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Abstract
Purpose  Endocrine disruptors exert a plethora of effects in endocrine tissues, from altered function to carcinogenesis. Given 
its lipophilic nature, the adrenal cortex represents an ideal target for endocrine disruptors and thus, possibly, xenobiotic-
induced adrenocortical dysfunction. However, there is no clear understanding of the effect of endocrine disruptors on adrenal 
steroidogenesis, in particular as regards the aryl hydrocarbon receptor (AHR) pathway, one of the key mediators.
Methods  The present review recapitulates available evidence on the effects of AHR ligands on adrenal steroidogenesis, 
with focus on cortisol secretion.
Results  Short-term exposure to AHR ligands most often induced a stress-like corticosteroid response followed by decreased 
responsiveness to stressors with long-term exposure. This was observed in several experimental models across species as 
well as in animals and humans in real-life settings. Prenatal exposure led to different effects according to sex of the offspring, 
as observed in murine models and in children from mothers in several countries. In vitro findings proved highly dependent 
on the experimental setting, with reduced cortisol response and steroidogenic enzyme synthesis mostly observed in fish and 
increased cortisol synthesis and secretion observed in murine and human adrenal cell lines. Of note, no AHR-binding ele-
ment was detected in steroidogenic enzyme promoters, suggesting the involvement of additional factors.
Conclusion  Our review provides evidence for the impact of AHR ligands on adrenocortical function and indicates further 
avenues of research to better clarify its effects.
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Introduction

Endocrine disruptors exert multiple effects on endocrine 
tissues, with exposure to different agents resulting in differ-
ent, sometimes even contrasting, consequences. One of the 
key mechanisms called into play by endocrine disruptors 
is the aryl hydrocarbon receptor (AHR) pathway, and this 
review will recapitulate current knowledge on the effect of 
AHR ligands on adrenocortical function. The adrenal gland 
represents an ideal target for AHR ligands given its pro-
pensity to concentrate lipophilic compounds such as aro-
matic hydrocarbons. Once retained, AHR ligands can affect 

steroidogenesis and impact cortisol secretion, which is cru-
cial to both homeostasis and stress responses.

We will assess findings in experimental and real-life set-
tings in both animals and humans to provide a clear view 
on the impact of AHR ligands on cortisol secretion and its 
possible influence on health status.

Methods

We performed an extensive MEDLINE search for the fol-
lowing terms: “aryl hydrocarbon receptor, adrenal, adreno-
cortical, cortisol, endocrine disruptor, xenobiotic, persistent 
organic pollutants.” Search terms were linked to medical 
subject headings (MeSH) where available. Keywords and 
free words were used simultaneously. Publications were 
retrieved and additional articles were identified through 
manual search and study of review articles and cross refer-
ences. Any discrepancy was resolved by discussion.
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Aryl hydrocarbon receptor and its ligands

The aryl hydrocarbon receptor is a ligand-activated tran-
scription factor, a member of the basic helix-loop-helix 
superfamily involved in a myriad of biochemical pathways, 
from energy metabolism to xenobiotic (dis)activation, from 
cell cycle regulation to immune function. The interest in 
adrenal pathophysiology stems from its role as an inducer of 
cytochrome 450 (CYP) enzymes, the main actors of adrenal 
steroidogenesis.

In its resting state, AHR is located in the cytoplasm and 
complexed to HSP90 and the AhR inhibitory protein (AIP). 
Upon ligand binding, the AHR–ligand complex translocates 
to the nucleus, sheds HSP90 and AIP, and binds the AHR 
nuclear translocator (ARNT). This heterodimer then binds 
to DNA at specific sequences, i.e., xenobiotic-responsive 
elements (XRE), recruits coactivators, and initiates gene 
transcription. AHR also induces expression of the aryl 
hydrocarbon receptor repressor (AHRR), which competes 
for ARNT and XRE binding, thus forming an autoregulatory 
loop (Fig. 1) [1].

