
0.845). These results are presented in Figs. 4, 5, 6, 7
and 8.

Method of testing  Test set sepsis

Single center
Single center

Multicenter
Single center

Testing set

1812
58976
57786
21604

Training set and test set c-index

Regarding the c-index results, in the training set, the
XGBoost model was the most frequently utilized
machine learning model, with a c-index of 0.83 (0.83,
0.84) in 7 studies. The InSight model exhibited the best
performance, with a c-index of 0.91 (0.90, 0.93) in 2 stud-
ies. On the other hand, in the test set, the random forest
model was the most frequently employed machine learn-
ing model, with a c-index of 0.83 (0.82,0.83) in 5 studies.
In terms of performance, the random forest model (n=5,
c-index=0.83 (0.82,0.83)) and XGBoost model (n=3,
c-index=0.83 (0.82,0.84)) exhibited similar performance.

Train set sepsis Train set number

number
1021
22201
1179

This table provides detailed information on the various studies included in this study

Predicting sepsis with a recur- 4278
rent neural network using

the MIMIC Il database
sign data in the emergency

department, general ward

ated bloodstream infections
and ICU

Early diagnosis of blood-

in the intensive care unit
using machine-learning
algorithms

Predicting central line-associ-
and mortality using super-
vised machine learning
Multicentre validation

of a sepsis prediction
algorithm using only vital

Table 1 (continued)
stream infections

Studies
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Detailed datasets can be found in Figs. 9, 10, 11, 12 and
13, and the overall results are presented in Supplemen-
tary file 3.

Discussion
The present study investigated 68 prognostic predic-
tion models across 23 studies to assess the potential of
machine learning models for predicting sepsis in the
ICU. However, the risk of bias assessment revealed a high
risk of bias in the analysis domain, which may be attrib-
uted to the small sample size, the processing of missing
data, and the interpretation of complex data. Therefore,
the research findings may have some deviation due to the
insufficient sample size.

Sepsis is a severe medical condition that can cause
widespread inflammation and damage to vital organs.

Page 10 of 21

Early detection and treatment of sepsis are critical for
improving patient outcomes and reducing health care
costs. ML models can analyse large amounts of patient
data, including vital signs, laboratory results, and elec-
tronic health records, to detect early signs of sepsis. ML
algorithms can provide physicians with real-time rec-
ommendations for patient treatment and management
based on the latest medical knowledge and patient
data. The use of ML models for predicting the onset of
sepsis in the ICU has the potential to revolutionize the
way in which sepsis is detected, treated, and managed,
leading to better patient outcomes and reduced health
care costs.

Several studies have explored the potential of machine
learning algorithms for predicting sepsis. Heather M
et al. [28] developed a machine learning algorithm to

Risk of bias

Analysis

Outcome

Predictors

Participants

=1 4 9

u Low

14 19 24

Unclear mHigh

Fig. 2 Risk of Bias Assessment. This figure illustrates the risk bias included in this study

Frequency

cancer

PaCO2

ICU LOS

PaO2

Hemoglobin

SOFA score

WBC

Lactate

Platelets

Sodium

Age
0 2 4

6

8 10 12 14

Fig. 3 Predictors Frequency Bar Chart. This figure indicates the number of times the items on the left side of the figure were used as indicators

