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Abstract. In this paper the topological approach to quantum Hall effects is carefully described. Commensu-
rability conditions together with proposed generators of a system braid group are employed to establish the
fractional quantum Hall effect hierarchies of conventional semiconductors, monolayer and bilayer graphene
structures. Obtained filling factors are compared with experimental data and a very good agreement is
achieved. Preliminary constructions of ground-state wave functions in the lowest Landau level are put
forward. Furthermore, this work explains why pyramids of fillings from higher bands are not counterparts
of the well-known composite-fermion hierarchy – it provides with the cause for an intriguing robustness
of ν = 7

3
, 8

3
and 5

2
states (also in graphene). The argumentation why paired states can be developed in

two-subband systems (wide quantum wells) only when the Fermi energy lies in the first Landau level is
specified. Finally, the paper also clarifies how an additional surface in bilayer systems contributes to an
observation of the fractional quantum Hall effect near half-filling, ν = 1

2
.

1 Introduction

Although the first experiment allowing for an observation
of the fractional quantum Hall effect (FQHE) was car-
ried out by Tsui, Stormer and Gossard in 1983 [1], the
real nature of this phenomenon is still not understood.
What do we know for sure is that the FQHE is a collec-
tive peculiarity resulting from strong interactions between
particles [2] and a specific two-dimensional (2D) topology.
Additionally, one of the basic prerequisites for an appear-
ance of Hall-like correlations is a flat band consisted of
states with the same kinetic energy – as in the case of al-
most degenerated Landau levels (LLs) in the presence of
interactions. However, recent experiments on suspended
graphene samples [3] revealed that the high value of mo-
bility – not considered earlier – also plays a triggering
role. This surprising feature puts into question all theo-
ries, which are based entirely on particle interactions and
neglect topology requirements, since they may not em-
brace the true physics of Hall systems. The well-known
Jain’s theory [4,5] – which introduces the concept of com-
posite fermions (CFs) – has its place among these mod-
els. Its popularity is owned to the fact that it can be
used to explain most (but not all) of the fractions evi-
denced experimentally in the lowest Landau level (LLL).
Thus, it was a great disappointment when scientists dis-
covered that the FQHE hierarchies from higher Landau
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levels (n > 0) are not counterparts of the Jain’s hier-
archy, which has been employed (by that time) with a
great success [6–12]. Furthermore, the appearance of addi-
tional even-denominator states – like 5

2 or 7
2 – in transport

measurements was impossible to predict within this local,
quasi-particle model. What was especially confusing – in
two-subband systems (wide quantum wells) – these paired
states were not developing when the Fermi energy was
placed in the zeroth Landau level of the higher-energy
subband [12]. Their emergence required a partial filling of
the first Landau level. What is more, the presence – in
bilayer systems [13–15] – of incompressible ν = 1

2 was also
confusing for Jain’s theory supporters. For all of these rea-
sons, in this paper, we introduce the cyclotron subgroups
model [16–23], which is based on the topology of two-
dimensional systems upon strong magnetic fields, to the
issue of the FQHE in higher Landau levels, in monolayer
and bilayer graphene.

The article is divided as follows: the second section
introduces the concept of a topological approach to quan-
tum Hall effects (concerning especially on a point-by-point
derivation of commensurability conditions and FQHE hi-
erarchies in the LLL); the following section explains the
difference between particle cyclotron orbit (as a represen-
tative of a braid group element) in the lowest and higher
Landau levels and its most significant consequences (a
possible single-loop FQHE, a particle pairing effect and
other) – the obtained results are compared with exper-
imental studies; the last section gives the prescription
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on how to use the cyclotron subgroup model in mono-
layer and bilayer graphene systems. The latter contains a
topological explanation of the occurrence of ν = 1

2 incom-
pressible state in bilayer materials. The comparison with
experimental findings is also provided. At the end of the
paper one can find the concluding remarks.

2 Cyclotron subgroups model

2.1 Full braid group and quantum statistics

The topological approach to quantum Hall effects – called
the cyclotron subgroup model [16–18,20–23] – is entirely
based on the mathematical concept of braid groups. The
full braid group of a multi-particle system contains all
closed trajectories encircled in an appropriate configura-
tion space and organised in homotopy classes [24,25],

π1 (Ω) = π1

((
MN \ Δ

)
/SN

)
(1)

where, π1 (Ω) – called the full braid group – is a homotopy
group of a system configuration space (Ω), N stands for
the number of electrons, M is a manifold (we will consider
only simply-connected) on which particles are placed, SN

denotes the permutation group and Δ (subtracted to pre-
serve the number of particles) removes points for which
particle positions (at least two) are the same. Note that –
due to the indistinguishability of particles – initial and fi-
nal orderings of carriers, while constructing elements of π1,
may differ by a permutation. It is also worth adding that
a configuration space for more than one particle is always
multiply connected, as a result of the Δ set ejection (while
constructing configuration space we ensure that coordi-
nates of a point from MN manifold, connected with po-
sitions of classical particles, do not overlap – Ω consists
topological defects). Finally, the full braid group is gener-
ated with elements (braids) σi, which describe exchanges
of neighbouring (classical, as MN coordinates) particles –
ith and (i + 1)th.

Before we proceed to a detailed explanation of the cy-
clotron subgroup model, let us comment the appearance
of paths in a π1 definition. It is very important to under-
stand that quantum particles do not travel braid trajecto-
ries, since (in the quantum world) particles do not travel in
trajectories at all. However, in agreement with the general
rules of quantization, a multi-particle wave function ΨN

needs to transform according to a one-dimensional unitary
representation (1DUR) of the system braid group [26]. In
other words, when classical particles (as arguments of ΨN

or MN coordinates) encircle a loop in their configuration
space, then the wave function acquires a phase shift in con-
sonance with the 1DUR of the braid, which corresponds
to this closed path.

Moreover, one can achieve the matching of topologi-
cal properties with quantum properties of a multi-particle
system by a quantization according to the Feynman path

integral method [27,28],

K (b, a) = lim
δt→0

( m

2πiδt

)n/2

×
∫

⎛

⎝
n−1∏

j=1

dqj

⎞

⎠ e
i
∑ n−1

j=0

(
mq̇j

2 −V (qj)
)

δt =
∫

dλeiS(λb,a)

(2)

where, K is the propagator – the probability of transition
from a-point at t = t1 to b-point at t = t2, q0, q1, . . . , qn

are midpoints of a chosen trajectory λa,b, V stands for the
potential, m symbolizes the particle mass and δt stands
for a time increment. Additionally, dλ is an interval in
the trajectory space. For all non-simply connected config-
uration spaces a supplementary summation over classes
of homotopic a-point to b-point trajectories – with weight
factors determined by a 1DUR of the braid group [29] –
has to be implemented in the integral definition. If one
considers two non-homotopic trajectories linking points a
and b, one will notice that they can be considered as iden-
tical open paths λa,b, but with different\non-equivalent
closed loops attached to them. Since these trajectories fall
into separate homotopy classes, thus a single measure dλ
in the path space cannot be defined. These collections can
be, however, distinguished from each other with the use
of elements from the system braid group, hence an addi-
tional summation over π1 (Ω) braids should be included in
the path integral with appropriate unitary factors. Finally,
the propagator takes the form of [29],

K (b, a) =
∑

l∈π1

eiαl

∫
dλle

iS(λl
b,a) (3)

where, l enumerates the braid group elements and λl
b,a

indicates an open trajectory λb,a between a and b points
with lth loop added. It is worth to mention that differ-
ent representations of the full braid group (and also dif-
ferent forms of π1) give rise to distinct quantum statis-
tics. For example, one can obtain bosons, σi = ei0, but
also fermions, σi = eiπ, using 1DURs of the permutation
group SN . If the full braid group has a far more rich struc-
ture – like in the case of 2D manifolds – the analyzation of
possible 1DURs may lead to an infinite number of quan-
tum particles (including bosons and fermions) with frac-
tional statistics, eiθ with θ ∈ [0, 2π) [16,17,20–22]. The
latter are called anyons.

In the standard, Jain’s [4,5], model of the fractional
quantum Hall effect it is impossible to distinguish compos-
ite from ordinary fermions, because they both experience
the same quantum statistics [16,20]. This is due to the
fact that 1DURs are periodic with a periodicity of 2π and
so eipπ = eiπ. In order to deal with this issue, we suggest
to associate CFs with the appropriately constructed braid
subgroups of π1 and in this way to differentiate them from
ordinary fermions characterized with the full braid group.
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2.2 System braid group and strong magnetic field

Note that some external factors may change the form of
braid group describing the system, by – for instance –
preventing the realization of some types of (classes of ho-
motopical) trajectories [16–23]. This effect (the reshaping
of a group) occurs in two-dimensional manifolds after the
inclusion of a strong magnetic field – when a classical cy-
clotron motion confines the variety of accessible braids. In
other words, if a particle cyclotron orbit (as a representa-
tive in the M space of a braid group element from the Ω
space) is too small to reach a neighbouring carrier, then
the occurrence of single-loop exchanges (representing gen-
erators σi of π1) is unallowed. This is the case of the LLL
fractional filling.

It is worth to mention, the multi-particle system needs
to have a determined statistics to form a collective Hall-
like state. Since the FQHE is actually observed, thus the
exchanges (of some type) have to be restored and the
particle cyclotron orbit (representing a braid group ele-
ment) needs to be enhanced, somehow. In a theory this
can be achieved in various ways, e.g., by screening the
external magnetic field – like for electrons with pinned
flux quanta [4,5], or by diluting a local charge – as for
electrons with q-fold vortices [4]. However, a natural way
to accomplish this enhancement is to exclude inaccessi-
ble homotopy classes from the braid group describing the
system. If – for an arbitrary filling factor – the remain-
ing braids can be organised in a subgroup of π1, then the
fractional quantum Hall state can be formed. Additionally,
the generators bi of this so-called cyclotron subgroup rep-
resent new exchanges (a closed path of any particle, which
represents bibi element, is characterized with a sufficiently
large area to reach one of classical-carrier neighbours). Fi-
nally, it should be clear that when a 2D system is placed
in a strong magnetic field, then the summation in a def-
inition of the Feynman propagator has to be confined to
elements of this restricted (not full) braid group.

