
Computational Visual Media
https://doi.org/10.1007/s41095-021-0215-y Vol. 7, No. 4, December 2021, 437–452

Research Article

Real-time face view correction for front-facing cameras

Yudong Guo1, Juyong Zhang1 (�), Yihua Chen1, Hongrui Cai1, Zhangjin Huang1, and
Bailin Deng2

c© The Author(s) 2021.

Abstract Face views are particularly important in
person-to-person communication. Differenes between
the camera location and the face orientation can result
in undesirable facial appearances of the participants
during video conferencing. This phenomenon is par-
ticularly noticeable when using devices where the front-
facing camera is placed in unconventional locations such
as below the display or within the keyboard. In this
paper, we take a video stream from a single RGB
camera as input, and generate a video stream that
emulates the view from a virtual camera at a designated
location. The most challenging issue in this problem is
that the corrected view often needs out-of-plane head
rotations. To address this challenge, we reconstruct the
3D face shape and re-render it into synthesized frames
according to the virtual camera location. To output
the corrected video stream with natural appearance in
real time, we propose several novel techniques including
accurate eyebrow reconstruction, high-quality blending
between the corrected face image and background,
and template-based 3D reconstruction of glasses. Our
system works well for different lighting conditions
and skin tones, and can handle users wearing glasses.
Extensive experiments and user studies demonstrate
that our method provides high-quality results.

Keywords face view correction; 3D face reconstruction;
deep learning; online communication

1 Introduction
The face plays an essential role in human com-

1 University of Science and Technology of China, Hefei
230026, China. E-mail: Y. Guo, gyd2011@mail.ustc.edu.cn;
J. Zhang, juyong@ustc.edu.cn (�); Y. Chen,
chenyihua@mail.ustc.edu.cn; H. Cai, hrcai@mail.ustc.edu.cn;
Z. Huang, zhuang@ustc.edu.cn.

2 School of Computer Science and Informatics, Cardiff
University, Cardiff, Wales, UK. E-mail: DengB3@cardiff.ac.uk.

Manuscript received: 2021-01-29; accepted: 2021-02-24

munication [1–3]. It is desirable that natural facial
postures are preserved during video conferencing.
However, this requirement is not always satisfied
with existing consumer video conferencing systems.
For example, in one-to-one video conferences using a
mobile device or a laptop, the user tends to look at
the screen area where the other participant’s face is
shown. However, the camera is placed at a location
outside the screen. As a result, it will appear that
the person is not facing the camera in the captured
video, which can cause undesirable facial appearance.
This issue has become more noticeable in recent years
with the popularity of thin-bezel displays on laptops
and mobile devices, as manufacturers start to place
the front-facing camera in unconventional locations
rather than above the display. For example, some
laptops have a camera at the bottom of the display or
within the keyboard, earning a nickname of “nosecam”
as it can lead to undesirable exposure of the nostrils.

In the past, methods based on custom hardware
setups have been proposed to improve facial
appearance [4, 5]. However, they are often too
expensive for a consumer-level system. Another
possibility is to synthesize a facial image from the
desired viewpoint based on the input from the real
camera(s). Some approaches achieve reliable facial
view synthesis using input from multiple cameras
[6–8], but the high cost of such a system limits its
application for typical consumers. Recently, some
methods based on a single RGB-D or RGB camera
have been proposed. For example, Kuster et al. [9]
used depth information from an RGB-D camera to
reconstruct 3D face geometry and generate a novel
view. However, its applicability is limited, since most
existing laptops and smartphones are not equipped
with such RGB-D cameras. Later, Giger et al. [10]
proposed a face view correction method using a
single webcam, reconstructing the 3D face shape via

437

438 Y. Guo, J. Zhang, Y. Chen, et al.

Fig. 1 Face view correction results (bottom) with our system for input videos (top). Our method produces natural-looking results across
different scenarios, including indoor and outdoor scenes, different lighting conditions, different skin tones, and users with glasses.

Laplacian deformation based on the detected facial
landmarks. However, it does not work well for users
who wear glasses, and its robustness is affected by
the accuracy of landmark detection. In recent years,
machine learning techniques have been applied to
correct or manipulate gazes in images or videos [11–
14], and can be used to improve eye-to-eye contact
between video conferencing participants. However,
they only modify the eye regions and do not correct
undesirable appearance in other facial areas.

To reduce undesirable facial appearance caused by
camera location, we need a method to automatically
process the video captured by a camera to emulate
the view from a virtual camera placed at a designated
location. For practicality, we prefer to use a system
with a simple hardware setup—ideally a single RGB
camera—to synthesize the novel view. There are a
few challenges to address. First, it is necessary to
reconstruct the 3D face shape to accommodate the
potentially large change between the input view and
the synthesized view. Despite the recent success of
monocular 3D face reconstruction [15–18], existing
methods rely on parametric face models and cannot
recover shapes of accessories such as glasses. As
face regions occluded by accessories in the original
view may be revealed in the novel view, the shapes
of accessories must be considered during novel view
synthesis. Second, the synthesized face view needs to
replace the face in the original view. Due to the view
differences, the boundaries of the two face views may
not align. There may be visual artifacts around the
transition region between the synthesized face and the
original background. Finally, for video conferencing
applications, the system must be efficient enough to
synthesize views in real time.

In this paper, we propose a real-time face view
correction system using a single RGB camera. Given
the input video stream, our system synthesizes in real
time a video stream from the view of a virtual camera
with a designated location and orientation. For each
input video frame, we first recover the 3D face shape
and orientation using a convolutional neural network
(CNN), with a novel landmark correspondence update
strategy to improve reconstruction accuracy. Then
the reconstructed face is re-rendered according to the
coordinate transformation between the real camera
and the virtual camera to derive the face view
from the virtual camera, which will replace the
face region from the original frame. To reduce
visual artifacts between the rendered face and the
background in the original frame, we perform seam
optimization and Laplacian blending to achieve a
natural transition between them. For users wearing
glasses, we also propose a method to reconstruct the
3D shape of glasses based on the detected landmarks
and a semantic segmentation mask; this is the first
automatic 3D glasses reconstruction method as far
as we know. By rendering the reconstructed 3D
glasses shape and face shape together and handling
the visible area which is invisible in the original view,
a natural appearance can be achieved. Experimental
results demonstrate that our method works well in
various application scenarios.

