Skip to main content
Log in

Perturbation Analysis for the Eigenvalue Problem of a Formal Product of Matrices

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We study the perturbation theory for the eigenvalue problem of a formal matrix product A s1 1 ··· A sp p, where all A k are square and s k ∈ {−1, 1}. We generalize the classical perturbation results for matrices and matrix pencils to perturbation results for generalized deflating subspaces and eigenvalues of such formal matrix products. As an application we then extend the structured perturbation theory for the eigenvalue problem of Hamiltonian matrices to Hamiltonian/skew-Hamiltonian pencils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Benner and R. Byers, Evaluating products of matrix pencils and collapsing matrix products, Numer. Linear Alg. Appl., 8:6–7 (2001), pp. 357-380.

    Google Scholar 

  2. P. Benner, R. Byers, V. Mehrmann, and H. Xu, Numerical computation of deflating subspaces of embedded Hamiltonian pencils, Tech. Rep. SFB393/99–15, Fakultät für Mathematik, TU Chemnitz, Chemnitz, 1999. Available from http://www.tu-chemnitz.de/sfb393/sfb99pr.html.

    Google Scholar 

  3. P. Benner, R. Byers, V. Mehrmann, and H. Xu, Numerical methods for linearquadratic and H ? control problems, in Dynamical Systems, Control, Coding, Computer Vision: New Trends, Interfaces, and Interplay, G. Picci and D. Gilliam, eds., Vol. 25 of Progress in Systems and Control Theory, Birkhäuser, Basel, 1999, pp. 203–222.

    Google Scholar 

  4. P. Benner, V. Mehrmann, and H. Xu, A new method for computing the stable invariant subspace of a real Hamiltonian matrix, J. Comput. Appl. Math., 86 (1997), pp. 17–43.

    Google Scholar 

  5. P. Benner, V. Mehrmann, and H. Xu, A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils, Numer. Math., 78 (1998), pp. 329–358.

    Google Scholar 

  6. P. Benner, V. Mehrmann, and H. Xu, A note on the numerical solution of complex Hamiltonian and skew-Hamiltonian eigenvalue problems, Electr. Trans. Numer. Anal., 8 (1999), pp. 115–126.

    Google Scholar 

  7. S. Bittanti and P. Colaneri, Lyapunov and Riccati equations: Periodic inertia theorems, IEEE Trans. Automat. Control, 31 (1986), pp. 659–661.

    Google Scholar 

  8. S. Bittanti, P. Colaneri, and G. De Nicolao, The periodic Riccati equation, in The Riccati Equation, S. Bittanti, A. Laub, and J. Willems, eds., Springer-Verlag, Berlin, Heidelberg, Germany, 1991, pp. 127–162.

    Google Scholar 

  9. A. Bojanczyk, G. Golub, and P. Van Dooren, The periodic Schur decomposition. Algorithms and applications, in Advanced Signal Processing Algorithms, Architectures, and Implementations III, F. Luk, ed., Vol. 1770 of Proc. SPIE, 1992, pp. 31–42.

  10. R. Byers, C. He, and V. Mehrmann, Where is the nearest non-regular pencil?, Linear Algebra Appl., 285 (1998), pp. 81–105.

    Google Scholar 

  11. J. Demmel and B. Kågström, The generalized Schur decomposition of an arbitrary pencil A ? ?B: Robust software with error bounds and applications. I: Theory and algorithms, ACM Trans. Math. Software, 19 (1993), pp. 160–174.

    Google Scholar 

  12. J. Demmel and B. Kågström, The generalized Schur decomposition of an arbitrary pencil A ? ?B: Robust software with error bounds and applications. II: Software and applications, ACM Trans. Math. Software, 19 (1993), pp. 175–201.