2.3 Cyclotron subgroups and basic hierarchy of FQHE

Cyclotron subgroups do not contain simple\loopless ex-
changes of classical carriers (representing σi), but they are
consisted solely of elements belonging to the full braid
group (to have a π1 subgroup character) which are still
accessible after a magnetic field is applied. Thus, they are
generated with multi-loop exchange braids [16,17,20–22],

b
(p)
i = (σi)

p
, p = 3, 5, 7, . . . , i = 1, 2, . . .N − 1, (4)

where p enumerates different types of cyclotron sub-
groups. It is important to point up that generators can
have more complicated form – they can comprise various
σi, σj , . . . , σk elements (for i �= j �= . . . �= k). The latter
case will be described further in the paper. Note that the
b
(p)
i elements are represented by exchanges of neighbour-

ing, ith and (i + 1)th, classical particles with additional
p−1
2 loops. However, all exchanges have to form open tra-

jectories and, thus, only entire loops can be added to the

representative of a σi generator. In other words, the num-
ber of supplementary loops must be an integer, what en-
forces an odd value of p. Already at this point one can
suspect that this stands for a straightforward and topo-
logical explanation, why the fractional quantum Hall ef-
fect is observed only for odd denominator fractions (as a
first approximation, ignoring other effects like a pairing
of particles). It should be also emphasized that the b

(p)
i el-

ement is not represented by a path consisted of p simple
exchanges of electrons, since they cannot be performed in
a presence of a strong magnetic field in 2D spaces. The
(multi-loop) exchange is completed only after a realization
of the total trajectory defined by the cyclotron subgroup
generator. Furthermore, a cyclotron trajectory is always a
closed path and its simplest version is obtained with the
use of two multi-loop exchanges (when a statistics is deter-
mined and a system is described with a certain subgroup).
Finally, the cyclotron trajectory (as a mapping of a braid
group element from Ω on a M manifold) has p loops – this
quantity is equal to the total number of external magnetic
field flux quanta attributed to a particle in the case of 1

p

filling of the LLL.
The one-dimensional unitary representations of a cy-

clotron subgroup have the same form as 1DURs of π1 re-
stricted to this subgroup [16,17,20–22],

b
(p)
i → eipα, p = 3, 5, 7, . . . , i = 1, 2, . . .N − 1, (5)

where α ∈ [0, 2π). In a topological approach to quan-
tum Hall effects we argue that different pairs of param-
eters (α, p) describe distinct composite anyons (for α =
π – composite fermions), connected rather with original
anyons in the case of lack of an external magnetic field (for
α = π – original fermions). As it was already mentioned,
the multi-particle wave function ΨN transforms accord-
ing to the appropriate 1DUR of a braid group describing
the system (e.g., a cyclotron subgroup). Hence, when two
composite anyons are exchanging positions (as arguments
of ΨN), the multi-particle wave function acquire a phase
shift equal to pα (each supplementary loop appearing in
the cyclotron subgroup generator definition results in an
additional phase gain of 2α; Δβ = α + 2α · p−1

2 = pα). Fi-
nally, Δβ = pπ for composite fermions and it is equivalent
to the phase change picked up by the Laughlin function
(LF) [2],

Ψ
(L)
N (z1, z2, . . . , zN) =

N∏

i,j=1,i>j

(zi − zj)pe−
∑ N

i=1
|zi|2
4l2

(6)
where, zj = xj + iyj is a complex particle position and

l =
√

�c
eB is a magnetic length (distance). As one can see,

the composite fermions are not complexes of electrons with
external magnetic field flux quanta pinned to them (which
recover Laughlin correlations using Aharonov-Bohm ef-
fect [30]), but are rightful quantum particles described
with cyclotron subgroups of π1. Note that CFs cannot be
mixed up with ordinary fermions just as fermions cannot
be mixed up with bosons. Thus, while performing exact
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diagonalisations, not all antisymmetrical wave functions –
but only those, which transform itself according to the
1DUR of the proper cyclotron subgroup – should be taken
into account.

Let us now demonstrate the effective cyclotron path
enlargement process in less mathematical and more illus-
trative way. It is out of a question that, in the presence
of an external magnetic field, trajectories representing el-
ements of a system braid group are of cyclotron orbit type
even when Coulomb interactions are considered (though
they are not simple circles then). The surface they encircle
cannot be, however, determined with the use of a classical
free-particle radius, Rc = mv

eB . Instead, the cyclotron orbit
is defined by the archetype of correlated incompressible
state – the IQHE state. For this reason, the plaque with
the area,

S

N0
=

hc

eB
(7)

which embraces exactly one flux quantum (N0 stands for
a level degeneracy and a number of flux quanta), is the
definition of the cyclotron orbit (as a mapping of a braid
group element) in the whole LLL. Let us emphasise that
the cyclotron path (as a braid group element) defined
in this manner fits perfectly to the interparticle distance(

S
N0

= S
N

)
and consists of two simple\loopless exchanges

of neighbouring particles (as MN coordinates or argu-
ments of a wave function) [20,22]. Note that for degen-
erated Landau levels all particles should encircle the same
cyclotron area, even though the velocity cannot be prop-
erly determined (its coordinates do not commute). This
is due to the fact that all states have identical kinetic
energy and it is reasonable to assume that the classical
particles are also characterized with identical cyclotron
surface (similarly as in the semiclassical Onsager-Lifshitz
approach).

Lets consider a situation created after raising of an
external magnetic field strength. The number of parti-
cles (N) is now reduced comparing to the level degener-
acy (N0). Additionally, there is more than one flux quan-
tum attributed to a single classical carrier. For example,
BS
N /hc

e = p for N
N0

= 1
p filling. In spite of this, the sur-

face of a cyclotron orbit still embraces one φ0 = hc
e – it

is too small to reach a neighbouring carrier
(

S
N0

< S
N

)

and it cannot be implemented as a double simple\loopless
exchange. Since the FQHE is widely observed in experi-
ments, braid-group exchanges of particles have to be possi-
ble, even though generators of the full braid group cannot
be defined. We argue that (for some fractions) multi-loop
trajectories can have sufficient dimensions to reach neigh-
bouring particles and allow for multi-looped exchanges in
the system (representing cyclotron subgroup generators).
In order to prove this point consider a path consisted
of p loops (bear in mind that it can be generated as b

(p)
i b

(p)
i

element, if and only if corresponding b
(p)
i exchanges can be

defined). In 3D spaces each loop of a p-looped trajectory
adds a new portion of field flux quanta piercing the path,
in the same manner as circumvolution adds a new surface

Fig. 1. (a) In 3D spaces each loop of a multi-looped (here:
p = 3) cyclotron path adds a new portion of field flux quanta
piercing this trajectory, in the same manner as circumvolu-
tion adds a new surface to a coil. (b) In the same time, in 2D
manifolds a loop cannot enhance the surface encircled by the
trajectory and therefore cannot enhance its embraced flux. Fi-
nally, all three loops must share the same total quantity BS

N
,

which passes through a single-looped trajectory. Thus, an ar-
bitrary loop embraces a diminished portion of a magnetic field
flux, which appears to be equal to one in the case of ν = 1

3
fill-

ing
(

3·φ0
3

= φ0 = hc
e

)
; the same quantity as for the cyclotron

orbit in the LLL).

to a coil. In opposition, in 2D manifolds a loop cannot en-
hance the surface encircled by the trajectory and therefore
cannot enhance its embraced flux [16,17,20–22]. Finally,
all p loops must share the total, per particle quantity, BS

N ,
embraced by a single-looped path (Fig. 1). Thus, an ar-
bitrary loop embraces a diminished portion of a magnetic
field flux per particle, which is equal to one for ν = 1

p filling
(pφ0

p = φ0 = hc
e ); the same quantity as for the cyclotron

orbit in the LLL). Finally (when the LLL is 1/p filled), the
p-looped paths encircle grater surface than single-looped
ones, what leads to the effective enhancement of a cy-
clotron orbit (as a mapping on MN space of a trajectory
performed in a configuration space) and allows for the oc-
currence of (multi-looped, defined by b

(p)
i ) exchanges in

the system.
The reasoning described above is sufficient for under-

standing, why the FQHE occurs most robustly for fill-
ing factors – ν = 1

p (p – odd) – which belong to the
so-called basic set of the LLL. In the next subsection
we will demonstrate that particles may experience the
Hall effect also for some other, properly selected, fillings.
Additionally, the topological approach allows for solving
of the the odd-denominator puzzle, simply by noticing
that any cyclotron (multi-looped) trajectory divided into
half must produce a proper exchange (open) trajectory –
so p needs to be an odd number. If one takes into ac-
count this two results it becomes obvious, the most robust
fractional Hall-like state is related to the simplest multi-
looped exchange with only one additional loop

(
b
(3)
i

)
–

p−1
2 = 1 ↔ p = 3 – hence it created for a 1/3 filling
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of the LLL. It is also worth to emphasize that the math-
ematically non-trivial cyclotron subgroups model leads to
surprisingly compact commensurability conditions, which
allow for the determination of the FQHE filling factors.
The main meaning of mentioned conditions can be de-
scribed in one sentence: the quantum Hall effect can be
realized in the system if and only if the surface encircled
by a (single- or multi-looped) cyclotron path is equivalent
to the area attributed to a single particle. Thus, in the
LLL, this leads to an expression [18,19,22,23],

p
hc

eB
= p

S

N0
=

S

N
. (8)

Finally, one arrives with the expected solution, ν = N
N0

=
1
p (p – odd). The generalization of commensurability con-
ditions to higher Landau levels requires a bit of comment-
ing. Firstly, it should be obvious that cyclotron orbit di-
mensions need to be proportional to the bare (without a
crystal field) kinetic energy, hence the cyclotron surface is
quickly increasing – ∝ (2n + 1) – with the Landau level in-
dex, n. Secondly, in higher Landau levels, due to this rapid
growth, exist the possibility that the cyclotron trajectory
has too large dimensions to fit the interparticle separa-
tion. In this situation, the area encircled by a cyclotron
path also must be enhanced to allow for the exchanges of
particles with their higher-order neighbours. Conclusively,
the hierarchy of fillings for the FQHE can be determined
from the following equation [22],

p(2n + 1)
hc

eB
= p(2n + 1)

S

N0
=

aS

N − γN0
→ ν =

N

N0

= γ +
a

(2n + 1)p
(9)

where, integer γ is the number of completely filled Landau
sublevels and integer a reflects the complexity of accessible
exchange braids.

At the end of these considerations, we would like to
point out that Coulomb repulsion forces play a very impor-
tant role also in the topological approach to quantum Hall
effects [16,17,22,23]. As one could already notice, interac-
tions rigorously protect the minimal surface attributed to
a single particle, S

N , and they do not let neighbouring
carriers (classical – as arguments of ΨN) to violate this
guarded area. The formulation of a cyclotron subgroup
model for non-interacting systems would be precluded,
since along the trajectories belonging to π1 some other
paths could – sometimes – appear too (could be allowed
for a system).