2 Related work
2.1 3D face reconstruction
3D face reconstruction from a single image and facial
performance capture from monocular video have
made significant progress in recent years [19]. Most

Real-time face view correction for front-facing cameras 439

existing methods are based on parametric models
such as the 3D Morphable Model (3DMM) [20],
FaceWarehouse [21], and FLAME [22], which learn a
linear or bilinear basis from scanned 3D face data to
represent general face shapes. Traditional methods
reconstruct a 3D face model from an image via
an analysis-by-synthesis approach, optimizing shape
parameters by minimizing the difference between
rendered reconstruction and the given image [20, 23].
Recently, machine learning techniques have been
adopted to learn a mapping from the face image
to its shape parameters [24–35]. Due to a lack of
training data, some methods used synthetic data
[24, 25, 28, 33] while others adopted unsupervised or
weakly-supervised learning strategies [29–31, 34, 35].
To recover 3D face shapes from a monocular video,
Garrido et al. [36] used a multi-layer approach and
extracted a high-fidelity parameterized 3D face rig
that contains a generative wrinkle formation model
capturing person-specific idiosyncrasies. Cao et
al. [37] presented a learning-based regression approach
to fit a generic identity and expression model to
an RGB face video on the fly. Thies et al. [15]
proposed a method to jointly fit a parametric model
for identity, expression, and skin reflectance to the
input color, to provide real-time 3D face tracking and
facial reenactment.

2.2 Face view correction
To improve eye contact in video conferencing, Kuster
et al. [9] proposed a face view correction method
based on an RGB-D camera, which directly performs
a 3D transformation of the head geometry and then
blends the corrected face image with the background.
Later, Giger et al. [10] presented a shape deformation
based method for face view correction for a single
webcam. Zhai et al. [38] proposed a system that
utilizes an RGB-D camera for gaze correction and
face beautification. Other methods perform gaze
correction only, using machine learning techniques
to modify the appearance of the eye regions [11–
14]. Although they can improve eye contact, these
methods do not modify other face regions. They
cannot correct their undesirable appearance due to
camera locations.

2.3 Face normalization
Another problem related to our work is face
normalization, which aims to remove perspective

distortion, relight the face to emulate an evenly
lit environment, and predict a frontal, neutral face
given an arbitrary real world face image. Many
existing works utilize 3D face geometry information
to frontalize the face orientation. Hassner et al. [39]
proposed a simple approach using a template 3D
surface to estimate the intrinsic camera matrix,
and the 2D face image is corrected based on the
recovered information. Given a single portrait
photo, Fried et al. [16] proposed to modify the
relative pose and distance between the camera and
the subject by first recovering a 3D head model
and then warping the 2D image to approximate
the effect of the desired change in 3D. In recent
work, Zhao et al. [40] presented a learning-based
approach to remove perspective distortion artifacts
from unconstrained portraits by directly learning a
distortion correction flow map. Ngano et al. [18]
proposed a deep learning-based method that can
fully normalize unconstrained face images. Yin et
al. [41] presented a generative adversarial network for
photo-realistic face frontalization by capturing both
contextual dependencies and local consistency during
training.

3 Our method

3.1 Overview
Our system takes captured video as input and in
real time generates a video that shows the view
from a virtual camera at a prescribed location and
orientation. We assume that the virtual camera has
the same intrinsic parameters as the real camera,
so that the virtual camera can be considered to be
the result of moving the real camera to a different
location and/or orientation. We further assume that
the relative orientation between the two cameras is
fixed during the whole process, which is typical in
real-world applications. To generate the view from
the virtual camera, we first use a CNN to recover
the shape, location, and orientation of the 3D face
with respect to the real camera. The 3D face shape is
then transformed into the camera coordinate system
of the virtual camera and rendered to derive a new
face image that replaces the face in the original frame.
Finally, the rendered face image is blended with the
original frame to generate the final output. The
algorithm pipeline is shown in Fig. 2.

440 Y. Guo, J. Zhang, Y. Chen, et al.

Fig. 2 Pipeline of our method. (a) Given an input face image, we reconstruct the 3D geometry and orientation of the face (bottom right). (b)
The reconstructed face is rendered from the view of a virtual camera and overlayed onto the original image. (c) We optimize the seam between
the rendered face and the original image to reduce visual artifacts. The bottom-right corners of (b) and (c) show the rendered face region mask
before and after seam optimization, respectively. (d) We apply Laplacian blending to refine the transition and produce the final result. Red
ellipses: visual artifacts. Blue ellipses: after improvement.

3.2 3D face reconstruction
3.2.1 Parametric face model
We use a bilinear face model based on FaceWarehouse
[21] to encode facial identity and expression. To
facilitate correction, we follow Ref. [10] and only keep
the face and neck parts of the head model, as shown in
Fig. 3(right). We collect vertex coordinates of all face
meshes from FaceWarehouse into a third-order tensor
and perform 2-mode singular value decomposition
(SVD) reduction along the identity mode and the
expression mode to generate a bilinear model that
approximates the original dataset:

F = Cr ×2 αid ×3 αexp (1)
where Cr is the reduced core tensor computed from
the SVD reduction, αid, αexp are identity and
expression coefficients that control face shape, while
×2 and ×3 represent multiplication in the 2nd mode
(identity) and the 3rd mode (expression), respectively.
Following Ref. [20], facial albedo b is represented via
principal component analysis (PCA):

b = b + Aalbαalb (2)
where b is the average facial albedo, Aalb are the
principle axes extracted from a set of textured face
meshes, and αalb is the albedo coefficient vector. The
albedo basis is obtained by transforming from the
Basel Face Model (BFM) [42] to the FaceWarehouse
model via nonrigid registration [43].
3.2.2 Camera and illumination model
We render the facial image using the weak perspective
projection model:

p′
v = ΠRpv + t (3)

where pv ∈ R
3 and p′

v ∈ R
2 are the locations of

vertex v in the world coordinate system and in the
image plane respectively, R ∈ SO(3) is a rotation
matrix, t = [tx, ty]T is a translation vector, and

Π = s

[
1 0 0
0 1 0

]
is the scaled projection matrix with

scaling factor s.
To model the lighting condition, we approximate

the global illumination using spherical harmonic (SH)
[44] basis functions under the assumption that the
face is a Lambertian surface. The irradiance of a
vertex v is determined by its normal nv and albedo
bv via

I(nv, bv|γ) = bv ·
(�+1)2∑

k=1

γkφk(nv) (4)

where φk are the SH basis functions, and γ =
[γ1, · · · , γ(�+1)2]T are the SH coefficients with � being
the maximal order of SH basis (� = 2 in this paper).
3.2.3 Learning-based 3D face reconstruction
To recover 3D face shape, we use ResNet-18 [45]
to directly regress the parameter vector χ =
{αid, αexp, αalb, s, R, t, γ, c} from an input image.
Here c is a vector that describes the characteristics
of the image, including the occlusion ratio of the face
region and whether the subject wears glasses. Such
characteristics are used for glasses reconstruction
and validity judgement in the correction step, as
explained in Sections 3.5 and 3.6. Following recent
self-supervised CNNs for 3D face reconstruction
[29, 34], we guide CNN training using the following
loss function for each training image:

E(χ) = Epho + w1Elan + w2Ereg + w3Echa (5)

Real-time face view correction for front-facing cameras 441

The photometric loss:

