Skip to main content
Log in

Novel Bursting Patterns Emerging from Model Inhibitory Networks with Synaptic Depression

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Studies show that short-term synaptic plasticity plays important roles in neural coding and the normal operation of the synapse. Basket cells in the hippocampus demonstrate this plasticity in the form of synaptic depression, and recent in vivo work indicates that basket cell activities contribute significantly to hippocampal output associated with different behavioural states. Thus it is essential to understand the generation and synchronization of patterns produced by basket cell networks with depression. We study two-cell model inhibitory networks with depression and obtain alternating bursting patterns and synchronous activity occurring between bursts. We describe mechanisms for how these patterns emerge by performing several simulations in the plane of different depression time constants, τ D . Such patterns might contribute significantly to various population activites observed in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott L, Varela J, Sen K, Nelson S (1997) Synaptic depression and cortical gain control. Science 275: 220-224.

    Google Scholar 

  • Ali A, Deuchars J, Pawelzik H, Thomson A (1998) CA1 pyramidal to basket and bistratified cell EPSPs: Dual intracellular recordings in rat hippocampal slices. J. Physiol. 507.1: 201-217.

    Google Scholar 

  • Baker P, Pennefather P, Orser B, Skinner F (2002) Disruption of coherent oscillations in inhibitory networks with anesthetics: The role of GABAA receptor desensitization. J. Neurophysiol. 88: 2821-2833.

    Google Scholar 

  • Bartos M, Vida I, Frotscher M, Geiger J, Jonas P (2001) Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J. Neurosci. 21: 2687-2698.

    Google Scholar 

  • Beierlein M, Gibson J, Connors B (2000) A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nature Neurosci. 3: 904-910.

    Google Scholar 

  • Booth V, Bose A (2002) Transitions between different synchronous firing modes using synaptic depression. Neurocomputing 44-46: 61-67.

    Google Scholar 

  • Bragin A, Jandó G, Nádasdy Z, Hetke J, Wise K, Buzsáki G (1995) Gamma [40-100 Hz] oscillation in the hippocampus of the behaving rat. J. Neurosci. 15: 47-60.

    Google Scholar 

  • Buhl D, Harris K, Hormuzdi S, Monyer H, Buzsáki G (2003) Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo. J. Neurosci. 23(3): 1013-1018.

    Google Scholar 

  • Buzsáki G (2001) Hippocampal GABAergic interneurons: A physiological perspective. Neurochem. Res. 26: 899-905.

    Google Scholar 

  • Buzsáki G (2002) Theta oscillations in the hippocampus. Neuron 33: 325-340.

    Google Scholar 

  • Buzsáki G, Chrobak J (1995) Temporal structure in spatially organized neuronal ensembles: A role for interneuronal networks. Curr. Opin. Neurobiol. 5: 504-510.

    Google Scholar 

  • Chance F, Nelson S, Abbott L (1998) Synaptic depression and the temporal response characteristics of V1 cells. J. Neurosci. 18: 4785-4799.

    Google Scholar 

  • Chow C, White J, Ritt J, Kopell N (1998) Frequency control in synchronized networks of inhibitory neurons. J. Comput. Neurosci. 5: 407-420.

    Google Scholar 

  • Cobb S, Halasy K, Vida I, Nyiri G, Tamas G, Buhl E, Somoglyi P (1997) Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus. Neurosci. 79: 629-648.

    Google Scholar 

  • Dobrunz L, Stevens C (1999) Response of hippocampal synapses to natural stimulation patterns. Neuron 22: 157-166.

    Google Scholar 

  • Finnerty G, Roberts L, Connors B (1999) Sensory experience modifies the short-term dynamics of neocortical synapses. Nature 400: 367-371.

    Google Scholar 

  • Freund T, Buzsáki G (1996) Interneurons of the hippocampus. Hippocampus 6: 347-470.

    Google Scholar 

  • Fukuda T, Kosaka T (2000a) The dual network of GABAergic interneurons linked by both chemical and electrical synapses: A possible infrastructure of the cerebral cortex. Neurosci. Res. 38: 123-130.

    Google Scholar 

  • Fukuda T, Kosaka T (2000b) Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus. J. Neurosci. 20: 1519-1528.

    Google Scholar 

  • Grigull J, Skinner F (2002) The effect of synaptic depression on model inhibitory networks. Canadian Applied Mathematics Quarterly 10(1): 87-110.

    Google Scholar 

  • Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287: 273-287.

    Google Scholar 

  • Jones M, Westbrook G (1996) The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci. 19: 96-100.

    Google Scholar 

  • Klausberger T, Magill P, Márton M, Roberts J, Cobden P, Buzsáki, G, Somogyi P (2003) Brain-state-and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421: 844-848.

    Google Scholar 

  • Kraushaar U, Jonas P (2000) Efficacy and stability of quantal GABA release at a hippocampal inteneuron-principal neuron synapse. J. Neurosci 20: 5594-5607.