2.4 FQHE hierarchy out of 1
q

fillings

We would like to point up that – in the case of 1
p filling

factors – the last loop of a p-looped trajectory experiences
a lower magnetic field (a reduced portion of flux quanta),
just like composite fermions in the standard model [4,5].

Thus, CFs are not complexes of electrons with p−1 local-
ized flux tubes but they are rightful quantum particles,
just like fermions or bosons, with their statistic deter-
mined from 1DURs of different cyclotron subgroups. It
should be noticed that – in the topological approach –
the equivalence between the number of magnetic field flux
quanta attributed to a single particle in a system and the
number of loops in a cyclotron path (representing a braid
group element) holds only for the basic set of fillings, what
was described in details in a previous subsection. Out of
ν = 1

p this correspondence cannot be assumed, since the
number of flux quanta per particle becomes fractional. In
the model of composite fermions one deals with a concep-
tion that, even for filling factors beyond the basic set, the
amount (p−1) of quanta pinned to particles is integer and
satisfies the condition,

± 1
m

φ0 = ν−1φ0 + (p − 1)φ0. (10)

In other words, the FQHE can be realized in the system
if and only if CFs completely fill m = 1, 2, 3, . . . Landau
levels in a diminished effective magnetic field. This leads
to the well-known Jain’s hierarchy [4,5],

ν =
(

(p − 1) ± 1
m

)−1

=
m

m(p − 1) ± 1
. (11)

It’s rather understandable that fluxes attached to elec-
trons are only artificial objects and do not exist. Consid-
ering, however, a great success of the CF model one can
conclude that this pinned quanta provide a convenient,
though simplistic, model of additional loops belonging to a
cyclotron trajectory [16,17,20,21]. In order to match these
two approaches one can assume that all p − 1 loops of a
multi-looped path (as mappings of bibi elements) embrace
a complete flux quantum per particle (each), while the
last one takes away the remaining portion per particle –
fractional for ν �= 1

p .
At the end of this section let us note that a cyclotron

orbit in the LLL is still defined with one φ0 and the quan-
tization rule is not obeyed with regard to the last loop of
a multi-looped path (for ν �= 1

p ). However, when the em-
braced portion is equal to the mth part of a flux quantum,

hc
meB , one can suspect that the organization of a collective
correlation can be achieved. In this situation the last loop
fits to the separation of an arbitrary particle (as a MN co-
ordinate) and its mth neighbour, and allows those classical
carriers to exchange (m hc

meB = hc
eB = φ0). Additionally, a

sign of the residual magnetic field flux can be – obviously –
positive, but also negative. The latter case is expected to
be associated with an eight-shape multi-looped trajectory,
whose last loop is rolled in an opposite direction to one
forced by the external magnetic field orientation.

Ultimately, the generalized (out of the most robust
set) hierarchy can also be established for higher Landau
levels [22],

ν = γ +
1

(2n + 1)
(

p−1
a ± 1

m

) = γ +
m

(2n + 1)
(
mp−1

a ± 1
)

(12)
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where, m and a are integers which satisfy the following
condition, a mod m = 0, and γ stands for the number
of completely filled Landau sublevels. This means that
cyclotron subgroups are generated by,

bi
(p),± =

(
σiσi+1 . . . σi+a−1 . . . σi+1

−1σi
−1

)p−1

× σiσi+1 . . . σi+m−1
±1 . . . σi+1

−1σi
−1 (13)

where, plus sign (also in Eq. (12)) stands for the genera-
tors represented by paths with the last loop encircled in
a direction forced by the external magnetic field, whereas
minus – by paths with the last loop encircled in an oppo-
site direction to one forced by the B field.

Presented considerations seem to be sufficient to con-
clude on a preliminary construction of a ground-state wave
function in the LLL (we have currently investigated only
a hierarchy with a plus sign in a denominator),

ΨN =
∏

i<j

(zi − zj)p
∏

k<l

(zk − zl)
p−1

e
− 1

4l02
∑

i |zi|2 (14)

where,

|k − l| mod a = 0, |k − l| mod m �= 0,

|i − j| mod m = 0. (15)

We point out that the above proposal takes into account
the order of accessible exchanges (the order of neighbours
which can be connected by a series of accessible exchanges)
and reflects the complexity of a generator. Additionally,
we do not need to implement any projection operators to
obtain a holomorphic function entirely located in the LLL.

3 Commensurability conditions
and higher Landau levels

In this part of the paper we are going to use the com-
mensurability conditions (introduced earlier) to derive all
filling factors – from higher Landau levels – for which a
2DEG system can form collective Hall-like states. As we
already mentioned, the area of a particle cyclotron orbit
(classical – as a representative of a system braid group
element) rapidly increases (∝2n + 1) with the Landau
levels index n. Thus, in higher bands there exists more
promising – that may lead to the ordinary or single-loop
FQHE [16,17,23] – situations, all of which are listed below:

1. Firstly, the cyclotron orbit (without any additional
loops – as a mapping of σiσi) may fit perfectly to the
interparticle separation. For particles located on the
first Landau level this leads to expressions,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2·1+1)·hc
eB = 3·S

N0
= S

N−2N0
→ ν = N

N0
= 7

3 ,

up-spin subband

(2·1+1)·hc
eB = 3·S

N0
= S

N−3N0
→ ν = N

N0
= 10

3 ,

down-spin subband.
(16)

A generalized condition for other Landau bands,

(2n+1)hc

eB
=

(2n+1)S
N0

=
S

N−γN0
→ ν = γ+

1
2n+1

(17)
where, γ = 2, 3, 4, . . . is the number of all completely
filled spin sublevels. Note that all filling factors de-
rived above are fractional and, thus, the quantum
Hall effect is realized even though a multi-particle sys-
tem is described with the full braid group and not
one of its cyclotron subgroups. For this reason, this
collective states correspond to the single-loop FQHE,
which rather resembles the IQHE than ordinary frac-
tional quantum Hall effect [18,19,23]. One should re-
mark that this novel phenomenon can appear only for
n > 0 Landau levels. Finally, the Laughlin correla-
tions – while considering the single-loop FQHE – are
described with a p = 1 power in the Jastrow poly-
nomial and loopless exchanges (just like in the IQHE
case), despite fractional quantization of a transverse
resistivity (just like in the ordinary FQHE case).

2. In the first Landau level there are two additional pos-
sibilities, which lead to the quantum Hall effect forma-
tion in a system described with simple exchanges, σi.
For example, the cyclotron orbit (as a representative
of a braid group element) may fit perfectly to the dis-
tance between any arbitrary particle and its second
neighbours (the single-loop FQHE),
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3hc
eB = 3S

N0
= 2S

N−2N0
→ ν = N

N0
= 8

3 ,

up-spin subband

3hc
eB = 3S

N0
= 2S

N−3N0
→ ν = N

N0
= 11

3 ,

down-spin subband.
(18)

The cyclotron orbit may, also, have sufficient surface to
allow exchanges of electrons (as coordinates of a point
in MN space) with their third neighbours,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3hc
eB = 3S

N0
= 3S

N−2N0
→ ν = N

N0
= 3,

up-spin subband

3hc
eB = 3S

N0
= 3S

N−3N0
→ ν = N

N0
= 4,

down-spin subband.
(19)

In this situation carriers (as ΨN arguments) are ex-
periencing the integer quantum Hall effect in com-
pletely filled subbands of the first Landau level. This
agrees with a simple intuition: since the IQHE in the
LLL is realized when adjoining particles can exchange,
thus in the first Landau level – where the classical cy-
clotron orbit is three times larger – the IQHE is real-
ized when a carrier can exchange with its third neigh-
bour [18,19,21–23].
A generalized condition for other Landau bands,

(2n+1)hc

eB
=

(2n+1)S
N0

=
aS

N−γN0
→ ν = γ+

a

2n+1
(20)
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Table 1. Typical semiconductors: filling factors obtained from commensurability conditions for all spin branches of the first
Landau level. FQHEs stands for single-loop fractional Hall states. A few hole states have been placed in brackets. Fractions
observed experimentally are marked with pink colour [6–10,31].

LL subb. IQHE, FQHEs Hall metal FQHE

1 ↑ 3, 7
3
, 8

3
, 13

6
, 25

12
, . . . 2 + 1

3(2− 1
m )

7
3
, 20

9

(
25
9

)
, 11

5
, 46
21

, 59
21

, . . .

2 + 1

3(2+ 1
m )

19
9

, 32
15

, 15
7

, 58
27

, 71
31

, . . .

2 + 1

3(2· 12− 1
m )

8
3
, 22

9
, 12

5
, 50
21

, 64
27

, . . .

2 + 1

3(2· 12+ 1
m )

20
9

(
25
9

)
, 34

15
, 16

7

(
19
7

)
, 62
27

, 76
33

, . . .

2 + 1

3(2· 13− 1
m )

3, 8
3
, 13

5
, 18

7

(
17
7

)
, 23

9
, 28
11

, 33
13

(
32
13

)
, . . .

1 ↓ 4, 10
3

, 11
3

, 19
6

, 37
12

, . . . 3 + 1

3(2− 1
m )

10
3

(
11
3

)
, 29

9
, 16

5

(
19
5

)
, 67

21
, 86

27
, . . .

3 + 1

3(2+ 1
m )

28
9

, 47
15

, 22
7

, 85
27

, 104
33

, . . .

3 + 1

3(2· 12− 1
m )

11
3

(
10
3

)
, 31

9
, 17

5

(
18
5

)
, 71
21

, 91
27

, . . .

3 + 1

3(2· 12+ 1
m )

29
9

, 49
15

, 23
7

, 89
27

, 109
33

, . . .

3 + 1

3(2· 13− 1
m )

4, 11
3

(
10
3

)
, 18

5

(
17
5

)
, 25

7
, . . .

where a is an integer number and determines which
neighbours can exchange (in a system described by
corresponding filling factor).

3. It is also possible that an electron (single-looped) cy-
clotron orbit is too small to allow for the exchanges
of neighbouring particles (of MN coordinates). In this
case, one needs to investigate whether the multi-looped
trajectories have sufficient area to match the inter-
particle distance and to admit the existence of multi-
looped exchanges – b

(p)
i with odd p. We have already

devoted a lot of time and effort to explain this issue in
the previous section, thus we are going to present only
final results here.
The commensurability conditions in the first Landau
level (Tabs. 1 and 2),
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p 3hc
eB = p 3S

N0
= aS

N−2N0
→ ν = N

N0
= 2 + a

3p ,

up-spin subband

p 3hc
eB = p 3S

N0
= aS

N−3N0
→ ν = N

N0
= 3 + a

3p ,

down-spin subband.
(21)

One can also establish the generalized (Jain-like) hier-
archies,

⎧
⎨

⎩

ν = 2 + 1

3( p−1
a ± 1

m ) , up-spin subband

ν = 3 + 1

3( p−1
a ± 1

m ) , down-spin subband
(22)

where p is an odd number of loops in a multi-looped
cyclotron path (as a mapping of a trajectory performed
in a configuration space) and integer m stands for a
magnetic field flux portion per particle, which falls on
the last loop.

