Skip to main content
Log in

Taxonomic and systematic assessment of planktonic copepods using mitochondrial COI sequence variation and competitive, species-specific PCR

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Accurate taxonomic identification of species at all life stages is critical to understand and predict the processes that together determine marine community dynamics. However, zooplankton assemblages may include numerous sibling and congeneric species distinguished by subtle morphological characteristics. Molecular systematic databases, including DNA sequences of homologous gene regions for selected taxonomic groups, allow the design of rapid protocols to determine species' diversity and identify individuals. In this study, the DNA sequence of a 300 base-pair region of the mitochondrial cytochrome oxidase I (COI) gene was determined for eight species of three genera of calanoid copepods: Calanus finmarchicus, C. glacialis and C. helgolandicus; Neocalanus cristatus, N. flemingeri and N. plumchrus; and Pseudocalanus moultoni and P. newmani. The DNA sequences differed between congeneric species by 13 – 22% of the nucleotides; the protein sequences differed by zero to five amino acid substitutions. Both the DNA and amino acid sequences resolved the evolutionary relationships among congeneric species; relationships among the genera were not well-resolved by this region of mtCOI. Using the same conserved primers, the only amplification product for C. finmarchicus was an aberrant sequence (and putative pseudogene) which differed from the C. finmarchicus COI sequence by 36% of the nucleotides and 32 amino acid substitutions. Species-specific oligonucleotide primers were designed for Calanus spp. (which cannot be distinguished at larval stages) and Pseudocalanus spp. (which are difficult to distinguish even as adults). Individual copepods were identified using competitive, multiplexed species-specific polymerase chain reactions (PCR) in two studies of co-occurring sibling species. The first study confirmed the presence of three Calanus spp. in Oslofjord, Norway and found a predominance of C. helgolandicus. The second study determined patterns of distribution and abundance of Pseudocalanus spp. on Georges Bank in the NW Atlantic and showed that P. moultoni predominated in shallow and coastal waters, while P. newmani was more abundant in offshore regions flanking the Bank. Competitive, species-specific PCR is a useful tool for biological oceanographers. This simple, rapid, and inexpensive assay may be used to identify morphologically-similar individuals of any size and life stage, and to determine a species' presence or absence in pooled samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avise, J. C., 1994. Molecular Markers, Natural History and Evolution, Chapman and Hall, New York, NY. 511 pp.

    Google Scholar 

  • Banks, M., D. Hedgecock & C. Waters, 1993. Discrimination between closely related Pacific oyster species (Crassostrea) via mitochondrial DNA sequences coding for large sununit rRNA. Mol. Mar. Biol. Biotechnol. 2: 129–136.

    Google Scholar 

  • Bradford, J.M. & J. B. Jillett, 1974. A revision of generic definitions in the Calanidae (Copepoda, Calanoida). Crustaceana 27: 5–16.

    Google Scholar 

  • Bradford, J. M., 1988. Review of the taxonomy of the Calanidae (Copepoda) and the limits to the genusCalanus. Hydrobiologia 167/168: 73–81.

    Google Scholar 

  • Brown, J. M., O. Pellmyr, J. N. Thompson & R. G. Harrison, 1994. Phylogeny of Greya (Lepidoptera: Prodoxidae), based on nucleotide sequence variation in mitochondrial cytochrome oxidase I and II: congruence with morphological data. Mol. Biol. Evol. 11: 128–141.

    Google Scholar 

  • Bucklin, A., B. W. Frost & T. D. Kocher, 1992. DNA sequence variation of the mitochondrial 16S rRNA in Calanus (Copepoda; Calanoida): intra-and inter-specific patterns. Molec. Mar. Biol. Biotech. 1: 397–407.

    Google Scholar 

  • Bucklin, A., B. W. Frost & T.D. Kocher, 1995. Molecular systematics of seven species of Calanus and three species of Metridia (Calanoida; Copepoda). Mar. Biol. 121: 655–664.

    Google Scholar 

  • Bucklin, A., T. C. LaJeunesse, E. Curry, J. Wallinga & K. Garrison (1996a) Molecular genetic diversity of the copepod, Nannocalanus minor: genetic evidence of species and population structure in the N. Atlantic Ocean. J. mar. Res. 54: 285–310.