in the included literature
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]
: a
Qingging Ma02018 7503 21604 0.347 [0.341; 0.354] '
Yuan KC2020 790 1588 0.497 [0.473; 0.522] = i
Shimabukuro DW2018 75 142 0.528 [0.443; 0.612] —— !
Christopher Barton2019 54456 91445 0.596 [0.592; 0.599] [+ ] i
Bernhard Wernly2021 44303 61532 0.720 [0.716; 0.724] [+ ] E
Lin PC2021 6554 8296 0.790 [0.781; 0.799]
mmor 184607 0.616 [0.614; 0.618] ‘ i
0.588 [0.460; 0.706] —————-
i
1
Rodriguez A2021 3099 5022 0.617 [0.603: 0.631] i
Chang Hu2022 57175 76540 0.747 [0.744; 0.750] d
Wanjun Liu2022 8153 10832 0.753 [0.744: 0.761]
Wongeun Song2022 37540 40366 0.930 [0.927: 0.932] ! [+ ]
) n 132760 0.798 [0.796; 0.800] i
0.788 [0.635; 0.889] e
|
]
]
Wanjun Liu2022 7892 10832 0.729 [0.720; 0.737] i
Longxiang Su2021 8882 11512 0.772[0.764; 0.779] %
Lin PC2021 6471 8296 0.780 [0.771; 0.789]
Yuan KC2020 1302 1588 0.820 [0.800: 0.839] |
Wongeun Song2022 38348 40366 0.950 [0.948; 0.952] i [+ ]
Chang Hu2022 76540 76540 1.000 [1.000; 1.000] ' |
) « 149134 0.935 [0.934; 0.936] i {
0.970 [0.487; 0.999] ——
1
1
|
Total (common effect, 95% Cl) 466501 0.770 [0.769; 0.771] {
Total (random effect, 95% Cl) 0.841 [0.590; 0.951] e ————-

I I I I I I 1
1

Heterogeneity: Tau’ = 6.9488; Chi’ = 33396.64, df = 15 (P = 0); I’ = 100%
Test for subgroup differences (common effect): Chi’ = 40351.06, df = 2 (P=0)
Test for subgroup differences (random effects): Chi'= 6.58,df=2 (P =0.04)

04 05 06 07 08 09

Study Events Total GLMM, Fixed + Random, 95% CI GLMM, Fixed + Random, 95% CI
1
Alireza Rafiei2020 11592 20336 0.570 [0.563; 0.577] i
Liwei Peng2022 317291 382278 0.830 [0.829; 0.831] 1 [« ]
Shuhui Liu2017 26300 34472 0.763 [0.758; 0.767] i
Liwei Peng2022 244658 382278 0.640 [0.638; 0.642] ! -
Shuhui Liu2017 26248 34472 0.761 [0.757; 0.766] |
Liwei Peng2022 103215 382278 0.270 [0.269; 0.271] i
Bernhard Wernly2021 54148 61532 0.880 [0.877; 0.883] |
Liwei Peng2022 57342 382278 0.150 [0.149; 0.151] i
Inger Persson2021 52918 61532 0.860 [0.857; 0.863] H [+ ]
Christopher Barton2019 47140 91445 0.516 [0.512; 0.519] [+ |
Qingging Ma02018 11384 21604 0.527 [0.520; 0.534] H
Shimabukuro DW2018 97 142 0.683 [0.600; 0.759] i —il—
Lin PC2021 5724 8296 0.690 [0.680; 0.700] |
Alireza Rafiei2020 13422 20336 0.660 [0.653; 0.667] !
Alireza Rafiei2020 14032 20336 0.690 [0.684; 0.696] i
1
Total (common effect, 95% Cl) 1903615 0.518 [0.517; 0.518] i
Total (random effect, 95% Cl) 0.646 [0.529; 0.748] i

I T T T T 1
02 03 04 05 06 07 08

Heterogeneity: Tau® = 0.9197; Chi’ = 457114.11, df = 14 (P = 0); I = 100%

Fig. 4 Train set accuracy. In the train set, XGBoost showed the best predicting performance (n=6), with an accuracy of 0.970 (0.487, 0.999) The

accuracy of SOFA model (n=6) is 0.588 (0.460,0.706). The accuracy of SYM model (n=4) is 0.788 (0.635,0.889) The accuracy of XGBoost model (n=6)