Finally, in higher Landau bands,

p
(2n + 1)hc

eB
= p

(2n + 1)S
N0

=
aS

N − γN0

→ ν = γ +
a

(2n + 1)p
(23)

and the generalized hierarchy equals,

ν = γ +
1

(2n + 1)
(

p−1
a ± 1

m

) (24)

where, integer m stands for a magnetic field flux por-
tion which falls on the last loop of a p-looped trajectory
(and it defines which classical particles can exchange).
Commensurability conditions constructed for p − 1
loops experiencing different values of magnetic field
flux per particle seem also reasonable to investigate.
These loops can be divided into separate groups –
each collection comprises an even number of compo-
nents, αi, and is determined by the effective fraction
of a flux quantum attributed to a single particle, 1

ai
φ0.

In this case the cyclotron subgroups generators have
the following form:

bi
(p) =

(
σiσi+1 . . . σi+a1−1 . . . σi

−1σi+1
−1

)α1

× (
σiσi+1 . . . σi+a2−1

±1 . . . σi
−1σi+1

−1
)α2

. . .
(25)

while the pyramid of fillings is not a counterpart of a
well-known CF hierarchy,

ν = y +
1

(2n + 1)
(
α1

1
a1

± α2
1
a2

± . . . ± 1
m

) (26)
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Table 2. Typical semiconductors: filling factors obtained from commensurability conditions for all spin branches of the second
Landau level. IQHEp stands for the paired states, while FQHEs – for single-loop states. A few hole states have been placed in
brackets. Fractions observed experimentally are marked with pink colour [6–10,31].

LL subb. IQHE, FQHEs Hall metal FQHE

2 ↑ 5, 21
5

, 22
5

, 23
5

, 24
5

, 41
10

, . . . 4 + 1

5(2− 1
m )

21
5

, 62
15

, 103
25

, . . . 4 + 1

5(2+ 1
m )

61
15

, 102
25

, 143
35

, . . .

4 + 1

5(2· 12− 1
m )

22
5

, 64
15

, 106
25

, . . . 4 + 1

5(2· 12+ 1
m )

62
15

, 104
25

, 106
25

, . . .

4 + 1

5(2· 13− 1
m )

23
5

, 22
5

, 109
25

, . . . 4 + 1

5(2· 13+ 1
m )

21
5

, 106
25

, 149
35

, . . .

4 + 1

5(2· 14− 1
m )

24
5

, 68
15

, 112
25

, . . . 4 + 1

5(2· 14+ 1
m )

64
15

, 108
25

, 152
35

, . . .

4 + 1

5(2· 15− 1
m )

5, 14
3

, 24
5

, . . . 4 + 1

5(2· 15+ 1
m )

13
3

, 22
5

, 31
7

, . . .

2 ↓ 6, 26
5

, 27
5

, 28
5

, 29
5

51
10

, . . . 5 + 1

5(2− 1
m )

26
5

, 77
15

, 128
25

, . . . 5 + 1

5(2+ 1
m )

76
15

, 127
25

, 178
35

, . . .

5 + 1

5(2· 12− 1
m )

27
5

, 79
15

, . . . 5 + 1

5(2· 12+ 1
m )

77
15

, 129
25

, . . .

5 + 1

5(2· 13− 1
m )

28
5

, 27
5

, . . . 5 + 1

5(2· 13+ 1
m )

26
5

, 131
25

, . . .

5 + 1

5(2· 14− 1
m )

29
5

, 83
15

, . . . 5 + 1

5(2· 14+ 1
m )

79
15

, 133
25

, . . .

5 + 1

5(2· 15− 1
m )

6, 17
3

, . . . 5 + 1

5(2· 15+ 1
m )

16
3

, 27
5

, . . .

where, αi are even numbers and
∑

i αi + 1 = p (with p
being a number of loops in M -space trajectories which
represent bibi elements). Note that 1

m is a fraction of
a flux quantum per particle experienced by the closing
loop. To obtain correct braid group generators and rea-
sonable wave functions a supplementary requirement is
necessary, αi mod αj = 0 if i ≥ j.
It is worth to mention that also compressible states –
with particles moving freely like in a Fermi sea with-
out an external magnetic field – can be captured
within the topology-based approach to quantum Hall
effects. When carriers are building up these (so-called)
Hall metal states, then the system is described with
multi-looped cyclotron trajectories (representing com-
ponents of a proper cyclotron subgroup of π1) with the
last loop embracing zero flux quanta [16–23]. Lastly,
the hierarchy of corresponding filling factors can be
established from the generalized hierarchy after intro-
ducing of additional mathematical treatment, m → ∞
(or 1/m → 0),

ν = γ +
1

(2n + 1)(p − 1)
. (27)

4. Finally, also the pairing of electrons may occur (due
to the Fermi sea instability). This action results in a
double reduction of particle number and leads to new
commensurability conditions,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3hc
eB = 3S

N0
= 3

2 · S
N−2N0

→ ν = 5/2,

up-spin subband

3hc
eB = 3S

N0
= 3

2 · S
N−3N0

→ ν = 7/2,

down-spin subband
(28)

which can be written in a compressed form (exact for
all – except form the LLL – Landau levels),

(2n + 1)hc

eB
=

(2n + 1)S
N0

=
(2n + 1)

2
· S

N − γN0

→ ν = γ +
1
2
. (29)

Note that if one exchanges a real particle number for
a diminished number of paired particles – (2n+1)

2 ·
S

N−γN0
2

= (2n + 1) · S
N−γN0

– the above expression will

coincide with one previously presented for the IQHE.

3.1 Comparison with experiments

Hall effect investigations – or simply transport measure-
ments – are usually carried out in GaAs/AlGaAs quantum
wells symmetrically doped with silicon [6–10,31]. A high
electron density and mobility are normally achieved after
exposure to red light from a light-emitting diode (LED).
Additionally, samples ale cooled down to T ≈ 20−40 mK
in various types of refrigerators – dilution, demagnetiza-
tion or others – equipped with magnets [7,9,31]. Mea-
surements can also be performed in an ultra quiet envi-
ronment – an environment shielded from electromagnetic
noise [6]. What is highly important, all experiments per-
formed so far seem to confirm one, unique observation –
the FQHE hierarchies of filling factors from higher Landau
levels are not counterparts of the Jain hierarchy know from
the LLL [6,8,12]. This feature was a great surprise impos-
sible to predict within the standard CF model [4,5]. In
order to deal with this problem scientists presented many
possible explanations, mostly concerned on residual in-
teractions of composite fermions (and presence of many

http://www.epj.org
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Fig. 2. Transport parameters (longitudinal and transverse resistivities (a) and a longitudinal resistance (b)) as functions of an
external magnetic field. The temperatures – at which experiments were carried out – are indicated in the graphs. Additionally,
experimentally observed fractions are specified (for filling factors 32/13, 33/13, 11/4, 16/7, 9/4 only a small quantization accuracy
was achieved (a)). The graphs are prepared with the use of references [7,31].

competing ground states, leading to disappearance of the
fractional quantum Hall effect). However, it was quickly
established – with novel numerical calculations – that
complexes (electrons plus flux quanta) cannot generate
(in this manner) stable incompressible states observed in
transport measurements [6,32]. Finally, it was concluded
that “the physical mechanism, in which some of the CFs
turn into higher-order CFs and condense into new Landau
levels to exhibit a quantum Hall effect, does not appear to
be relevant for fully polarized electrons” – [32]. Nonethe-
less, due to the lack of a better explanation (within Jain’s
model), the idea of residual interactions is still used, while
the uneffectiveness of numerical calculations is attributed
to the Landau level mixing, the finite-thickness effect and
the unknown interaction characteristics not taken into
account [6,7].

It is worth to notice that all of these difficulties can be
omitted within the topological approach to quantum Hall
effects [16–23]. While analyzing considerations included in
the cyclotron subgroup model one will arrive with a con-
clusion that hierarchies in higher Landau levels have to
be different – comparing with the Jain’s hierarchy in the
LLL – due to the rapid enhancement of a particle cyclotron
orbit (classical – as a representative of a braid group ele-
ment) stimulated by the step growth of a kinetic energy,
Ek. The correctness of this model is further confirmed by
the fact that all experimentally observed fractions (some
of them are presented in Figs. 2 and 3) in the first and
second Landau levels can be found in Tables 1 and 2.

The other interesting feature, noticed in all experimen-
tal studies, concerns the robustness of the ν = 5

2 , 7
3 and

8
3 FQHE states – Figure 3. An unexpectedly high stabil-
ity of these fractions still lacks of its explanation, despite
the intensive research [7–9,11,31], within the Jain’s theory
of composite fermions [4,5]. In reference [8] we find that
“the energy gaps of the ν = 7

3 and 8
3 states are dispro-

portionally larger than what may be expected under the
standard model of FQHE in the LLL” and “we conclude
that the 7

3 , 8
3 states are unlikely to be the analogs of the

1
3 , 2

3 Laughlin correlated states”. Note that this findings
perfectly coincide with predictions based on the commen-
surability conditions [18,19,22,23]. All of this states (one
paired; 5/2; and two single-loop FQHE; 7/3, 8/3) are gen-
erated for the system described with the full braid group
(not a cyclotron subgroup) and simple\loopless exchanges
(not multi-loop). Thus, they are described by Laughlin
correlations with a p = 1 power in the Jastrow polyno-
mial and are – in a way – more similar to the IQHE than
the ordinary FQHE of particles. Lastly, their robustness
should exceed one connected with other (ordinary) filling
factors, what was precisely confirmed experimentally [8].