    Google Scholar 

  13. J. Francis, The QR-transformation, part I, II, Comput. J., 4 (1961), pp. 265–271, 332-345.

    Google Scholar 

  14. F. Gantmacher, Theory of Matrices, Vol. 2, Chelsea, New York, 1959.

    Google Scholar 

  15. G. Golub and C. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, 1996.

    Google Scholar 

  16. M. Green and D. Limebeer, Linear Robust Control, Prentice-Hall, Englewood Cliffs, NJ, 1995.

    Google Scholar 

  17. J. Hench and A. Laub, Numerical solution of the discrete-time periodic Riccati equation, IEEE Trans. Automat. Control, 39 (1994), pp. 1197–1210.

    Google Scholar 

  18. M. Konstantinov, V. Mehrmann, and P. Petkov, Perturbation analysis for the Hamiltonian Schur form, SIAM J. Matrix Anal. Appl., 23:2 (2001), pp. 387–424.

    Google Scholar 

  19. P. Lancaster, Strongly stable gyroscopic systems, Electr. J. Linear Algebra, 5 (1999), pp. 53–66.

    Google Scholar 

  20. W.-W. Lin, V. Mehrmann, and H. Xu, Canonical forms for Hamiltonian and symplectic matrices and pencils, Linear Algebra Appl., 301–303 (1999), pp. 469-533.

    Google Scholar 

  21. W.-W. Lin and J.-G. Sun, Perturbation analysis of eigenvalues and eigenvectors of periodic matrix pairs, Tech. Rep., Dept. of Computer Science, Ume?a University, 2000.

  22. W.-W. Lin and J.-G. Sun, Perturbation analysis of periodic deflating subspaces, Tech. Rep., Dept. of Computer Science, Umeå University, 2000.

  23. D. Luenberger, Boundary recursion for descriptor variable system, IEEE Trans. Automat. Control, AC-34 (1989), pp. 287–292.

    Google Scholar 

  24. C. Mehl, Compatible Lie and Jordan algebras and applications to structured matrices and pencils, Dissertation, Fakultät für Mathematik, TU Chemnitz, Chemnitz, Germany, 1998.

    Google Scholar 

  25. C. Mehl, Condensed forms for skew-Hamiltonian/Hamiltonian pencils, SIAM J. Matrix Anal. Appl., 21 (1999), pp. 454–476.

    Google Scholar 

  26. V. Mehrmann, The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution, No. 163 in Lecture Notes in Control and Information Sciences, Springer-Verlag, Heidelberg, 1991.

    Google Scholar 

  27. V. Mehrmann and D. Watkins, Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 1905–1925.

    Google Scholar 

  28. C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal., 10 (1973), pp. 241–256.

    Google Scholar 

  29. J. Olson, H. Jensen, and P. Jørgensen, Solution of large matrix equations which occur in response theory, J. Comput. Phys., 74 (1988), pp. 265–282.

    Google Scholar 

  30. C. Paige and C. Van Loan, A Schur decomposition for Hamiltonian matrices, Linear Algebra Appl., 14 (1981), pp. 11–32.

    Google Scholar 

  31. P. Petkov, N. Christov, and M. Konstantinov, Computational Methods for Linear Control Systems, Prentice-Hall, Hertfordshire, UK, 1991.

    Google Scholar 

  32. V. Sima, Algorithms for Linear-Quadratic Optimization, Vol. 200 of Pure and Applied Mathematics, Marcel Dekker, New York, 1996.

    Google Scholar 

  33. G. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990.

    Google Scholar 

  34. P. Van Dooren, Two point boundary value and periodic eigenvalue problems, in Proc. 1999 IEEE Intl. Symp. CACSD, Kohala Coast-Island of Hawaii, Hawaii, USA, August 22–27, 1999 (CD-Rom), O. Gonzalez, ed., 1999, pp. 58-63.

  35. J. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965.

    Google Scholar 

  36. K. Zhou, J. Doyle, and K. Glover, Robust and Optimal Control, Prentice-Hall, Upper Saddle River, NJ, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benner, P., Mehrmann, V. & Xu, H. Perturbation Analysis for the Eigenvalue Problem of a Formal Product of Matrices. BIT Numerical Mathematics 42, 1–43 (2002). https://doi.org/10.1023/A:1021966001542

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021966001542

Navigation