Epho =
1

|M|
∑

m∈M
‖Isyn(m) − Ireal(m)‖2

measures the consistency between the input image
and the face image resulting from the regressed
parameters, where M denotes the set of pixels in
the visible face region, and Isyn(m), Ireal(m) are
the synthetic color and the real color at pixel m,
respectively. The landmark loss:

Elan =
1

|L|
∑
v∈L

‖qv − (ΠRpv + t)‖2
2

evaluates the distance between the detected
landmarks in the input image and the projections of
the corresponding landmark vertices from the 3D face
model, where L is the set of landmark vertices, and
pv, qv denote 3D coordinates of a landmark vertex v

and the 2D coordinates of its corresponding detected
landmark, respectively. The term:

Ereg =
50∑

i=1

(
αid,i

σid,i

)2
+

50∑
i=1

(
αalb,i

σalb,i

)2
+

47∑
i=1

(
αexp,i

σexp,i

)2

regularizes the parameters for the face shape
and albedo, where σid, σexp, and σalb are the
corresponding singular values obtained from the 2-
mode SVD reduction or PCA. Echa is a loss function
for the characteristics of the image; its definition
will be given in Section 3.6. Scalars w1, w2, and
w3 are tuning weights which we set to 3, 0.01,
and 0.5 respectively. To train the network, we
constructed a large-scale training dataset consisting
of nearly 900k face images from 500 subjects. The
images were captured using RGB cameras in different
consumer laptops, smartphones, and tablets. During
acquisition, the subjects sat or stood in a variety of
environments and performed various actions such
as scratching the head, gesturing, making phone
calls, and so on. To improve the robustness of
reconstruction, we captured these face images from a
variety of angles. We used the method from Ref. [46]
to detect facial landmarks for all images.
3.2.4 Landmark correspondence update
The landmark vertices on the face mesh are labeled
based on the frontal pose. For non-frontal face images,
the detected 2D landmarks along the face contour may
not correspond well with the landmark vertices. We
update the silhouette landmark vertices according
to the current rotation matrix R during training.
Specifically, we pre-process the original face mesh
to derive a dense set of horizontal lines covering

the potential silhouette region from a rotated view
(see Fig. 4). For each face model in every mini-
batch during training, we choose the vertex with
the smallest value of |N · V | from each horizontal
line to construct the estimated silhouette, where N

and V are the vertex normal and view direction,
respectively. Then for each 2D contour landmark,
we update its corresponding landmark vertex to the
silhouette vertex whose projection computed with
Eq. (3) is closest (see Fig. 4).

Unlike other facial features, the shape of the
eyebrows can vary greatly between different persons
(see Fig. 5). Therefore, a fixed eyebrow landmark
template as shown in Fig. 3(right) may not give
a good fit to the detected eyebrow landmarks in
the input image, due to the limited number of
parameters for the 3D face shape. Inaccurate
eyebrow shape estimation will cause visual artifacts
after view correction due to depth ambiguity. To
solve this problem, we propose a novel strategy
that can adaptively adjust the eyebrow shape
according to the input face image. We first label
a set of default eyebrow landmark vertices on the

Fig. 3 Detected 2D landmarks on an input face image (left) and the
corresponding 3D landmarks on the face mesh (right).

Fig. 4 For a non-frontal face image (left), we dynamically update the
3D face silhouette landmarks (red) according to the current estimated
rotation, to give better correspondence with the detected 2D silhouette
landmarks (left, cyan).

442 Y. Guo, J. Zhang, Y. Chen, et al.

Fig. 5 Eyebrows with different shapes, and detected landmarks for
the eyebrow and the eye.

template mesh. During training, the actual landmark
vertices are dynamically updated according to the
current 3D face shape. Specifically, we compute
a tangential correction vector δv for each default
eyebrow landmark vertex v (parameterized using local
coordinates in its tangent plane on the face mesh),
so that the projection pv + δv becomes closer to its
corresponding 2D eyebrow landmark. Afterwards,
the mesh vertex closest to the corrected position
pv + δv is chosen as the updated landmark vertex.
The correction vectors are computed simultaneously
via:
min

∑
v∈Leb

(‖ΠR(pv+δv)+t−qv‖2
2+web‖Δδv‖2

2) (6)

where Leb denotes the set of default eyebrow
landmark vertices. The second term in the target
function is a smoothness energy for the tangential
corrections with a weight web, which is set to 0.01. We
first connect the default eyebrow landmark vertices
to form a closed polyline that outlines the eyebrow
boundary. Then Δδv = δv− 1

2(δ+
v +δ−

v) is the discrete
Laplacian operator of the tangential corrections along
the polyline at vertex v, where δ+

v , δ−
v are the

tangential corrections at its preceding and succeeding
landmark vertices, respectively. The Laplacian energy
regularizes the tangential corrections so that the
updated landmarks form a reasonable outline of the
eyebrow shape.

3.3 Pose correction
With the learned parameters described above, Rpv in
Eq. (3) represents the learned position of a face vertex
v (up to a common translation for all vertices) using
the camera coordinate system of the real camera.
Recall that the relative orientation between the real
camera and the virtual camera is fixed. Therefore,
we can pre-compute the rotation Rc between the

camera coordinate systems, so the position of v

(up to a common translation for all vertices) in
the virtual camera’s coordinate system is RcRpv.
Recall further that the two cameras have the same
intrinsic parameters, so the mapping Π in Eq. (3) also
describes the scaled projection matrix of the virtual
camera. Therefore, we can derive the following image
coordinates for v from the view of the virtual camera:

p′′
v = ΠRcRpv + t′′ (7)

where t′′ ∈ R
2 is a common translation for all vertices;

its determination will be explained shortly. Based
on this relation, we render the face image from the
view of the virtual camera and use it to replace the
face region in the video frame from the real camera,
while retaining the other parts of the frame. To
determine the texture of the rendered face, we use
the weak perspective projection of the real camera
to assign color information from the input video
frame to the texture of the face model, and reuse the
texture to render the virtual camera view. Since the
rendered face replaces the original face, we determine
the common translation t′′ so that the two faces
overlap. Specifically, t′′ is determined by minimizing
the �2 distance from the projected landmark locations
{p′′

v | v ∈ L} of the rendered face to the detected
landmarks {qv | v ∈ L} in the original frame:

min
∑
v∈L

‖p′′
v − qv‖2

2 (8)

An example is shown in Fig. 2(b).