Additionally, let us discuss findings presented in refer-
ence [12], where transport measurements were conducted
with the use of a wide quantum well (≈56 nm). Note that
in structures of this type the particle motion (the kinetics)
is non-restricted only in a two-dimensional plane of a well,
while it is confined\quantized in a perpendicular direction.
This confinement leads to the breakdown of the conduc-
tion (and valence) band into a set of electric subbands
with energies of the edges proportional to m2

a2 (where m
is natural and symbolizes the subband number, while a
stands for the well width). In a typical Hall experiment

http://www.epj.org
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Fig. 3. A longitudinal resistance as a function of an external magnetic field in a high-mobility sample, μ = 28×106 cm2 V−1 s−1

(a) and in a low-mobility sample, μ = 10.5 × 106 cm2 V−1 s−1 (b). All experimentally observed fractions are indicated. Energy
gaps – in the units of the Coulomb energy – for several filling factors in a high-mobility sample (c). The graphs are prepared
with the use of reference [8].

very narrow wells are used to assure that electrons occupy
only the lowest subband. However, also transport mea-
surements performed in two-subband systems (wide quan-
tum wells, since grater width, a, results in smaller sepa-
ration in energy between the edges) are also enlightening.
For example, in reference [12] (Fig. 1) demonstrated that,
when the Fermi energy lies in the zeroth Landau level of
either of subbands, the even-denominator fractional quan-
tum Hall effect at 5

2 and 7
2 fillings is missing. Thus, the

appearance of this states requires that the Fermi level is
placed within the first Landau level (the case of a single-
subband system). This observation can be easily explained
when one notices that the growth of an electron cyclotron
orbit (classical, as a representative of a braid from the
π1) – forced by the change of a kinetic energy – is neces-
sary to obtain paired states in the multi-particle system
(expression (28) and Refs. [18,19,22,23]). Therefore, only
when electrons partially fill the first Landau level of an
arbitrary electric subband, the 5

2 and 7
2 states can be evi-

denced experimentally.
Finally, let us point out that the location of fractional

quantum Hall states close to the subband edges (in higher
Landau levels, n > 0) – derived from the cyclotron sub-

group model and visible in Tables 1 and 2 – is consistent
with experimental observations. Fractions, which are lying
in a vicinity of the integer ν filling, are probably disappear-
ing in its extended dip, what results in further flattening
of the main IQHE minimum in a longitudinal resistivity
measurement (Fig. 2 in Ref. [11]).

4 Commensurability conditions in monolayer
and bilayer graphene

In previous sections (and papers [16,17,21–23]) we showed
a detailed description of the topology-based model of
the FQHE. However, it was derived for typical low-
dimensional semiconductors and its use in a monolayer
and a bilayer graphene case should be properly explained.
To do so, let us examine all of the most important dissim-
ilarities between mentioned materials.

First, it should be noticed that in typical semicon-
ductors the energetic gap between Landau levels is con-
stant and equal to ΔE = �ωc (where ωc = eB

m∗c is a cy-
clotron frequency and m∗ is an effective mass). While in
both graphene structures, due to the gapless spectrum
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and the nonzero Berry phase (π or 2π), the LLs are not dis-
tributed equidistantly [33–36]. However, in the cyclotron
subgroups model only the kinetic energy, not the general
energy specified by LLs, plays a crucial role due to its pro-
portionality to the size of a particle cyclotron orbit (as a
M space mapping of a braid group trajectory from Ω).
Since the crystal field cannot affect the value of a kinetic
energy,

Ekin = �ωc

(
n +

1
2

)
(30)

the cyclotron orbit area is varying with a Landau level in-
dex, n, in the same manner for graphene, bilayer graphene
and other semiconductors. Additionally, the sublevel de-
generacy (which can be estimated, for example, as a max-
imum angular momentum eigenvalue, m, in the system of
surface S) is identical in every 2D structure [33,37],

N0 =
BS

hc/e
=

BS

φ0
(31)

where, S represent the sample surface (of two sheets in
bilayer graphene) and φ0 = hc

eB is a quantum of the mag-
netic field flux. Despite this, an important disparity be-
tween conventional 2DEG and graphene systems, which
will be reflected in the topological approach, is related
with an unequal number of Landau level subbands (or de-
grees of freedom like an electronic spin or an isospin) - two
in the case of typical systems (↑, ↓) and four in the case
of graphene structures (K

′ ↑, K
′ ↓, K ↑, K ↓).

There is also another difference in the energy spectra,
which leads to a distinct definition of a filling factor ν in
each of cases. In monolayer graphene samples the LLL lies
exactly in the Dirac point, while in bilayer samples – not
only lowest but also first Landau level [3,33–36,38]. Thus,
a half of the n = 0 level – and n = 1 for a bilayer – is placed
in the valence band and only a remaining half is avail-
able for free electrons from the conduction band. Hence,
it seems natural to define graphene and bilayer graphene
filling factors in terms of an electronic density measured
not from the bottom of the LLL, but from the bottom
of the lowest spin-valley branch placed in the conduction
band [3,33,36]. On that basis, a zero filling in graphene
(νg = 0) corresponds to two completely filled subbands of
the LLL, while in bilayer graphene – to four completely
filled subbands of the n = 0 and n = 1 Landau levels. Fi-
nally, the relation between filling factors takes the form of,

ν = νg + 2 = νbg + 4 (32)

where νg is a graphene filling ratio, νbg is a bilayer filling
ratio and ν describes all typical semiconductors.

The most important modification of the cyclotron sub-
groups model of a bilayer graphene is disclosed, when
one notices the appearance of an additional surface [19].
In opposition to other structures the bilayer graphene is
not strictly two-dimensional, what leads to the significant
change in its topological description. The mentioned fea-
ture results from the existence of the second sheet, which
lies in a close distance and its coupled by a nonzero hop-
ping integral (H – the Hamiltonian, ΦA2/B1 – the orbital

of an A2/B1 atom, where A2 and B1 are from different
layers),

γ1 =
〈
ΦA2

(
�r − �RA2

)∣
∣
∣H

∣
∣
∣ΦB1

(
�r − �RB1

)〉
(33)

to the first sheet. Hence, the electrons may freely change
positions between the opposite layers (or more accu-
rately – the carrier density is located in both layers). Ex-
changes of the neighbouring particles (representing braid
paths) may be, thus, realized with the participation of
electrons from different planes. Let us consider a situation,
when the cyclotron orbit, (2n+1)hc

eB , is too short to match
the interparticle distance in one layer. In such case, the
exchanges of (classical) neighbouring particles are impos-
sible and so is the creation of a collective Hall-like state.
The restitution of exchanges and the cyclotron radius en-
hancement can be achieved by p-looped trajectories (con-
structed with p−1

2 looped generators). For a typical semi-
conductor and monolayer graphene structures the area
encircled by these new multi-looped paths (each loop em-
brace exactly one flux quantum per particle when ν = 1/p)
equals to [17–19],

Sc = p · (2n + 1)hc

eB
. (34)

However, the result will be considerably different for bi-
layer graphene. Since loops of a multi-looped trajectory
may be located partly in both 2D sheets, one needs to
take into account the additional surface provided by the
second layer. It is expected that the most energetically ef-
ficient trajectory corresponds to the situation, when one
of loops embrace the surface arising from the supplemen-
tary plane, without contributing to the cyclotron area en-
largement process (its dimensions are not raised). In this
situation, the participation of this one loop (and so the
additional surface) in the fulfilment of a commensurabil-
ity condition must be avoided [19]. Finally, the remaining
loops must share the total flux per particle that passes
through a single-looped trajectory – that fits to the inter-
particle distance – independently how they are distributed
between two layers. The resulting cyclotron area,

Sc = (p − 1) · (2n + 1)hc

eB
. (35)

Proceeding subsections contain a detailed derivation of a
fractional quantum Hall effect hierarchy for both mono-
layer and bilayer graphene samples. Let us remind that
calculations are based on the assumption that a collec-
tive Hall-like state can be realized only when mutual ex-
changes of neighbouring particles (as MN coordinates or
arguments of a wave function, ΨN ) are possible, so a (clas-
sical) cyclotron orbit matches the minimal interparticle
distance protected by Coulomb repulsion forces. In a cor-
related multiparticle state, the exchanges – the system
braid group generators – are required for the statistics
determination. This is due to the fact that multi-particle
wave function transformed itself according to a 1DUR of
the system π1.
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4.1 Filling of the lowest Landau level

When the first spin-valley branch 0 K
′ ↑ of the LLL is

completely filled – a number of particles N coincides with
a subband degeneracy N0 – a cyclotron orbit fits perfectly
to a minimal particle distance. The latter statement is true
for both graphene structures. The cyclotron area can be,
hence, estimated from the following equation,

N = N0 =
BS

hc/e
→ S

N
=

S

N0
=

hc

eB
. (36)

As it was already explained, on the surface defined
from (36) falls exactly one flux quantum φ0. Let us once
again emphasise that the cyclotron orbit is a classical tra-
jectory, which is understood as a mapping of an element
from the system braid group. Though, paths represent-
ing braids from the π1 group are purely classical, it has
been proved that their features are reflected in quantum-
mechanical properties of multi-particle systems (1DURs
in the Feynman path integral formulation or in transfor-
mations of a wave function, ΨN ).

After a magnetic field of strength B is raised, the num-
ber of particles filling the 0 K

′ ↑ Landau sublevel becomes
smaller than its degeneracy N0. In this situation, the sim-
ple cyclotron path is too small, in comparison with a par-
ticle separation, to allow for exchanges in the system. To
create a fractional quantum Hall state the enlargement of
a cyclotron orbit is necessary and can be provided by the
use of multi-looped trajectories (described as a double im-
plementation of multi-looped exchange braids, which are
generators of an appropriate cyclotron subgroup). There-
fore, the commensurability condition in case of a mono-
layer graphene takes the form of,

S

N
<

S

N0

p
hc

eB
= p

S

N0
=

S

N

νg =
1
p

=
1
3
,

1
5
, . . . (37)

Analogical hierarchy, νh
g = 1 − 1

p = 2
3 , 4

5 , . . ., can be ob-
tained for holes in this spin-valley sublevel. It needs to
be clarified that they are not free holes from the valence
band – which due to a particle-hole symmetry may be as-
signed with free electron fractions νg taken with a minus
sign – but correspond to empty states in the almost filled
subband of the conduction band.

The generalized hierarchy (so-called Jain’s hierar-
chy [4,5]) can be established if one assumes that p−1 loops
from the multi-looped trajectory experience exactly one
external magnetic field flux quantum per particle, while
on the last loop falls only a 1

m fraction of φ0 (per particle),

νg =
(

(p − 1) ± 1
m

)−1

=
m

m(p − 1) ± 1
,

νh
g = 1 − m

m(p − 1) ± 1
(38)

with cyclotron subgroups generators of the form,

bi
(p),± = σi

p−1 ·σiσi+1 . . . σi+m−1
±1 . . . σi

−1σi+1
−1. (39)

If m is an integer, in the zeroth Landau level, then the
last loop fits to the minimal separation of every mth par-
ticle. However, one can expect some kind of a collective
state realization if m is fractional and equals to the inverse
number of flux quanta per particle calculated formally for
other fillings (from the same or oven other LLs). The latter
stands in opposition with the standard composite fermion
theory, where m is a number of a completely filled Landau
sublevels in a diminished effective magnetic field experi-
enced by CFs, so it must be an integer.