    Google Scholar 

  • Bucklin, A., R. Sundt & G. Dahle, 1996b. Population genetics of Calanus finmarchicus (Copepoda; Calanoida) in the North Atlantic. Proceedings of an ICES Workshop on a TransAtlantic Study of Calanus finmarchicus. Ophelia 44: 29–45.

    Google Scholar 

  • Bucklin, A., R. S. Hill, N. J. Mottola & A. M. Bentley, 1997a. Seasonal patterns of distribution and abundance of the copepods, Pseudocalanus moultoni and P. newmani, on Georges Bank: evidence for a dynamic balance between retention and loss. Internat. Cons. Expl. Seas Science Mtg., September, 1997. Background Paper T: 06.

  • Bucklin, A., S. B. Smolenack, A. M. Bentley & P. H. Wiebe, 1997b. Gene flow patterns of the euphausiid, Meganyctiphanes norvegica, in the N. Atlantic based on DNA sequences for mitochondrial cytochrome oxidase I and cytochrome b. J. Plank. Res. 19: 1763–1781.

    Google Scholar 

  • Bucklin, A., A. M. Bentley & S. P. Franzen, 1998a. Distribution and relative abundance of the copepods, Pseudocalanus moultoni and P. newmani, on Georges Bank based on molecular identification of sibling species. Mar. Biol. (in press).

  • Bucklin A., C. C. Caudill & M. Guarnieri, 1998b. Population genetics and phylogeny of marine planktonic copepods. Chapter 14. In: K. C. Cooksey (ed.). Molecular Approaches to the Study of the Ocean. London: Chapman & Hall: 303–318.

    Google Scholar 

  • Burton, R. S. & B.-N. Lee, 1994. Nuclear and mitochondrial gene genealogies and allozyme polymorphism across a major phylo253 genetic break in the copepod Tigriopus californicus. Proc. natn. Acad. Sci. 91: 5197–5201.

    Google Scholar 

  • Charlieu, J.-P., 1994. Distinction between almost-identical DNA sequences by polymerase chain reaction. Chapter 12. In H. G. Griffin & A. M. Griffin (eds), PCR Technology Current Innovations. CRC Press, Boca Raton, FL: 101–106.

    Google Scholar 

  • Clary, D. O. & D. R. Wolstenholme, 1985. The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization and genetic code. J. molec. Evol. 22: 252–271.

    Google Scholar 

  • Cunningham, C. W., N. W. Blackstone & L. W. Buss, 1992. Evolution of king crabs from hermit crab ancestors. Nature 355: 539–542.

    Google Scholar 

  • Davis, C. S, 1987. Zooplankton Life Cycles. In: Backus R. H. (ed.). Georges Bank, MIT Press, Cambridge, MA: 256–267.

    Google Scholar 

  • DeDecker, A. H. B., B. Z. Kaczmaruk & G. Marska, 1991. A new species ofCalanus (Copepoda, Calanoida) from South African waters. Ann. S. Afr. Mus. 101: 27–44.

    Google Scholar 

  • DeLong, E. F., G. S. Wickman & N. R. Pace, 1989. Phylogenetic strains: ribosomal RNA-based for the identification of single cells. Science 243: 1360–1363.

    Google Scholar 

  • Dixon, D. R., D. A. S. B. Jollivet, L. R. J. Dixon, J. A. Nott & P. W. H. Holland, 1995. The molecular identification of early lifehistory stages of hydrothermal vent organisms. In L. M. Parson, C. L. Walker & D. R. Dixon (eds.), Hydrothermal Vents and Processes, Geol. Soc. Spec. Publ. 87: 343–350.

  • Engels, W., 1992. Amplify. Computer Freeware. Genetics Department, University of Wisconsin, Madison, WI 53706.

    Google Scholar 

  • Fell, J. W., 1995. rDNA targeted oligonucleotide primers for the identification of pathogenic yeasts in a polymerase chain reaction. J. Ind. Microbiol. 14: 475–477.

    Google Scholar 

  • Fleminger, A. & K. Hulsemann, 1977. Geographical range and taxomonic divergence in North Atlantic Calanus (C. helgolandicus, C. finmarchicus and C. glacialis). Mar. Biol. 40: 233–248.