    Google Scholar 

  • Latham P, Richmond B, Nelson P, Nirenberg S (2000) Intrinsic cynamics in neuronal networks. I. Theory. J. Neurophysiol. 83: 808-827.

    Google Scholar 

  • Loebel A, Tsodyks M (2002) Computation by ensemble synchronization in recurrent networks with synaptic depression. J. Comput. Neurosci. 13: 111-124.

    Google Scholar 

  • Maccaferri G, Roberts J, Szucs P, Cottingham C, Somogyi P (2000) Cell surface domain specific post-synaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro. J. Physiol. 524: 91-116.

    Google Scholar 

  • Markram H, Pikus D, Gupta A, Tsodyks M (1998a) Potential for multiple mechanisms, phenomena and algorithms for synaptic plasticity at single synapses. Neuropharm. 37: 489-500.

    Google Scholar 

  • Markram H, Wang Y, Tsodyks M (1998b) Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. USA 95: 5323-5328.

    Google Scholar 

  • McBain C, Fisahn A (2001) Interneurons unbound. Nature Rev. Neurosci. 2: 11-23.

    Google Scholar 

  • Nadim F, Manor Y, Kopell N, Marder E (1999) Synaptic depression creates a switch that controls the frequency of an oscillatory circuit. Proc. Natl. Acad. Sci. USA 96: 8206-8211.

    Google Scholar 

  • Pawelzik H, Hughes D, Thomson A (2003) Modulation of inhibitory autapses and synapses on rat CA1 interneurones by GABAA receptor ligands. J. Physiol. 546.3: 701-716.

    Google Scholar 

  • Rinzel J, Ermentrout B (1998) Analysis of neural excitability and oscillations. In: Koch C, Segev I, eds. Methods in Neuronal Modelling, from Ions to Networks. MIT Press, Cambridge, MA, pp. 251-291.

    Google Scholar 

  • Sharp A, Skinner F, Marder E (1996) Mechanisms of oscillation in dynamic clamp constructed two-cell half-center circuits. J. Neurophysiol. 76: 867-883.

    Google Scholar 

  • Sik A, Penttonen M, Ylinen A, Buzsáki G (1995) Hippocampal CA1 interneurons: An in vivo intracellular labeling study. J. Neurosci. 15: 6651-6665.

    Google Scholar 

  • Skinner F, Kopell N, Marder E (1994) Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. J. Comput. Neurosci. 1: 69-87.

    Google Scholar 

  • Skinner F, Liu J (2003) NNET: Linking small and large-scale network models. Neurocomputing 52-54: 381-387.

    Google Scholar 

  • Skinner F, Zhang L, Perez Velazquez J, Carlen P (1999) Bursting in inhibitory interneuronal networks: A role for gap-junctional coupling. J. Neurophysiol. 81: 1274-1283.

    Google Scholar 

  • Tabak J, SennW, O'Donovan M, Rinzel J (2000) Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network. J. Neurosci. 20: 3041-3056.

    Google Scholar 

  • Traub R, Jefferys J, Whittington M (1999) Fast Oscillations in Cortical Circuits. MIT Press, Cambridge, MA.

    Google Scholar 

  • Traub R, Whittington M, Colling S, Buzsáki G, Jefferys J (1996) Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J. Physiol. 493: 471-484.

    Google Scholar 

  • Tsodyks M, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. USA 94: 719-723.

    Google Scholar 

  • Tsodyks M, Uziel A, Markram H (2000) Synchrony generation in recurrent networks with frequency-dependent synapses. J. Neurosci. 20: 1-5.

    Google Scholar 

  • van Vreeswijk C, Hansel D (2001) Patterns of synchrony in neural networks with spike adaptation. Neural Comput. 13: 959-992.

    Google Scholar 

  • Wang X-J, Buzsáki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16: 6402-6413.

    Google Scholar 

  • Wang X-J, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput. 4: 84-97.

    Google Scholar 

  • White J, Chow C, Ritt J, Soto-Treviño C, Kopell N (1998) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J. Comput. Neurosci. 5: 5-16.

    Google Scholar 

  • Whittington M, Traub R, Jefferys J (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373: 612-615.

    Google Scholar 

  • Wu C, Shen H, Luk W, Zhang L (2002) A fundamental oscillatory state of isolated rodent hippocampus. J. Physiol. 540.2: 509-527.

    Google Scholar 

  • Zador A, Dobrunz L (1997) Dynamic synapses in the cortex. Neuron 19: 1-4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalil, S., Grigull, J. & Skinner, F. Novel Bursting Patterns Emerging from Model Inhibitory Networks with Synaptic Depression. J Comput Neurosci 17, 31–45 (2004). https://doi.org/10.1023/B:JCNS.0000023870.23322.0a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCNS.0000023870.23322.0a

Navigation