is 0.970 (0.487,0.999)
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Study or
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'
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Bernhard Wernly2021 50456 61532 0.820 [0.817; 0.823] E [+ |
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H
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113191 0.718 [0.715; 0.720) [
0.670 [0.565; 0.760] —————
:
H
" e
Christopher Barton2019 66052 91445 0.722 [0.719; 0.725) a:
Shimabukuro DW2018 128 142 0.901 [0.840: 0.945] o —-
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102419 0.716 [0.713; 0.718] + E
0.774 [0.621; 0.877] ~——e——
i
:
Total (common effect, 95% Cl) 474178 0.773 [0.772; 0.774] L]
Total (random effect, 95% CI) 0.762 [0.695; 0.818] ~—giiin—
Heterogeneity: Tau® = 0.3498; Chi® = 13081.54, df = 11 (P = 0); I = 100% y ' i ' '
Testfor subgroup differences (common effect): Chi® = 7099.30, df = 2 (P = 0) 0§ 06 07 08 09
Testfor subgroup differences (random effects): Chi’ = 4.55, df = 2 (P = 0.10)
Study or
Subgroup Events Total GLMM, Fixed + Random, 95% CI  GLMM, Fixed + Random, 95% CI
1 H
i ;
Wongeun Song2022 29871 40366 0.740 [0.736; 0.744] i H
Chang Hu2022 63987 76540 0.836 [0.833; 0.839) | n
116906 0.803 [0.801; 0.805] i }
0.792 [0.718; 0.851] |
i
H
- i
Shuhui Liu2017 26150 34472 0.759 [0.754; 0.763] i
Wanjun Liu2022 6518 10832 0.602 [0.592; 0.611] |
Chang Hu2022 71948 76540 0.940 [0.938; 0.942] ! [+ |
Rodriguez A2021 3139 5022 0.625 [0.611; 0.638] ﬂ
126866 0.849 [0.847; 0.851] ! {
0.769 [0.571; 0.893] —1—-—-—
i
1
1
H
H
Liwei Peng2022 118506 382278 0.310 [0.309; 0.311] [ | :
Rodriguez A2021 3134 5022 0.624 [0.610; 0.637]
Wanjun Liu2022 7501 10832 0.692 [0.684; 0.701] E
Longxiang Su2021 8842 11512 0.768 [0.760; 0.776] |
Shuhui Liu2017 27331 34472 0.793 [0.789; 0.797] i [ |
Michael Roimi2019 1483 1812 0.818 [0.800; 0.836] !
Dong Wang2021 14964 17005 0.880 [0.875; 0.885] H
Wongeun Song2022 36329 40366 0.900 [0.897; 0.903] E [+ |
Chang Hu2022 76540 76540 1.000 [1.000; 1.000] H o
579839 0.508 [0.507; 0.509] { i
0.911 [0.485; 0.991] e ———-
H
i
Total (common effect, 95% Cl) 823611 0.603 [0.601; 0.604] {
Total (random effect, 95% Cl) 0.863 [0.617; 0.961] —

I T T T T T 1
04 05 06 07 08 09 1

Heterogeneity: Tau’= 7.1556; Chi’= 137516.14, df = 14 (P = 0); ¥=100%
Test for subgroup differences (common effect): Chi’ = 65973.88, df = 2 (P = 0)
Test for subgroup differences (random effects): Chi*=0.74,df=2 (P=0.69)
Fig. 5 Train set accuracy. In the train set, the Random Forest model was the most frequently applied machine learning model (n=9),
with an accuracy of 0.911 (0.485,0.991). The accuracy of LR model (n=6) is 0.796 (0.718,0.857) The accuracy of MEWS model (n=3) is 0.670
(0.565,0.760) The accuracy of MLP model (n=3) is 0.774 (0.695,0.818). The accuracy of NB model (n=2) is 0.792 (0.718,0.851) The accuracy of NN
model (n=4)is 0.769 (0.571,0.893)
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Subgroup Events Total GLMM, Fixed + Random, 95% Cl GLMM, Fixed + Random, 95% ClI

Joshua P. Parreco2018 51834 57786
Rodriguez A2021 3124 5022
Chang Hu2022 76540 76540