Even denominator filling factors that correspond to
the compressible states with particles moving freely like
in a Fermi sea without an external magnetic field, can
also be established from the cyclotron subgroup pic-
ture [16,17,21–23]. This fillings are described with multi-
looped trajectories with one of the loops taking zero flux
quanta per particle (specified with a mathematical treat-
ment m → ∞),

νg = ((p − 1))−1 =
1

(p − 1)
=

1
2
,

1
4
, . . . ,

νh
g = 1 − 1

(p − 1)
=

1
2
,

3
4
, . . . (40)

In a bilayer graphene, p-looped trajectories are also the
recipe for a particle exchanges restitution. However, this
material is consisted of two, not one, coupled layers. Thus,
one of the loops must utilize the supplementary surface
supplied by an additional sheet. This loop does not con-
tribute to a cyclotron orbit enlargement process (effec-
tive – the surface of a classical cyclotron orbit remains un-
changed and proportional to the magnetic field strength;
in 2D spaces, however, all loops must share the total sur-
face of a trajectory and the flux per particle quantity,
BS/N , thus each experiences a lower B field) and its di-
mensions are not raised [19]. Thus, remaining p− 1 loops
must share the same flux as passes through a single-looped
orbit, independently how they are distributed between two
layers. The resulting commensurability conditions take the
form of,

S

N0
>

S

N

(p − 1)
hc

eB
= (p − 1)

S

N0
=

S

N

νbg =
1

p − 1
=

1
2
,

1
4
, . . .

→ νh
bg = 1 − 1

p − 1
=

1
2
,

3
4
, . . . (41)

Note that the odd denominator fractions seem to form
the basic, most robust set in a bilayer graphene samples,
at least when a zeroth Landau level subband is filled
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Table 3. Monolayer graphene: filling factors obtained from commensurability conditions for all spin-valley branches of the
zeroth Landau level. Odd values of parameter p and integer values of parameter m are considered.

LL subb. IQHE Hall metal FQHE

0 K′ ↑ 1 1
2
, 1

4
, . . . 1

2− 1
m

1, 2
3
, 3

5
, 4

7
, 5

9
,. . .

1

2+ 1
m

1
3
, 2

5
, 3

7
, 4

9
, 5

11
,. . .

1

4− 1
m

2
7
, 3

11
, 4

15
,. . .

1
4+ 1

m

2
9
, 3

13
, 4

17
, . . .

0 K′ ↓ 2 3
2
, 5

4
, . . . 1 + 1

2− 1
m

2, 5
3
, 8

5
, 11

7
, 14

9
,. . .

1 + 1

2+ 1
m

4
3
, 7

5
, 10

7
, 13

9
, 16

11
,. . .

1 + 1
4− 1

m

4
3
, 9

7
, 14

11
,. . .

1 + 1

4+ 1
m

6
5
, 11

9
, 16

13
, . . .

Table 4. Bilayer graphene: filling factors obtained from commensurability conditions for all spin-valley branches of the zeroth
Landau level. Odd values of parameter p and integer values of parameter m are considered.

LL subb. IQHE Hall metal FQHE

0 K′ ↑ 1 1
3
, 1

5
, . . . 1

1+ 1
m

1
2
, 2

3

(
1
3

)
, 3

4
, 4

5
, . . .

1
3− 1

m

1
2
, 2

5
, 3

8
, 4

11
, . . .

1

3+ 1
m

1
4
, 2

7
, 3

10
, 4

13
, . . .

0 K′ ↓ 3 7
3
, 11

5
, . . . 2 + 1

1+ 1
m

5
2
, 8

3
, 11

4
, 14

5
, . . .

2 + 1
3− 1

m

5
2
, 12

5
, 19

8
, 26

11
, . . .

2 + 1

3+ 1
m

9
4
, 16

7
, 23

10
, 30

13
, . . .

at first. This result perfectly coincides with a recently pub-
lished transport measurements [13,14,39]. Additionally –
although one of loops is not participating in the cyclotron
orbit enlargement process – the total number of loops still
equals p, resulting in the b

(p)
i = σp

i form of cyclotron sub-
group generators and Laughlin correlations with p power
in a Jastrow polynomial.

In this picture, a generalized hierarchy – described by
trajectories with one loop embracing fractional 1

m part of
an external magnetic field flux quantum – emerge as,

νbg =
m

m(p − 2) ± 1
,

νh
bg = 1 − m

m(p − 2) ± 1
. (42)

One should realize that also odd (not only even) de-
nominator fractions, which are observed experimen-
tally [15,39–41], appear in a topology-based model. For
example,

νbg =
2

2 · (3 − 2) + 1
=

2
3

or νbg =
2

2 · (5 − 2) − 1
=

2
5
.

(43)

The commensurability conditions (in both graphene struc-
tures) remain unchanged in the next subband of the lowest
Landau level 0K

′ ↓, hence the obtained FQHE hierarchy
is identical, only shifted by a number of completely filled
sublevels. The filling ratios νg and νbg are presented in a
Tables 3 and 4.

4.2 Filling of the first Landau level

In following considerations we assume – what holds for a
standard experimental setup [39] – that the sublevels of
the n = 0 LL and n = 1 LL are filled alternately in a
bilayer graphene case (sequence: 0 K

′ ↑, 1 K
′ ↑, 0 K

′ ↓,
1 K

′ ↓). In the same time, in a monolayer graphene, states
are filled level by level (sequence: 0 K

′ ↑, 0 K
′ ↓, 1 K

′ ↑,
1 K

′ ↓).
When a magnetic field strength is decreased B < B0,

particles begin to occupy the first Landau level. During
this process electrons located on a partially filled subband
(1 K

′ ↑) experience the fractional quantum Hall effect,
which is accompanied by the IQHE of remaining parti-
cles placed on completely filled spin-valley branches lying
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lower on an energy axis. The area of an arbitrary fermion
cyclotron orbit (representing element from π1) in the first
Landau level is considerably different and equals to,

(2 · 1 + 1)
hc

eB
= 3

hc

eB
. (44)

This sudden growth allows for a realization of new com-
mensurability conditions, all of which are listed below
(1 K

′ ↑ LL),

1. The cyclotron orbit may fit perfectly to the interparti-
cle separation, which allows for the exchanges of neigh-
bouring particles (classical – as coordinates of a point
in the MN space). In a monolayer graphene case this
leads to the expression,

3
hc

eB
= 3

S

N0
=

S

N − 2N0

→ νg =
7
3

= 2 +
1
3
, νh

g = 3 − 1
3

=
8
3
. (45)

Similarly for a bilayer material,

3
hc

eB
= 3

S

N0
=

S

N − N0

→ νbg =
4
3

= 1 +
1
3
, νh

bg = 2 − 1
3

=
5
3
. (46)

One should notice that the inequality of obtained frac-
tions, νg and νbg, results solely from a different num-
ber of the completely filled spin-valley subbands, 2N0

and N0. Additionally, although the multi-looped tra-
jectories were not implemented, all filling factors are
fractional. Thus, these states correspond to the single-
looped FQHE, rather than the ordinary FQHE [19].
Note that this novel phenomenon is possible only for
n > 0. Even though it is characterized with a frac-
tional quantization of a transverse resistivity (just like
the ordinary FQHE), the Laughlin correlations are de-
scribed with a p = 1 power in the Jastrow polynomial
and a braid group describing the system is generated
with loopless generators. Thus, exchanges (as repre-
sentatives of generators of a system braid group) are
single-looped and similar to that in the IQHE. It also
seems that this states might be more robust than the
ordinary fractional quantum Hall states, what was al-
ready confirmed experimentally [42].

2. It is also possible that the surface of a cyclotron orbit
(circled in M space and standing for a mapping of
a closed trajectory from configuration space) matches
the distance of every second,

3
hc

eB
= 3

S

N0
=

2S

N − 2N0
→ νg =

8
3
, νh

g =
7
3
,

3
hc

eB
= 3

S

N0
=

2S

N − N0
→ νbg =

5
3
, νh

bg =
4
3
. (47)

or every third particle,

3
hc

eB
= 3

S

N0
=

3S

N − 2N0
→ νg = 3,

3
hc

eB
= 3

S

N0
=

3S

N − N0
→ νbg = 2. (48)

(Obtained filling factors correspond to the single-loop
FQHE and the IQHE, since the cyclotron trajectories
are created using simple – without additional loops –
exchanges.)

3. The most interesting situation occurs when an area of a
particle cyclotron orbit is too small to reach electron’s
nearest neighbour and to provide exchanges in the sys-
tem (to provide σi generators). However, to form a
collective Hall-like state they are necessary and need
to be restored with the use of multi-looped trajecto-
ries [16,17,21–23]. Finally, this commensurability con-
dition leads to the following hierarchy in monolayer
graphene,

S

N0
>

S

N

p3
hc

eB
= p3

S

N0
=

S

N − 2N0

νg =
6p + 1

3p
= 2 +

1
3p

=
19
9

,
31
15

, . . .

→ νh
g = 3 − 1

3p
=

26
9

,
44
15

, . . .
(49)

and bilayer graphene,

S

N0
>

S

N

(p − 1)3
hc

eB
= (p − 1)3

S

N0
=

S

N − N0

νbg =
3(p − 1) + 1

3(p − 1)
= 1 +

1
3(p − 1)

=
7
6
,

13
12

, . . .

→ νh
gb = 2 − 1

3(p − 1)
=

11
6

,
23
12

, . . .
(50)

The generalized hierarchies can be established in the
same manner as described in the previous subsection,

νg = 2 +
1

3
(
p − 1 ± 1

m

) , νh
g = 3 − 1

3
(
p − 1 ± 1

m

)

νbg = 1 +
1

3
(
p − 2 ± 1

m

) , νh
bg = 3 − 1

3
(
p − 2 ± 1

m

) .

(51)

Exemplary fractions are presented in Tables 5 and 6.
Once again we emphasize that other commensurability
conditions are worth to consider. Note that a multi-
looped trajectory may also fit to the separation of ev-
ery ath particle (a = 1, 2, 3, . . .). Obtained generalized
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Table 5. Monolayer graphene: filling factors obtained from commensurability conditions for all spin-valley branches of the first
Landau level. IQHEp stands for the paired states, while FQHEs – for single-loop states.