3.4 Background blending
Directly overlaying the corrected rendered face
onto the original image may result in unnatural
transitions around the boundary of the face region,
as the rendered face and the original face may not
fully align (see Fig. 2(b)). Therefore, we apply a
blending operation between the rendered face and
the original image to improve the appearance. We
first optimize a seam between the original image and
the rendered face to reduce the visual artifact across
the seam. Afterwards, we further refine the result
using Laplacian blending [47].
3.4.1 Seam optimization
The goal of seam optimization is to find a seam
between the rendered face image and the original
image, such that the image content outside the seam
(which comes from the original image) is as consistent
as possible with the content inside the seam (which

Real-time face view correction for front-facing cameras 443

Fig. 6 Further examples of seam optimization and Laplacian blending. In each case, left to right: original image, corrected image after seam
optimization, and final image after Laplacian blending. Red ellipses: visual artifacts. Blue ellipses: improvement after Laplacian blending.

comes from the rendered face). Following Ref. [48],
we formulate the seam optimization as a graph cut
problem over a fusion area that is a region of the
rendered face around its boundary. To determine
the fusion region, we first take the optimized seam
from the previous frame and apply a translation that
best aligns the detected landmarks in the two frames
(computed by optimization similar to Eq. (8)) to
derive a closed curve B. Then we perform a breadth-
first search from B, and derive the fusion area as
the union of any pixel location x that lies within
the rendered face region and satisfies dB(x) � 10,
where dB(x) is the BFS distance from x to B. Again
following Ref. [48], we search for a seam that lies in
the fusion area and minimizes the following target
function:

Eseam =
∑

(x,y)∈P
α(x, y) · (‖I(x) − J(x)‖2

+ ‖I(y) − J(y)‖2)
where P denotes the set of adjacent pixels across
the seam, and I(·), J(·) denote the pixel color
in the original image and the rendered face,
respectively. The term ‖I(x) − J(x)‖2 + ‖I(y) −
J(y)‖2 indicates consistency of color between the
two images across the seam [48], with the weight
α(x, y) = exp (min(dB(x), dB(y))) favoring a seam
with similar shape to the optimized seam from
the previous frame. Like Ref. [48], we solve the
optimization problem using graph cut [49]. An
example of seam optimization is shown in Fig. 2(c),
showing a more natural appearance than directly

overlaying the corrected rendered face (Fig. 2(b)).
3.4.2 Laplacian blending
After seam optimization, the result may still contain
artifacts if there is a large difference between the
face poses in the original image and the rendered
image. Thus we further refine the result via Laplacian
blending [47], using the rendered face within the
seam as the foreground. An example is shown
in Fig. 2(d). For Laplacian blending, we set the
level of the pyramid to 5 in all our experiments.
Figure 6 shows further examples of the effectiveness
of Laplacian blending in improving appearance. A
comparison between generated video sequences with
and without Laplacian blending can be found in the
Electronic Supplementary Material (ESM).

3.5 Faces with glasses

3.5.1 Approach
Using the characteristic vector c returned by the
neural network in Section 3.2, we can determine
whether the user is wearing glasses. For a face with
glasses, reconstructing only the 3D face shape may
produce unnatural results: since we reuse the texture
information from the real camera to render the face
for the virtual camera, the texture for the glasses
may appear distorted due to the view discrepancy
between the two cameras (see Fig. 10(middle)). For
a more natural appearance, we reconstruct the 3D
shape of the glasses, which is then transformed and
rendered together with the face. The 3D glasses shape
is reconstructed by deforming a template mesh (see

444 Y. Guo, J. Zhang, Y. Chen, et al.

Fig. 7) to align its 2D projection with the glasses area
from the input frame. We prescribe 12 landmarks
(red in Fig. 7) on the template mesh to facilitate
the alignment: four around the boundary of each
lens, one at each hinge between the lens and the
temples, and one at the end of each temple. For
reconstruction, we first use neural networks to detect
the landmarks and determine a segmentation mask for
the glasses from the input frame. Then we deform the
template model to align its 2D projection with the 2D
glasses image, to obtain the 3D shape of the glasses.
Finally, we rotate the face together with the glasses,
and render them to the 2D plane. As glasses shape
and position relative to the face are usually fixed,
for efficiency we only perform this reconstruction
once at the beginning. In the following, we provide
algorithmic details for each step.
3.5.2 3D glasses reconstruction
From the input frame, we use U-Net [50] to segment
the glasses, and ResNet-18 [45] to regress the
landmark positions and determine whether the user
wears glasses. The two networks are trained using
2600 images with manually labeled landmarks and
segmentation masks; Fig. 8 gives some examples from
the training set.

To reconstruct the shape of the glasses, we first
optimize a similarity transformation of the template
mesh to align the projection of 10 landmarks (eight
around the boundaries of the lenses and two at the
hinges) with their corresponding detected landmarks.

Fig. 7 Template mesh and the corresponding 12 landmarks (indicated
with red circles) used in 3D glasses reconstruction.

Fig. 8 Manually labeled landmarks and segmentation masks for
glasses.

Then we fix the lens regions of the mesh and rotate
each template region around its hinge to align
the projections of the two landmarks at the end
of each temple with their corresponding detected
landmarks. The whole mesh is further deformed
non-rigidly to match the segmentation mask of the
glasses. Specifically, we use the iterative solver from
Ref. [51] to optimize a mesh deformation that aligns
its projected boundary with the boundary of the
segmentation mask, while enforcing the smoothness of
the deformation using a Laplacian energy. Figure 9(b)
shows an example of 3D glasses shape reconstruction.
3.5.3 Rendering glasses with face
The relative position between the glasses and the face
is fixed and can be pre-computed using the initial
frame of the video sequence. For each subsequent
frame, we directly use the learned face pose to
determine the location of the glasses within the real
camera’s coordinate system, and render the face
together with the glasses from the virtual camera
view following Eq. (7). The texture information from
the input frame is assigned to the visible regions
of the face and the glasses and reused to render
them. Due to the view discrepancy between the
real camera and the virtual camera, a face region
occluded by the glasses in the real camera view may

Fig. 9 Reconstruction and rendering of glasses. (a) Input face image.
(b) Reconstructed face and glasses mesh from the real camera view.
Cyan: top boundary of the glasses. (c) Rconstructed face and glasses
from the virtual camera view. Red: bottom boundary of the face
region above the glasses, visible from the real camera. (d) Directly
rendering the face and glasses from the virtual camera view produces
an unnatural result: the face region between the red and cyan curves in
(c) is occluded in the real camera view and lacks texture information.
(e) To remove the texture gap between red and cyan curves, we slide
each column of pixels in the face region above the red curve downwards
to meet the cyan curve. (f) Final result after merging the modified
rendered image with the original image using seam optimization and
Laplacian blending.