    Google Scholar 

  • Folmer, O., M. Black, W. Hoen, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metozoan invertebrates. Molec. Mar. Biol. Biotech. 3: 294–299.

    Google Scholar 

  • France, S. C. & T. D. Kocher, 1996. DNA sequencing of formalin-fixed crustaceans from archival research collections. Mol. Mar. Biol. Biotech. 5: 304–313.

    Google Scholar 

  • Frost, B. W., 1971. Taxonomic status of Calanus finmarchicus and C. glacialis (Copepoda), with special reference to adult males. J. Fish. res. Bd. Can. 28: 23–30.

    Google Scholar 

  • Frost, B. W., 1974. Calanus marshallae, a new species of calanoid copepod closely allied to the sibling species C. finmarchicus and C. glacialis. Mar. Biol. 26: 77–99.

    Google Scholar 

  • Frost, B. W., 1989. A taxonomy of the marine calanoid copepod genus Pseudocalanus. Can. J. Zool. 67: 525–551.

    Google Scholar 

  • Gibbs, R. A., P.-N. Nguyen & C. T. Caskey, 1989. Detection of single DNA base differences by competitive oligonucleotide priming. Nuc. Acids Res. 17: 2437–2448.

    Google Scholar 

  • Gocke, C. D., F. A. Benko & P. K. Rogan, 1998. Transmission of mitochondrial DNA heteroplasmy in normal pedigrees. Hum. Genet. 102: 182–186.

    Google Scholar 

  • Grainger, E. H., 1961. The copepods Calanus glacialis and Calanus finmarchicus (Gunnerus) in Canadian Arctic-Subarctic waters. J. Fish. Res. Bd. Can. 18: 663–678.

    Google Scholar 

  • Harasewych, M. G., S. L. Adamkewicz, J. A. Blake, D. M. Saudek, T. Spriggs & C. J. Bult, 1997. Phylogeny and relationships of pleurotomariid gastropods (Mollusca: Gastropoda): an assessment based on partial 18S rRNA and cytochrome c oxidase I sequences. Mol. Mar. Biol. Biotechnol. 6: 1–20.

    Google Scholar 

  • Hulsemann, K., 1991. Calanus euxinus, new name, a replacement name for Calanus ponticus Karavaev, 1894 (Copepoda: Calanoida). Proc. biol. Soc. Wash. 104: 620–621.

    Google Scholar 

  • Jacobs, H. T. & B. Grimes, 1986. Complete nucleotide sequences of the nuclear pseudogenes for cytochrome oxidase subunit I and the large mitochondrial ribosomal RNA in the sea urchin Strongylocentrotus purpuratus. J. mol. Biol. 187: 509–527.

    Google Scholar 

  • Jaschnov, W. A., 1955. Morphology, distribution and systematics of Calanus finmarchicus s.l. [Russ.] Zool. Zh. 34: 1210–1223.

    Google Scholar 

  • Juan, C., P. Oromi & G. M. Hewitt, 1995. Mitochondrial DNA phylogney and sequential colonization of Canary Islands by darking beetles of the genus Pimelia (Tenebrionidae). Proc. R. Soc. Lond. B Biol. Sci. 261: 173–180.

    Google Scholar 

  • Jukes, T. H. & C. R. Cantor, 1969. Evolution of protein molecules.In Munro, H. N. (ed.), Mammalian Protein Metabolism, Academic Press, New York: 21–31.

    Google Scholar 

  • Knowlton, N., 1993. Sibling species in the sea. Ann. Rev. Ecol. Syst. 24: 189–216.

    Google Scholar 

  • Kumar, S., K. Tamura & M. Nei, 1993. MEGA: Molecular Evolutionary Genetics Analysis, Version 1.0, Pennsylvania State University, University Park, PA 16802.

    Google Scholar 

  • Lunt, D. H., D. X. Zhang, J. M. Szymura & G. M. Hewitt, 1996. The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Mol. Biol. 5: 153–165.

    Google Scholar 

  • McLaren, I. A., E. Laberge, C. J. Corkett & J.-M. Sevigny, 1989. Life cycles of four species of Pseudocalanus in Nova Scotia. Can. J. Zool. 67: 552–558.

    Google Scholar 

  • Mackas, D. L., H. Sefton, C. B. Miller & A. Raich, 1993. Vertical habitat partitioning by large calanoid copepods in the oceanic subarctic Pacific during spring. Progr. Oceanogr. 32: 259–294.