LL subb. IQHE, IQHEp, FQHEs Hall metal FQHE

1 K ↑ 3, 5
2
, 7

3
, 8

3
, 13

6
, 25

12
, . . . 2 + 1

3(2− 1
m )

7
3

(
8
3

)
, 20

9
, 11

5
, . . .

2 + 1

3(2+ 1
m )

19
9

, 32
15

, 15
7

, . . .

2 + 1

3(2· 12− 1
m )

8
3

(
7
3

)
, 22

9

(
23
9

)
, 12

5

(
13
5

)
, . . .

2 + 1

3(2· 12+ 1
m )

20
9

, 34
15

, 16
7

, . . .

2 + 1

3(2· 13− 1
m )

3, 8
3
, 13

5

(
12
5

)
, 18

7

(
17
7

)
,. . .

1 K ↓ 4, 7
2
, 10

3
, 11

3
, 19

6
, 37

12
, . . . 3 + 1

3(2− 1
m )

, 10
3

(
11
3

)
, 29

9
, 16

5
, 67

21
, . . .

3 + 1

3(2+ 1
m )

28
9

, 47
15

, 22
7

, . . .

3 + 1

3(2· 12− 1
m )

11
3

(
10
3

)
, 31

9
, 17

5

(
18
5

)
, . . .

3 + 1

3(2· 12+ 1
m )

29
9

, 23
7

, 49
15

, . . .

3 + 1

3(2· 13− 1
m )

4, 11
3

(
10
3

)
, 18

5

(
17
5

)
, 25

7

(
24
7

)
, . . .

1 K
′ ↑ 5, 9

2
, 13

3
, 14

3
, 25

6
, 49

12
, . . . 4 + 1

3(2− 1
m )

, 13
3

(
14
3

)
, 38

9
, 21

5
, . . .

4 + 1

3(2+ 1
m )

37
9

, 62
15

, 29
7

, . . .

4 + 1

3(2· 12− 1
m )

14
3

(
13
3

)
, 40

9
, 22

5

(
23
5

)
,. . .

4 + 1

3(2· 12+ 1
m )

38
9

, 64
15

, 30
7

, . . .

4 + 1

3(2· 13− 1
m )

5, 14
3

(
13
3

)
, 23

5

(
22
5

)
, 32

7

(
31
7

)
, . . .

1 K
′ ↓ 5, 11

2
, 16

3
, 17

3
, 31

6
, 61

12
, . . . 5 + 1

3(2− 1
m )

, 16
3

, 47
9

, 26
5

, . . .

5 + 1

3(2+ 1
m )

46
9

, 77
15

, 36
7

, . . .

5 + 1

3(2· 12− 1
m )

17
3

, 49
9

, 27
5

, . . .

5 + 1

3(2· 12+ 1
m )

47
9

, 79
15

, . . .

5 + 1

3(2· 13− 1
m )

6, 17
3

, 28
5

, 39
7

, . . .

hierarchies have additional weight factors in a filling
factor denominator,

νg = 2 +
1

3
(

p−1
a ± 1

m

)

νbg = 1 +
1

3
(

p−2
a ± 1

m

) (52)

where, m and a are integers and need to satisfy the
condition, m mod a = 0.

4. The last condition assumes the possible pairing of elec-
trons (to create bosons), what results in a double re-
duction of particle number,

3
hc

eB
= 3

S

N0
= 1.5

S

N − 2N0
→ νg =

5
2

3
hc

eB
= 3

S

N0
= 1.5

S

N − N0
→ νbg =

3
2
. (53)

If one exchanges, in the above equation, the real parti-
cle number for a diminished number of paired particles,
then the expression will coincide with one previously
presented for the IQHE (a phenomenon described with
a p = 1 in Jastrow polynomial).

Similarly as in the lowest Landau level, the presented con-
ditions remain unchanged in the next subbands (three
in the case of monolayer and one in the case of bilayer
graphene) of the first LL, hence the received quantum
Hall hierarchy is identical, only shifted by a number of
completely filled sublevels.

It is also very easy to derive commensurability require-
ments in the higher Landau levels. The only modification
appears in the surface of a particle cyclotron orbit (classi-
cal), which will fit to separation of every (2n+1)th particle
in the case of a completely filled (arbitrarily chosen) spin-
valley branch of the nth Landau band.
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Table 6. Bilayer graphene: filling factors obtained from commensurability conditions for all spin-valley branches of the first
Landau level. IQHEp stands for the paired states, while FQHEs – for single-loop states.

LL subb. IQHE, IQHEp, FQHEs Hall metal FQHE (ordinary)

1 K
′ ↑ 2, 3

2
, 4

3
, 5

3
, 4

3
, 10

9
, . . . 1 + 1

3(1− 1
m )

5
3

(
4
3

)
, 3
2
, 13

9
, 17

12
, . . .

1 + 1

3(1+ 1
m )

7
6
, 11

9
, 5

4
, 19

15
, 23

18
, . . .

1 + 1

3( 1
2+ 1

m )
4
3
, 13

9
, 3

2
, 23

15
, 14

9
, . . .

1 + 1

3( 1
3+ 1

m )
3
2
, 5
3
, 7
4
, 9

5
, . . .

1 K
′ ↓ 4, 7

2
, 10

3
, 11

3
, 10

3
, 28

9
, . . . 3 + 1

3(1− 1
m )

11
3

(
10
3

)
, 7
2
, 31

9
, 41

12
, . . .

3 + 1

3(1+ 1
m )

19
6

, 29
9

, 13
4

, 49
15

, 59
18

, . . .

3 + 1

3( 1
2+ 1

m )
10
3

, 31
9

, 7
2
, 53

15
, 32

9
, . . .

3 + 1

3( 1
3+ 1

m )
7
2
, 11

3
, 15

4
, 19

5
, . . .

Finally, it should be already clear how additional layers
of carbon atoms influence the quantum Hall effect consid-
erations in graphene structures. Any multi-looped trajec-
tory may be located partly in all of the planes, so they
must be taken into account while constructing commen-
surability conditions. As in the case of bilayer graphene,
the most energetically efficient arrangement is achieved
when exactly one loop embrace the additional surface
of an added sheet. Thus, l loops in the case of (l + 1)-
layer graphene are wasted on utilization of supplementary
planes, and only remaining p − l can take part in a cy-
clotron orbit area enhancement. This loops must share
the total flux that passes through a single-looped path fit-
ting to the interparticle distance, independently how they
are distributed between all of the layers.

4.3 Comparison with experiments

Experiments carried out on graphene and its bilayer ver-
sion are exceptional in many ways. For example, it is
possible to modify – with a lateral gate voltage (Vbg <
10 V to avoid collapse induced by electrostatic attrac-
tion [43]) – the carrier density in a fixed external magnetic
field strength, what was not practised in standard 2DEG
structures. Additionally, as a result of a small dielectric
constant and a great value of energy gap between Landau
levels near Dirac points, the anomalous IQHE in mono-
layer graphene appeared to be extremely robust – the well-
defined plateau in transverse resistivity was revealed even
in room temperatures [44]. Currently mainly two sam-
ple structures – suspended [45] and placed on a boron-
nitride substrate [46] – are used to develop fractional
quantum Hall features in monolayer and bilayer graphene.
This dominance can be explained with a great purity of
these samples, which allows for the obtainment of ultra-
high carrier mobilities [47]. Furthermore, at least three
measuring techniques are worth to consider: the Hall-bar
(four-terminal) geometry [3,39,40,42,48], the two-terminal

geometry [43,49–51] and the local electronic compressibil-
ity measurements [15,52,53].

Firstly, experiments performed on monolayer graphene
with the use of four-terminal devices appeared to be re-
markably unsuccessful [47], due to small dimensions of
samples and the interfering nature of electrodes [50,54].
The invasive voltage-probing contacts (connected directly
to the area of a device studied by transport measure-
ments) – placed closely to large potential drop regions
and the current-probing terminals – acted like heat sinks,
thus allowing electrons with a high value of kinetic en-
ergy to leak out through them. This property resulted
in the non-effective current annealing [54] – adsorbates
were redistributed over a graphene flake, rather than re-
moved from a device body – and in the shorting out of
the Hall voltage [50]. The progress was made after the in-
troduction of non-interfering electrodes, connected with a
sample by etched constrictions [54]. Finally, many of the
FQHE filling factors evidenced experimentally in mono-
layer graphene were observed in the Hall-bar geometry
measurements [3,42,48]. Moreover, the experiment carried
out in this technique by Amet et al. (Ref. [42]) was the
first one to disclose a plethora of collective Hall-like states
in the first Landau level (a few single-loop FQHE states
had already been presented in the Yacoby group paper,
Ref. [53]) – Figure 4. It is also worth to mention that only
a separate determination of the longitudinal conductiv-
ity, σxx, and the transverse one, σxy, allows for the ob-
servation of fragile (due to small energy gaps) fractional
quantum Hall states in bilayer graphene. Since this re-
quirement is unattainable in two-terminal devices – at
least not in a straightforward manner (the conductance
G actually depends on both σxx and σxy) – the Hall-bar
geometry and the local electronic compressibility measure-
ments dominated the FQHE experiment in bilayer mate-
rials [15,39,40]. For example, the four-terminal technique
made possible observation of a new incompressible state,
ν = 1

2 , which did not occur in standard, two-dimensional
heterostructures [13,14,39] – Figure 5. Let us emphasise,
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Fig. 4. The longitudinal resistance of a monolayer graphene sample as a function of a magnetic field and a filling factor.
Rxx ≈ 0.2 kΩ is colored dark blue, while Rxx ≈ 1 kΩ is colored white. Fractions corresponding to the ordinary FQHE realized
in the first Landau level are marked with a blue colour. The diagram is based on a measurement presented in reference [42].

Fig. 5. The longitudinal resistance of a bilayer graphene sam-
ple as a function of a magnetic field and a filling factor.
Rxx ≈ 0 kΩ is colored dark red, while Rxx ≈ 4 kΩ is colored
bright yellow\white. The diagram is based on a measurement
presented in reference [39].

that this novel fraction took place of a famous ν = 1
3 – a

chief filling factor belonging to the Jain’s hierarchy [4,5].
Although the appearance of ν = 1/2 cannot be explained
within the composite fermion theory [4,5], the necessity of
its occurrence can be easily explained within the cyclotron
subgroup model. Though, possible braid subgroups of con-
ventional 2DEG structures (in a magnetic field) are very
similar to those of bilayer graphene, in the latter case one
loop from a p-looped cyclotron trajectory (a representa-
tive of a homotopy class belonging to the system π1) needs
to utilize an additional surface (layer). As a result, only
residual p−1 loops share the total, BS/N quantity – [19] –
Table 4.