Real-time face view correction for front-facing cameras 445

be visible in the virtual camera view, as shown in
Fig. 9(c), where the virtual camera is placed above
the real camera and exposes a region occluded in
the real camera view. The exposed region appears
in the virtual camera view as a gap without texture
information, located between the top boundary of the
glasses (cyan) and the face region above the glasses
that is visible from the real camera (bottom boundary
in red). To determine the texture of the exposed
region for rendering, we could potentially use image
in-painting [52], but this is computationally involved.
Since the rendered face still needs to be merged with
the original frame, we adopt a simple approach to
handle the gap without texture. For the face region
above the red curve, we take each column of its pixels
and slide the whole column downwards vertically until
it meets the top of the glasses region (i.e., the cyan
curve). This effectively fills the gap while removing
some pixels from the top of the face. Afterwards,
we perform Laplacian smoothing on each horizontal
row of pixels within the original gap region to create
a smooth transition. This modified rendered face
image is then merged with the original frame via
seam optimization and Laplacian blending, as for a
face without glasses. In this way, the removed top
region of the rendered face is replaced by face pixels
from the original frame, and the merging afterwards
produces a natural appearance: see our experiments.
Figure 9(f) shows an example of the final merged
image. Figure 10 further compares correction results
with and without reconstruction of 3D glasses shapes,
clearly showing the benefit in reducing distortion of
the glasses. More examples are available in the ESM.

3.6 Validity judgment
When there is slight occlusion around the face
boundary in the input frame (e.g., occlusion by hair),
some of the occluding object’s color information may
be treated as texture on the face model. In this case,
seam optimization and Laplacian blending help to
create a natural transition between the occluding
texture and the part of the occluding object that
lies outside the face region. However, when a larger
part of the face is occluded by an object that lies
across the face region and the background, the
correction result may still look unnatural after the
blending. In addition, if the input face is severely
occluded, learning-based 3D face reconstruction may
produce inaccurate results. Therefore, for each input

Fig. 10 Correction results for users wearing glasses. Above: input
frames. Middle: results without reconstructing the 3D shapes of the
glasses. The glasses region in the input is treated as texture on the
face model, resulting in distortion in the virtual camera view. Below:
correction results using reconstructed glasses shapes.

frame, we check the face occlusion ratio from the
characteristic vector returned by the neural network
in Section 3.2, and apply face view correction only if
the threshold is below a pre-defined threshold. We
set the threshold to 25% in all experiments. When
training the network, we manually label the occluded
face region in each training image to provide a ground-
truth ratio of face occlusion. We also label each
image to indicate whether the subject is wearing
glasses. The loss function term Echa for a training
image combines two quantities: the squared difference
between the predicted face occlusion ratio and the
ground-truth ratio, and a softmax classification loss
for glasses. Figure 11 shows examples of occlusion
ratios predicted by our network.

Fig. 11 Images with occlusion. The 3D face reconstruction network
outputs the face occlusion ratio for validity judgement. The estimated
occlusion ratios for these three face images are 8.5%, 14.3%, and
13.5%, respectively.

446 Y. Guo, J. Zhang, Y. Chen, et al.

Furthermore, we do not apply correction if the
face pose change is too large. We check the rotation
matrix R returned by the neural network for face
reconstruction. If the magnitude of a rotation
angle exceeds a threshold, we gradually reduce the
correction to identity in the following four frames to
avoid abrupt changes in the output video. Specifically,
we replace the pre-computed rotation Rc in Eq. (7)
by another rotation Rc, with Rc transitioning from
Rc to identity. Similarly, if the captured face rotation
falls back to lie within the threshold, we gradually
change the rotation Rc back to Rc over the next four
frames. In our experiments, we set the thresholds for
yaw, pitch and roll to 20◦, 35◦, and 14◦, respectively.

4 Results
In this section, we evaluate the performance of
our method, and compare it with state-of-the-art
methods. Our evaluation used a laptop with an Intel
Core i7-8565U, 8 GB of RAM, an Nvidia GeForce
MX250, and a webcam located within the keyboard.
Unless stated otherwise, input video was captured
using the laptop webcam, and the virtual camera is
at the center of the display with a viewing direction
orthogonal to the screen.

4.1 Efficiency
Our system is fully automatic and runs in real time,
our un-optimized implementation achieving 20 fps for
1280 × 720 input videos. For an input frame, 3D face
reconstruction typically takes 26 ms, re-rendering, 8
ms, and seam optimization and blending, 13 ms. For
a user with glasses, we need a pre-processing step to
reconstruct the 3D glasses shape, and an additional
step for each frame to handle the gap due to exposed
occluded regions. These two steps typically take 63
and 2 ms, respectively. As glasses reconstruction is
only performed once, it has negligible impact on the
efficiency of the system.

4.2 Robustness
We tested the robustness of our system to different
lighting conditions, poses, glasses, and the user
motion such as head rotation and movement. Some
video results are included in the ESM. Figure 1
demonstrates that our system is robust under various
environments, including indoor and outdoor scenes
and different lighting conditions, and works well for

different skin tones. Figure 12 shows that our system
can correctly handle horizontal rotations of the user’s
head. Figure 13 shows an example where the user
quickly approached the camera; our method is robust
to such fast movements. Further examples can be
found in the ESM. We also evaluated our system for
users wearing different types of glasses. As shown
in Fig. 10 and the ESM, our system can correctly
handle different glasses to produce natural-looking
results.

4.3 Face reconstruction accuracy
We evaluated the accuracy of our 3D face
reconstruction network by conducting quantitative
comparisons with state-of-the-art learning-based
methods [29, 34, 53–55]. With the same setting as
Ref. [54], we compared our results on 180 meshes
of 9 subjects from FaceWarehouse. Following the
evaluation protocol of Ref. [34], we computed the

Fig. 12 Correction results for a user with horizontal head rotation.
Above: input frames. Below: correction results.

Fig. 13 Above: input frames for a user quickly approaching the
camera. Below: correction results

Real-time face view correction for front-facing cameras 447

point-to-point distances between the reconstructed
meshes and the ground-truth meshes after alignment
by running ICP with uniform scaling. The point-to-
point errors are listed in Table 1. We also show the
reconstruction results and error maps in Fig. 14. It
can be seen that our method outperforms the method
of Deng et al. [34] in terms of shape and expression
reconstruction.

4.4 Visual quality
We conducted a user study on 50 participants to
evaluate the visual quality of the results from our
system. We collected 10 video sequences covering
different scenarios, including indoor and outdoor
scenes, different lighting conditions, subjects with
different skin tones, with and without glasses. Each
participant watched the original and corrected videos
and was asked to rate their satisfaction with the
results in three ways: naturalness of the results,
consistency of facial appearance between the two
videos, and accuracy of view correction. Each aspect
was rated with a score between 1 and 5, with 1 worst
and 5 best. Average scores for the three aspects were
4.35, 4.25, and 4.41, respectively, demonstrating that
our method can generate natural-looking corrected
views of faces.

Table 1 Mean reconstruction error on 180 meshes of 9 subjects from
FaceWarehouse. Our geometric error is the lowest among all methods

Method Ours [34] [55] [54] [29] [53]

Mean (mm) 1.76 1.81 2.01 1.84 2.19 2.11

SD (mm) 0.35 0.50 0.41 0.38 0.54 0.46

Fig. 14 Reconstruction from RGB inputs using the method of Deng
et al. [34] and our method. Left to right: input images and ground-
truth meshes, Deng’s method’s results and error maps, our results
and error maps.