139348

Liwei Peng2022 187316 382278
Joshua P. Parreco2018 51661 57786
440064

Alireza Rafiei2020
Qingging Mao2018

12812 20336
20559 21604

0.897 [0.894: 0.899]
0.622 [0.608; 0.635]
1.000 [1.000; 1.000]
0.944 [0.942; 0.945]
0.998 [0.095; 1.000]

0.490 [0.488: 0.492]
0.894 [0.891: 0.897]
0.543 [0.542; 0.545]
0.740 [0.386; 0.928]

0.630 [0.623: 0.637]
0.952 [0.949: 0.954]

l

|

1
1
41940 0.796 [0.792; 0.800] E ¢
0.853 [0.515; 0.969] — -
!
;
Total (common effect, 95% Cl) 621352 0.650 [0.649; 0.651] b
Total (random effect, 95% Cl) 0.952 [0.471; 0.998] ——
Heterogeneity: Tau” = 16.9912; Chi’ = 54788.65, df = 6 (P = 0); I = 100% ! ! ' ’
Test for subgroup differences (common effect): Chi’= 55250.23,df=2 (P =0) 02 04 0.6 08 1

Test for subgroup differences (random effects): Chi2 =1.57,df=2 (P =0.46)
Fig. 6 Train setaccuracy. The accuracy of DL model (n=3) is 0.998 (0.095,1.000) GBT (n=2) and InSight model (n=2) are 0.740(0.386,0.928)

and 0.853(0.515,0.969) respectively

predict severe sepsis and septic shock, which can pre-
dict, with high specificity, the impending occurrence of
severe sepsis and septic shock. Lucas M Fleuren et al.
designed a meta-analysis that found that individual
machine learning models can accurately predict sep-
sis onset early, similar to the present study. Nianzong
Hou et al. [29] developed an XGBoost model to predict
30-day mortality, which can assist clinicians in tailoring
precise management and therapy for patients with sep-
sis. Dong Wang et al. [13] developed an artificial intelli-
gence algorithm to predict sepsis early, which has shown
good predictive ability in Chinese sepsis patients. How-
ever, external validation studies are necessary to confirm
the universality of this method for the population and in
treatment practice.

In this study, we concluded that two machine
learning algorithms, the XGBoost and random for-
est, showed significant advantages in predicting

sepsis incidence in ICU patients with higher ACC
and c-index values compared to other models in this
study, specifically the random forest (test set n=9,
acc=0.911) and extreme gradient boost (test set
n=7, acc=0.957) models. Compared to other stud-
ies, this study compared all previous machine learn-
ing models for predicting sepsis incidence in ICU
patients, including 4,314,145 patients and 26 differ-
ent machine learning models. This was a large, com-
prehensive study that strictly followed the PRISMA
requirements for systematic evaluation and was
methodologically rigorous and scientific. Based on
this, we believe that our study is more accurate than
previous studies.

The XGBoost and random forest are two machine
learning algorithms that showed significant advan-
tages compared to other models in the present study.
XGBoost is a popular open-source software library
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Test for subgroup differences (random effects): Chi’= 0.00, df =0 (P = NA)
Fig. 7 Test set accuracy. In the test set, the Random Forest model was also the most frequently applied machine learning model (n=7),
with an accuracy of 0.795 (0.638, 0.895). The DT model showed the best predicting performance (n=3), with an accuracy of 0.830 (0.814, 0.845). The
accuracy of LR model (n=4) and NN model (n=4) are 0.770 (0.597,0.884) and 0.712 (0.491,0.864) respectively
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Fig. 8 Test set accuracy. The accuracy of SOFA model (n=3) is 0.784 (0.737,0.825) The accuracy of SYM model (n=3) is 0.804 (0.687,0.885). The
accuracy of XGBoost model (n=3) is 0.727 (0.489,0.881)