Two-terminal measurements were crucial for the devel-
opment of the FQHE experiment and a general knowledge
about the intrinsic structure of monolayer graphene (es-
pecially at the time, when Hall-bar measurements were
unsuccessful). It was this geometry that allowed for the
first observation of a ν = 1

3 incompressible state [43,51] –
and many others [49,50] – in graphene. It is, however,
worth to mention that obtaining a detailed description
of a collective-Hall like state by using two-terminal de-
vices is not easy nor immediate [47,50]. This feature is
caused by the fact that a received conductance, G, de-
pends not only on a transverse, but also on a longitu-
dinal conductivity. Thus, the estimation of quantitative
parameters – like an excitation gap or σxy (even near

σxx ≈ 0 points) – requires an appropriate theoretic ap-
proach [50]. The latter can be performed with the use of
a so-called Gaussian model, where an effective width-to-
length ratio of a graphene flake together with longitudinal
conductivity peak positions and widths, for plateau-to-
plateau transitions between two different collective states
(ν1 < ν2), are treated as variables [50]. The transverse con-
ductivity, and so the conductance, can be estimated from a
semicircle relation, σ2

xx = (σxy − ν1) (ν2 − σxy). The basic
consequence of these difficulties is the inability to obtain
well-defined FQHE states in bilayer graphene samples. In
one of the papers (presenting two-terminal measurement
results) was included an experiment, which intended to
demonstrate the existence of a fractional quantum Hall
state near ν = 0.33 in bilayer samples, but – due to the
lack of a strong plateau – it was treated with scepticism
and caution [41].

Due to a non-zero disorder level, typical measuring
techniques supply only an average (blurry) view of the
studied transport parameters [49]. Since monolayer and
bilayer graphene samples may be much cleaner on a
nanometer scale, thus probing a smaller area may re-
veal fragile, interaction-induced effects absent in two-
and four-terminal experiments (Figs. 6 and 7). Hence, it
should not be surprising that local electronic compressibil-
ity measurements (performed with single-electron transis-
tors) have recently gained a lot of interest [15,52,53]. Ad-
ditionally, they have been especially successful in locating
of collective FQHE states within the LLL of monolayer
graphene [52,53] and within higher Landau levels of a bi-
layer material [15].

Hierarchies obtained from the commensurability con-
ditions for two lowest Landau levels of monolayer and bi-
layer graphene were presented in Tables 3–6. Note that
the appearance of all experimentally observed fractions –
marked with a pink colour – can be explained within the
topological approach to quantum Hall effects. Some of
the already measured filling factors can be found in Fig-
ures 4–7. It is worth to emphasise that collective Hall-like
states from the first Landau level (with x = 1) seem to
gather closely to the subband rims (identified by an in-
teger ν). Thus, the FQHE features disappear in highly
lengthy dips of a longitudinal resistivity connected with
the IQHE. The resultant mixing leads to further extending
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Fig. 6. The inverse compressibility measurements for monolayer graphene samples. dμ
dn

is displayed as a function of a magnetic

field strength and a filling factor. In picture (a) dμ
dn

≈ 4 × 10−17 eV m2 (≈2 × 10−16 eV m2 in (b)) is marked with a dark red

colour, while dμ
dn

≈ −2 × 10−17 eV m2 (≈−1× 10−16 eV m2 in (b)) is colored with a dark blue colour. The diagram (a) is based
on a measurement presented in reference [52] and the diagram (b) – on a measurement presented in reference [53].

Fig. 7. The inverse compressibility measurements for a bilayer
graphene sample. dμ

dn
is displayed as a function of a magnetic

field strength and a filling factor. In the picture dμ
dn

≈ 5 ×
10−18 eV m2 is marked with a dark red colour, while dμ

dn
≈ −5×

10−18 eV m2 is colored with a dark blue colour. The diagram
is based on a measurement presented in reference [15].

of these already large minimums. These predictions are
consistent with experimental observations in monolayer
graphene, since a great amount of the theoretically de-
rived Hall-like states stay beyond the resolution ability
of measurement techniques. Additionally, the higher the
Landau level index is (n), the more and more fractions
are pushed towards the subband edges. Note that similar
accumulation effect occurs also for higher order commen-
surability conditions (with x = 2 or x = 3), but sets of
fractions are located closer to the center of a spin branch –
this is clearly visible in Figure 4.

Finally, we would like to once again point out that –
in higher Landau levels – states with fractionally quan-
tized σxy may not be responsible for the ordinary FQHE
well known from the LLL. If the collective effect is real-
ized in a system described with the full braid group and
not a cyclotron subgroup, its nature is assumed to be of

the single-loop FQHE type [18,19,22,23]. This novel phe-
nomenon rather resembles the IQHE – due to p = 1 power
in the Jastrow polynomial and loopless exchanges – than
the ordinary FQHE. Our conclusions seem to agree with
a recently published experiment performed by Goldhaber-
Gordon group (Fig. 1c in Ref. [42]). Dips in a longitudinal
resistance associated with filling factors ν = 8

3 , 10
3 , 11

3 , 13
3

are developing – in this paper – for magnetic fields as
low as 5 T. Thus, the mentioned minima are appearing
in fields comparable to those associated with integer ν. It
is also worth to emphasize that this happens before the
famous ν = 1

3 state – and its ν = 4
3 twin from the second

spin-valley subband of the LLL – emerges. Hence, not all
one-third fractions are of the same robustness, what was
already predicted by a topology-based approach.

5 Concluding remarks

In this paper we presented a detailed description of the
topological approach to quantum Hall effects, which is
called the cyclotron subgroup model [16–23]. This innova-
tive idea is based on the assumption that a collective Hall-
like state can be organised only when the particle statis-
tics is determined and, thus, the system is described with
the full braid group or its proper subgroup [26]. In two-
dimensional spaces, the cyclotron motion may confine the
variety of accessible multi-particle trajectories (represent-
ing braids or, in other words, elements of π1 (Ω), where Ω
is a configuration space). For example, when the surface of
a cyclotron orbit (classical – as a mapping of a trajectory
performed in the configuration space onto the manifold
on which particles are placed) is smaller than the mini-
mal area attributed to a single particle (S/N , protected
with Coulomb repulsion forces), then simple exchanges (or
more precisely generators of the full braid group) cannot
be realized. For this reason, the external magnetic field
appearance may result in the reduction of a collection of
permitted classes (containing homotopical trajectories).
Finally, only when a subgroup of the full braid group
can be created from this reduced set, then the statistic
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can be determined and the Hall effect can be organised.
Additionally, the (cyclotron) subgroups of π1 are gener-
ated with multi-loop exchanges of neighbouring particles
(classical not quantum – as coordinates of a point in MN

space) that for specified filling factors, have sufficient sizes
to replace inadmissible simple\loopless exchanges, σi. In
this paper we also provided a proof that the topological
approach leads to surprisingly compact commensurabil-
ity conditions, which allow for the determination of the
FQHE ν in all Landau levels. Their main meaning can be
described in one sentence: the quantum Hall effect can be
experienced by electrons\holes in the system if and only
if the surface encircled by a single- or multi-looped cy-
clotron path (as a representative of an element from the
system braid group, not a quantum particle trajectory) is
equivalent to the area attributed to a particle (or a group
of particles).

The LLL hierarchy proposed by Jain [4,5] – which cor-
rectness was confirmed experimentally – can be deduced
from commensurability requirements. Transport measure-
ments [6–12,31] revealed that pyramids of filling factors
belonging to higher Landau levels, n > 0, are not coun-
terparts of the Jain’s hierarchy and are difficult to derive
from the standard model of composite fermions (usually
an unclear residual interaction of CFs is employed). This
feature can be, though, easily explained within the cy-
clotron subgroup model – the hierarchies need to be dif-
ferent due to the rapid enhancement of a particle cyclotron
orbit (stimulated by a step change of the kinetic energy,
Ek ∝ 2n+1). The accuracy of our topological approach is
further confirmed by the fact that all experimentally ob-
served fractions are components of the commensurability
condition based pyramids of ν (Tabs. 1, 2 and also 5, 6).

Furthermore, the analysis of the cyclotron subgroup
model leads to determination of a new multi-particle ef-
fect in higher Landau levels, which is called a single-
loop FQHE [18,19,22,23]. Even though this novel phe-
nomenon is characterized with a fractional quantization
of a transverse resistivity (just like the ordinary FQHE),
the Laughlin correlations of some fraction of particles
(Halperin class function) are described with a p = 1 power
in the Jastrow polynomial and a braid group of the system
is generated with loopless elements. Thus, exchanges are
simple and similar to that in the IQHE. It also seems that
states correlated with this effect should be more robust
than ordinary fractional quantum Hall states, what was
already confirmed experimentally in typical semiconduc-
tor structures [7–9,11,31] and graphene [42].

In higher Landau levels (when the surface of a cy-
clotron orbit has sufficient dimensions) also exists the pos-
sibility of particle pairing, which results in the appearance
of an even-denominator quantum Hall effect near fractions
i + 5

2 (where i = 0, 1, 2, . . .). It was recently confirmed –
in transport measurements performed with the use of a
two-subband structures (wide quantum wells) [12] – that
this states can indeed appear only when the Fermi energy
is placed in the first, not zeroth, Landau level of either of
electronic subbands. Otherwise, the deeps in a longitudi-
nal resistance and plateaus in a transverse one are simply
not developing.

One of the most important conclusions presented in
this paper (and Ref. [19]) refers to the bilayer graphene
(and other bilayer materials). As it was already explained,
loops belonging to the p-loop cyclotron trajectories (rep-
resenting paths belonging to the homotopy classes of the
system braid group) can be located partly in both two-
dimensional sheets. Thus, while considering commensura-
bility conditions, one needs to take into account an addi-
tional surface provided by the upper layer. It is expected
that the most favorable configuration is realized, when one
of the loops is utilizing (embracing) this supplementary
surface. Hence, it cannot take part in a cyclotron orbit
enlargement process (effective). Finally, remaining p − 1
loops must share the total flux per particle – experienced
by a single-looped path – independently how they are dis-
tributed among two layers. This reasoning allows for an
explanation why, in bilayer materials, the famous 1

p = 1
3

is replaced by the novel (previously connected with a Hall
metal state rather than a fractional quantum Hall state)

1
p−1 = 1

2 filling factor [13–15].
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