    Google Scholar 

  • Medeiros-Bergen, D. E., R. R. Olson, J. A. Conroy & T. D. Kocher, 1995. Distribution of holothurian larvae determined with species-specific genetic probes. Limnol. Oceanogr. 40: 1225–1235.

    Google Scholar 

  • Miller, C. B., 1988. Neocalanus flemingeri, a new species of Calanidae (Copepoda; Calanoida) from the subarctic Pacific Ocean, with a comparative redescription of Neocalanus plumchrus (Marukawa). Progr. Oceanogr. 20: 263–273.

    Google Scholar 

  • Olson, R. R., J. Runstadler & T. D. Kocher, 1991. Whose larvae? Nature 351: 357–358.

    Google Scholar 

  • Palumbi, S. R. & J. Benzie, 1991. Large mitochondrial DNA differences between morphologically similar Penaeid shrimp. Molec. Mar. Biol. Biotech. 1: 27–34.

    Google Scholar 

  • Parfait, B., P. Rustin, A. Munnich & A. Rotig, 1998. Coamplification of nuclear pseudogenes and assessment of heteroplasmy of mitochondrial DNA mutations. Biochem. Biophys. Res. Commun. 247: 57–59.

    Google Scholar 

  • Pedersen, B. V., 1996. A phylogenetic analysis of cuckoo bumblebees (Psithyrus, Lepeletier) and bumblebees (Bombus, Latreille) inferred from sequences of the mitochondrial gene cytochrome oxidase I. Mol. Phylogenet. Evol. 5: 289–297.

    Google Scholar 

  • Quesada, H., D. A. Skibinski & D. O. Skibinski, 1996. Sex-biased heteroplasmy and mitochondrial DNA inheritance in the mussel Mytilus galloprovincialis Lmk. Curr. Genet. 29: 423–426.

    Google Scholar 

  • Rychlik, W., 1992. OLIGO, Ver. 4.04. Computer software. National Biosciences, Inc, Plymouth, MN.

    Google Scholar 

  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    Google Scholar 

  • Sameoto, D. D., L. O. Jaroszynski & W. B. Fraser, 1980. BIONESS, a new design in multiple net zooplankton samplers. Can. J. Fish. aquat. Sci. 37: 722–724.

    Google Scholar 

  • Sevigny, J.-M., I. A. McLaren & B. W. Frost, 1989. Discrimination among and variation within species of Pseudocalanus based on the GPI locus. Mar. Biol. 102: 321–327.

    Google Scholar 

  • Skjoldal, H. R. & F. Rey, 1989. Pelagic production and variability of the Barents Sea ecosystem. In K. Sherman & L. M. Alexander (eds.), Biomass Yields and Geography of Large Marine Ecosystems AAAS Publ, 241–286.

  • Stauffer, C., F. Lakatos & G. M. Hewitt, 1997. The phylogenetic relationships of seven European Ips (Scolytidae, Ipinae) species. Insect. Mol. Biol. 6: 233–240.

    Google Scholar 

  • Swofford, D. L., 1993. Phylogenetic analysis using parsimony (PAUP), Ver. 3.1, University of Illinois, Champaign.

    Google Scholar 

  • Tamura, K. & M. Nei, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512–526.

    Google Scholar 

  • Wiebe, P. H., A. W. Morton, A. M. Bradley, R. H. Backus, J. E. Craddock, V. Barber, T. J. Cowles & G. R. Flierl, 1985.New developments in the MOCNESS, an apparatus for sampling zooplankton and micronekton. Mar. Biol. 87: 313–323.

    Google Scholar 

  • Wilson, A. C., R. L. Cann, S. M. Carr, M. George, U. B. Gyllensten, K. M. Helm-Bychowski, R. G. Higuchi, S. R. Palumbi, E. M. Proger, R. D. Sage & M. Stoneking, 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. linn. Soc. 26: 375–400.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucklin, A., Guarnieri, M., Hill, R. et al. Taxonomic and systematic assessment of planktonic copepods using mitochondrial COI sequence variation and competitive, species-specific PCR. Hydrobiologia 401, 239–254 (1999). https://doi.org/10.1023/A:1003790411424

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003790411424

Navigation