4.5 Comparison to a state-of-the-art method
A method particularly relevant to our work is
the webcam-based approach from Ref. [10]. For
a fair comparison, we only replaced our 3D face
reconstruction component with the deformation
based method in their paper, while all other steps
remained unchanged. Examples are shown in Fig. 15
and in the ESM. Our method produces more natural
results as its learning-based 3D face reconstruction
utilizes face shape priors and landmark update
strategies that correctly handle large discrepancies
between the real and virtual cameras. In comparison,

Fig. 15 Comparisons between Ref. [10] and our method. The
former does not utilize shape priors of human faces and may produce
unnatural results.

448 Y. Guo, J. Zhang, Y. Chen, et al.

the method from Ref. [10] only deforms a 3D
face template to match detected 2D landmarks;
lack of facial shape priors can lead to distortion.
Correspondences between 2D and 3D landmarks are
also fixed in their method to allow pre-factorization
of the deformation matrix for fast computation,
which may introduce errors under large pose changes.
Although it is possible to improve the accuracy for
Ref. [10] by adopting a landmark update strategy
similar to ours, this would result in a deformation
matrix that may need to be frequently re-factorized,
increasing the computational cost. Finally, unlike
our method, the deformation approach [10] does not
take glasses shape into account and may produce
unnatural results, as noted as a limitation in their
paper.

For qualitative and quantitative comparison, we
also compare the results of the two methods for video
captured using a camera at the same location as
the virtual camera. We first placed a webcam at a
position well below the face to capture video as input
for the correction algorithms, with the virtual camera
located in front of the user’s face (see Fig. 16 for
the setup using our correction method). Then we
placed a webcam of the same kind at the location
of the virtual camera to capture a frontal reference
video simultaneously for comparison. We collected 10
pairs of input and reference video sequences using this
setup and applied our method and that of Ref. [10]
to correct the input video. Figure 17 shows examples
from the frontal reference videos together with the
correction results using the two methods. We can
see that our method produces more natural results
with appearance closer to the reference videos. For

Fig. 16 Set up of our system for correcting videos captured from
a webcam well below the face. Real-time results are shown in the
accompanying video.

Fig. 17 Comparisons between captured real frontal videos, and
corrected results from Ref. [10] and our method. Our results are closer
to the real frontal videos.

further verification, we evaluated the perceptual
similarity between the correction results and the
reference videos using deep face recognition features.
Specifically, for each frame from the input camera,
we took the corresponding frame in the reference
video as well as the corrected frames using the two
methods and evaluated their facial recognition feature
according to Ref. [56]. We then computed the cosine
distance from the feature of each corrected frame to
the feature of the reference frame, with a larger value
indicating higher perceptual similarity. We repeated
this process for all frames of all 10 input videos and
computed the average cosine distance for each method.
Our method achieved an average value 0.91, whereas
the average value for Ref. [10] is 0.84, indicating that
our results have higher perceptual similarity to the
reference video. We also conducted a user study
on the same 50 participants mentioned previously
to compare the visual quality of results from our
method and Ref. [10]. Each participant was shown
the 10 pairs of corrected videos and asked to choose
the better one in each pair. For a fair comparison,
each participant was first shown the input video,
followed by the two corrected videos in random order,
without information about the correction method
used. Overall, our result was considered to be the

Real-time face view correction for front-facing cameras 449

better one in 89.6% of the pairs, showing that our
method produces more visually convincing results.

We also compared our method to a face
reenactment method [15]. Although the method does
not target face view correction, its pipeline could
be adopted for this task. We show a qualitative
comparison of results in Fig. 18. It can be seen that
our method produces more frontal facial images and
more natural glasses correction.

4.6 Limitations and future work
Our system has several limitations that need to be
addressed as future work. First, we reuse the facial
texture from the real camera view to render a facial
image for the virtual camera view. If the view
discrepancy between the two cameras is too large,
there may be face areas that are visible from the
virtual camera but invisible from the real camera,
and our method cannot handle such cases. This issue
can potentially be resolved by running a short pre-
calibration session to capture the full facial texture
from different views. Second, we directly use the
glasses texture from the real camera to render glasses
for the virtual camera view, which does not correctly
capture optical effects of the lenses such as refraction.
One possible solution is to further refine the corrected
results using a generative adversarial network.

Fig. 18 Comparison between our method and Ref. [15]. Left to
right: input images, correction results of Ref. [15], correction results
of our method.

5 Conclusions
We have proposed a fully automatic face view
correction system based on a single RGB camera.
We trained a neural network to reconstruct 3D face
shape using the video input from the camera and
generate a video that imitates a novel view from a
virtual camera. Our method can also correct face
videos where the users wear glasses by reconstructing
the 3D shape of the glasses. Our system is robust
to different conditions, including lighting conditions,
skin tones, and glasses. It operates in real time on a
consumer laptop and produces visually appealing
and convincing results. With its robustness and
efficiency, our system can potentially be applied to
various devices to improve the user experience in
video conferencing applications.

Electronic Supplementary Material Supplementary
material is available in the online version of this article
at https://doi.org/10.1007/s41095-021-0215-y.

References

[1] Monk, A. F.; Gale, C. A look is worth a thousand words:
Full gaze awareness in video-mediated conversation.
Discourse Processes Vol. 33, No. 3, 257–278, 2002.

[2] Grayson, D. M.; Monk, A. F. Are You looking at
me? Eye contact and desktop video conferencing. ACM
Transactions on Computer-Human Interaction Vol. 10,
No. 3, 221–243, 2003.

[3] Mukawa, N.; Oka, T.; Arai, K.; Yuasa, M. What
is connected by mutual gaze: User’s behavior in
video-mediated communication. In: Proceedings of the
Extended Abstracts on Human Factors in Computing
Systems, 1677–1680, 2005.

[4] Ishii, H.; Kobayashi, M. ClearBoard: A seamless
medium for shared drawing and conversation with eye
contact. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 525–532,
1992.

[5] Okada, K. I.; Maeda, F.; Ichikawaa, Y.; Matsushita, Y.
Multiparty videoconferencing at virtual social distance:
MAJIC design. In: Proceedings of the ACM Conference
on Computer Supported Cooperative Work, 385–393,
1994.

[6] Matusik, W.; Buehler, C.; Raskar, R.; Gortler, S. J.;
McMillan, L. Image-based visual hulls. In: Proceedings
of the 27th Annual Conference on Computer Graphics
and Interactive Techniques, 369–374, 2000.

450 Y. Guo, J. Zhang, Y. Chen, et al.

[7] Matusik, W.; Pfister, H. 3D TV: A scalable
system for real-time acquisition, transmission, and
autostereoscopic display of dynamic scenes. ACM
Transactions on Graphics Vol. 23, No. 3, 814–824, 2004.