Heterogeneity: Tau” = 0.6056; Chi’ = 87119.31, df = 12 (P = 0); I = 100%
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Fig. 9 Train set c-index. In the train set, InSight exhibited the best performance with a c-index of 0.91 (0.90,0.93) in 2 studies. The rest are
MLP(N=3), NN(n=4), SYM(n=3), DL(n=2) and LR(n=4). the C-index of them are 0.79 (0.65,0.97), 0.68(0.59,0.79), 0.67(0.57,0.78), 0.74(0.52,1.05)
and 0.81(0.75,0.86)
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Fig. 10 Train set c-index. In the train set, XGBoost (bottom) was the most frequently utilized machine learning model with a c-index of 0.83
(0.83,0.84) in 7 studies. The rest are RF(n=6) SAPS lI(n=3) and SOFA(n=4), the C-index of them are 0.79 (0.78,0.79) 0.70(0.70,0.70) and 0.66(0.66,0.66)
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Fig. 11 Train set c-index. (Other models include GRU, LSTM, SIRS, SIC, SGB, OASIS, Nomogram, LODS, LDA, CART, MIG, LLI, ET, CS) In train set,

the c-index of other models(n=6) is 0.72 (0.66,0.78)

for machine learning that is optimized for speed and
scalability, making it one of the most efficient gradient
boosting algorithms available. It can handle missing
data and noisy data, making it a robust solution for
real-world data problems. Random forest is a widely
used ensemble machine learning algorithm that com-
bines multiple trees to form a forest and produces a
final prediction by aggregating the results from all the
trees. These algorithms have been applied in various
industries, including finance, health care, and mar-
keting, and have won several machine learning com-
petitions [30]. In our research, the random forest
and XGBoost models showed significant advantages
compared to other models. We also found other stud-
ies using machine learning to predict the incidence
of sepsis. Bloch et al. [31] conducted a study using
machine learning to predict the onset of sepsis. They
found that the support vector machine (SVM) model
had the best performance in predicting the onset of
sepsis. Compared with this study, the study conducted
by Bloch et al. focused on the data of a single medical
centre and did not evaluate the data of other medical
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centres; therefore, the results can only reflect the situ-
ation of their single centre, lacking reference value for
other regions.

Conclusion

Machine learning has proven to be an effective tool for
predicting sepsis at an early stage. However, to obtain
more accurate results, additional machine learning
methods are needed. In our research, we discovered that
XGBoost and random forest models are the most com-
monly used models for predicting sepsis incidence in
ICU patients, and they exhibit significant performance
and accuracy compared to other models. The use of
predictive models for early risk assessment has rela-
tively ideal effects in preventing sepsis incidence in ICU
patients; however, it still needs further improvement.
Therefore, we look forward to more validated machine
learning methods based on convenient, noninvasive, or
minimally invasive predictive indicators, which may have
significant performance and accuracy in predicting sepsis
incidence in ICU patients.
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Fig. 12 Test set c-index. In the test set, the random forest model was the most frequently employed machine learning model with a c-index of 0.83
(0.82,0.83) in 5 studies. In terms of performance, both the random forest model (n=5, c-index=0.83 (0.82,0.83)) and XGBoost (n=3, c-index=0.83
(0.82,0.84)) exhibited similar performance. The rest are SYM(n = 3) with c-index 0.66 (0.56, 0.78) SAPS Il (n=2) with c-index 0.76(0.73,0.79)

and SOFA(n = 3) with c-index 0.71(0.70,0.71)
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Fig. 13 Test set c-index. The LR(n=2), MLP(n=2) and NN(n=3) models showed c-index 0.81(0.77,0.85) 0.75(0.68,0.83) and 0.64(0.54,0.76)

Limitations
This study also has some limitations. First, this

study

focused on the accuracy of machine learning models and
did not include risk factors that lead to the high incidence

rate of sepsis in ICU patients. Second, some included
models contained special variables related to the diagnosis
of sepsis (such as infection indicators), which are valuable
for further validation and research in subsequent studies.
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