[8] Kuster, C.; Popa, T.; Zach, C.; Gotsman, C.;
Gross, M. H. FreeCam: A hybrid camera system
for interactive free-viewpoint video. In: Vision,
Modeling,and Visualization. Eisert, P.; Polthier, K.;
Hornegger J. Eds. The Eurographics Association, 17–
24, 2011.

[9] Kuster, C.; Popa, T.; Bazin, J. C.; Gotsman, C.; Gross,
M. Gaze correction for home video conferencing. ACM
Transactions on Graphics Vol. 31, No. 6, Article No.
174, 2012.

[10] Giger, D.; Bazin, J. C.; Kuster, C.; Popa, T.; Gross, M.
Gaze correction with a single webcam. In: Proceedings
of the IEEE International Conference on Multimedia
and Expo, 1–6, 2014.

[11] Kononenko, D.; Lempitsky, V. Learning to look up:
Realtime monocular gaze correction using machine
learning. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 4667–4675,
2015.

[12] Hsu, C. F.; Wang, Y. S.; Lei, C. L.; Chen, K.
T. Look at me! Correcting eye gaze in live video
communication. ACM Transactions on Multimedia
Computing, Communications, and Applications Vol. 15,
No. 2, Article No. 38, 2019.

[13] He, Z.; Spurr, A.; Zhang, X. C.; Hilliges, O. Photo-
realistic monocular gaze redirection using generative
adversarial networks. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 6931–
6940, 2019.

[14] Zhang, J. C.; Chen, J. J.; Tang, H.; Wang, W.; Yan,
Y.; Sangineto, E., Sebe, N. Dual in-painting model
for unsupervised gaze correction and animation in the
wild. In: Proceedings of the 28th ACM International
Conference on Multimedia, 1588–1596, 2020.

[15] Thies, J.; Zollhöfer, M.; Stamminger, M.; Theobalt,
C.; Nießner, M. Face2Face: Real-time face capture
and reenactment of RGB videos. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2387–2395, 2016.

[16] Fried, O.; Shechtman, E.; Goldman, D. B.; Finkelstein,
A. Perspective-aware manipulation of portrait photos.
ACM Transactions on Graphics Vol. 35, No. 4, Article
No. 128, 2016.

[17] Shu, Z. X.; Hadap, S.; Shechtman, E.; Sunkavalli,
K.; Paris, S.; Samaras, D. Portrait lighting transfer
using a mass transport approach. ACM Transactions
on Graphics Vol. 36, No. 4, Article No. 2, 2017.

[18] Nagano, K.; Luo, H. W.; Wang, Z. J.; Seo, J.; Xing,
J.; Hu, L. W.; Wei, L.; Li, H. Deep face normalization.
ACM Transactions on Graphics Vol. 38, No. 6, Article
No. 183, 2019.

[19] Zollhöfer, M.; Thies, J.; Garrido, P.; Bradley, D.; Beeler,
T.; Pérez, P.; Stamminger, M.; Nießner, M.; Theobalt,
C. State of the art on monocular 3D face reconstruction,
tracking, and applications. Computer Graphics Forum
Vol. 37, No. 2, 523–550, 2018.

[20] Blanz, V.; Vetter, T. A morphable model for
the synthesis of 3D faces. In: Proceedings of the
26th Annual Conference on Computer Graphics and
Interactive Techniques, 187–194, 1999.

[21] Cao, C.; Weng, Y. L.; Zhou, S.; Tong, Y. Y.; Zhou, K.
FaceWarehouse: A 3D facial expression database for
visual computing. IEEE Transactions on Visualization
and Computer Graphics Vol. 20, No. 3, 413–425, 2014.

[22] Li, T. Y.; Bolkart, T.; Black, M. J.; Li, H.; Romero, J.
Learning a model of facial shape and expression from
4D scans. ACM Transactions on Graphics Vol. 36, No.
6, Article No. 194, 2017.

[23] Jiang, L.; Zhang, J. Y.; Deng, B. L.; Li, H.; Liu, L. G.
3D face reconstruction with geometry details from a
single image. IEEE Transactions on Image Processing
Vol. 27, No. 10, 4756–4770, 2018.

[24] Richardson, E.; Sela, M. T.; Kimmel, R. 3D face
reconstruction by learning from synthetic data. In:
Proceedings of the 4th International Conference on
3D Vision, 460–469, 2016.

[25] Zhu, X. Y.; Lei, Z.; Liu, X. M.; Shi, H. L.; Li, S.
Z. Face alignment across large poses: A 3D solution.
In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 146–155, 2016.

[26] Richardson, E.; Sela, M. T.; Or-El, R.; Kimmel, R.
Learning detailed face reconstruction from a single
image. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 5553–5562,
2017.

[27] Jackson, A. S.; Bulat, A.; Argyriou, V.; Tzimiropoulos,
G. Large pose 3D face reconstruction from a single
image via direct volumetric CNN regression. In:
Proceedings of the IEEE International Conference on
Computer Vision, 1031–1039, 2017.

[28] Sela, M. T.; Richardson, E.; Kimmel, R. Unrestricted
facial geometry reconstruction using image-to-image
translation. In: Proceedings of the IEEE International
Conference on Computer Vision, 1585–1594, 2017.

[29] Tewari, A.; Zollhöfer, M.; Kim, H.; Garrido, P.; Bernard,
F.; Pérez, P.; Theobalt, C. MoFA: Model-based
deep convolutional face autoencoder for unsupervised

Real-time face view correction for front-facing cameras 451

monocular reconstruction. In: Proceedings of the IEEE
International Conference on Computer Vision, 3735–
3744, 2017.

[30] Tran, L.; Liu, X. Nonlinear 3D face morphable model.
In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 7346–7355, 2018.

[31] Genova, K.; Cole, F.; Maschinot, A.; Sarna, A.;
Vlasic, D.; Freeman, W. T. Unsupervised training for
3D morphable model regression. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 8377–8386, 2018.

[32] Gecer, B.; Ploumpis, S.; Kotsia, I.; Zafeiriou, S.
GANFIT: Generative adversarial network fitting for
high fidelity 3D face reconstruction. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 1155–1164, 2019.

[33] Guo, Y. D.; Zhang, J. Y.; Cai, J. F.; Jiang, B.
Y.; Zheng, J. M. CNN-based real-time dense face
reconstruction with inverse-rendered photo-realistic face
images. IEEE Transactions on Pattern Analysis and
Machine Intelligence Vol. 41, No. 6, 1294–1307, 2019.

[34] Deng, Y.; Yang, J. L.; Xu, S. C.; Chen, D.; Jia, Y. D.;
Tong, X. Accurate 3D face reconstruction with weakly-
supervised learning: From single image to image set. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 285–295,
2019.

[35] Tewari, A.; Bernard, F.; Garrido, P.; Bharaj, G.;
Elgharib, M.; Seidel, H. P.; Pérez, P.; Zollhöfer, M.;
Theobalt, C. FML: Face model learning from videos. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 10804–10814, 2019.

[36] Garrido, P.; Zollhöfer, M.; Casas, D.; Valgaerts, L.;
Varanasi, K.; Pérez, P.; Theobalt, C. Reconstruction of
personalized 3D face rigs from monocular video. ACM
Transactions on Graphics Vol. 35, No. 3, Article No. 28,
2016.

[37] Cao, C.; Hou, Q. M.; Zhou, K. Displaced dynamic
expression regression for real-time facial tracking and
animation. ACM Transactions on Graphics Vol. 33, No.
4, Article No. 43, 2014.

[38] Zhai, D. M.; Liu, X. M.; Ji, X. Y.; Zhao, D. B.;
Gao, W. Joint gaze correction and face beautification
for conference video using dual sparsity prior. IEEE
Transactions on Industrial Electronics Vol. 66, No. 12,
9601–9611, 2019.

[39] Hassner, T.; Harel, S.; Paz, E.; Enbar, R. Effective face
frontalization in unconstrained images. In: Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, 4295–4304, 2015.

[40] Zhao, Y. J.; Huang, Z.; Li, T. Y.; Chen, W. K.;
Legendre, C., Ren, X. L.; Shapiro, A.; Li, H. Learning
perspective undistortion of portraits. In: Proceedings of
the IEEE/CVF International Conference on Computer
Vision, 7848–7858, 2019.

[41] Yin, Y.; Jiang, S. Y.; Robinson, J. P.; Fu, Y. Dual-
attention GAN for large-pose face frontalization. In:
Proceedings of the 15th IEEE International Conference
on Automatic Face and Gesture Recognition, 249–256,
2020.

[42] Paysan, P.; Knothe, R.; Amberg, B.; Romdhani, S.;
Vetter, T. A 3D face model for pose and illumination
invariant face recognition. In: Proceedings of the 6th
IEEE International Conference on Advanced Video and
Signal Based Surveillance, 296–301, 2009.

[43] Sumner, R. W.; Popović, J. Deformation transfer for
triangle meshes. ACM Transactions on Graphics Vol.
23, No. 3, 399–405, 2004.

[44] Müller, C. Spherical Harmonics. Springer Berlin
Heidelberg, 1966.

[45] He, K. M.; Zhang, X. Y.; Ren, S. Q.; Sun, J. Deep
residual learning for image recognition. In: Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, 770–778, 2016.

[46] Bulat, A.; Tzimiropoulos, G. How far are we from
solving the 2D & 3D face alignment problem? (and a
dataset of 230,000 3D facial landmarks). In: Proceedings
of the IEEE International Conference on Computer
Vision, 1021–1030, 2017.

[47] Burt, P. J.; Adelson, E. H. A multiresolution spline
with application to image mosaics. ACM Transactions
on Graphics Vol. 2, No. 4, 217–236, 1983.

[48] Kwatra, V.; Schödl, A.; Essa, I.; Turk, G.; Bobick, A.
Graphcut textures. ACM Transactions on Graphics Vol.
22, No. 3, 277–286, 2003.

[49] Boykov, Y.; Kolmogorov, V. An experimental
comparison of min-cut/max-flow algorithms for energy
minimization in vision. IEEE Transactions on Pattern
Analysis and Machine Intelligence Vol. 26, No. 9, 1124–
1137, 2004.

[50] Ronneberger, O.; Fischer, P.; Brox, T. U-
net: Convolutional networks for biomedical image
segmentation. In: Medical Image Computing and
Computer-Assisted Intervention. Lecture Notes in
Computer Science, Vol. 9351. Navab, N.; Hornegger, J.;
Wells, W.; Frangi, A. Eds. Springer Cham, 234–241,
2015.

[51] Bouaziz, S.; Deuss, M.; Schwartzburg, Y.; Weise, T.;
Pauly, M. Shape-up: Shaping discrete geometry with
projections. Computer Graphics Forum Vol. 31, No. 5,
1657–1667, 2012.

452 Y. Guo, J. Zhang, Y. Chen, et al.

[52] Guillemot, C.; Le Meur, O. Image inpainting: Overview
and recent advances. IEEE Signal Processing Magazine
Vol. 31, No. 1, 127–144, 2014.

[53] Kim, H.; Zollhöfer, M.; Tewari, A.; Thies, J.;
Richardt, C.; Theobalt, C. InverseFaceNet: Deep
monocular inverse face rendering. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 4625–4634, 2018.

[54] Tewari, A.; Zollhöfer, M.; Garrido, P.; Bernard, F.; Kim,
H.; Pérez, P.; Theobalt, C. Self-supervised multi-level
face model learning for monocular reconstruction at over
250 Hz. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2549–
2559, 2018.

[55] Tewari, A.; Bernard, F.; Garrido, P.; Bharaj, G.;
Elgharib, M.; Seidel, H. P.; Pérez, P.; Zollhöfer, M.;
Theobalt, C. FML: Face model learning from videos. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 10804–10814, 2019.

[56] Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A
unified embedding for face recognition and clustering.
In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 815–823, 2015.

Yudong Guo is a Ph.D. student in
the School of Mathematical Sciences,
University of Science and Technology of
China (USTC). He obtained his bachelor
degree from the same university in 2015.
His research interests include computer
vision and computer graphics.

Juyong Zhang is an associate professor
in the School of Mathematical Sciences
at USTC. He received his B.S. degree
from USTC in 2006, and his Ph.D. degree
from Nanyang Technological University,
Singapore. His research interests include
computer graphics, computer vision,
and numerical optimization. He is an

associate editor of The Visual Computer.

Yihua Chen is a master student at
the School of Mathematical Sciences,
USTC. He received his bachelor degree
in mathematical sciences from USTC
in 2020. His research interests include
computer vision and computer graphics.

Hongrui Cai is a master student at
the School of Data Science, USTC. He
got his bachelor degree from South
China University of Technology in 2019.
His research interests include computer
vision and computer graphics.

Zhangjin Huang received his B.S.
and Ph.D. degrees in computational
mathematics from USTC in 1999 and
2005, respectively. He is currently
an associate professor in the School
of Computer Science and Technology,
USTC. His current research interests
include computer graphics and image

processing.

Bailin Deng is a lecturer in the School
of Computer Science & Informatics at
Cardiff University. He received his
B.Eng. degree in computer software
(2005) and his M.Sc. degree in
computer science (2008) from Tsinghua
University, China, and his Ph.D.
degree in technical mathematics (2011)

from Vienna University of Technology, Austria. His
research interests include geometry processing, numerical
optimization, computational design, and digital fabrication.
He is a member of the IEEE.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