AHR was first discovered as the receptor for 2,3,7,8, 
tetrachlorodibenzo-p-dioxin, a halogenated aromatic 
hydrocarbon. This and other dioxins have multiple chlo-
rine atoms (i.e., polychlorinated)––which confer toxic-
ity––and together with polychlorinated benzofurans and 
polychorinated biphenyls are called persistent organic 
pollutants. In fact, these compounds are characterized by 
long-lasting half-life in the environment, in animals and 
in humans. Thus, although dioxin-containing herbicides 
have been banned in the 1980s and dioxin emission from 
hazardous waste incineration is being actively reduced, 

they still represent a significant health hazard. It is worth 
recalling that polychlorinated hydrocarbons are lipophilic 
and accumulate in lipid-rich tissues [2] and that adre-
nal CYP enzymes themselves are involved in xenobiotic 
metabolism and bioactivation [3]. Altogether, the adrenal 
appears a likely target for uptake, storage, and activation 
of organic pollutants.

In addition to dioxins, a wide variety of AHR ligands 
have been identified, e.g., chemicals such as polyfluoralkyl 
acids from household and industrial products and phtha-
lates from the plastic industry, dietary elements such as 
flavonoids, and even endogenous compounds, such as 
tryptophan metabolites. In addition, heavy metals such as 
arsenic [4], mercury [5], and cadmium [4], phenol sur-
factants [6], the pesticide endosulfan [7], and the fungicide 
prochloraz [8] (Fig. 1) were shown to exert AHR activity 
and activate AHR-target genes. It is also worth recalling 
that ketoconazole––a widely used agent for Cushing’s syn-
drome––is itself an aromatic hydrocarbon and, in addition 
to its action on the first and last step of steroidogenesis, 
interacts with the AHR complex and activates hepatic 
AHR-dependent gene transcription [9].

Exposure to AHR ligands is extremely difficult to esti-
mate. Trace amounts of the above-mentioned substances 
are present in water as well as air, and AHR transcrip-
tional activity has been detected in a variety of food prod-
ucts. Further, ligands may sometimes exert both agonist 
and antagonist activities in a cell-specific manner. Alto-
gether, the effect of AHR ligands appears complex and an 
appraisal of evidence collected across species in different 
experimental settings is necessary to obtain a clear view 
of current knowledge.

Fig. 1   Aryl hydrocarbon recep-
tor (AHR) pathway. HSP90 heat 
shock protein 90, AIP AHR 
inhibitory protein, ARNT AHR 
nuclear translocator, AHRR 
AHR repressor



Journal of Endocrinological Investigation	

Rodents

Rodent studies allow testing with a variety of experimental 
models, from transgenic mice to exposure during gestation 
or at specific stages in life (Table 1). These studies pro-
vided considerable insights into the mechanisms of AHR 
activity in the adrenal starting with the effect of dioxin, 
the premier AHR ligand. 

In vivo studies

Administration of single oral dose (50 µg/kg) of tetra-
chlorodibenzo-p-dioxin (TCDD) to adult rats transiently 
increased corticosterone followed by long-lasting reduc-
tion in both plasma and adrenal levels [10]. The same 
experimental model yielded impaired conversion to preg-
nenolone, indicative of reduced Cyp11a1 activity [11] and 
reduced adrenal 21 hydroxylase activity [12]. In addition 
to the effect on adrenal steroidogenic enzymes, dioxin and 
congeners are metabolized within the adrenal cell to highly 
toxic intermediates, which cause mitochondrial damage 
and adrenocortical necrosis [13]; in fact, this is the ulti-
mate effect of mitotane treatment in adrenal carcinoma.

Other AHR ligands have also been tested in rodents 
and the results are summarized in Table 1. Most studies 
reported a reduction in plasma corticosterone levels upon 
administration of AHR ligands over several days or weeks 
[14–17]. In some experiments, the effect appeared to 
extend over time as basal and ACTH-stimulated corticos-
terone secretion was blunted up to 2 months after animals 
had been treated with hexachlorobenzene; of note, adrenal 
weight was comparable to controls attesting to an effect on 
secretion, not on cell trophism [17]. In contrast with these 
findings, treatment with polybrominated diphenyl esters 
resulted in an increase in plasma corticosterone in both 
adult and pubertal rats [18, 19].

Prenatal and early postnatal exposure

Prenatal exposure to AHR ligands revealed sexually 
dimorphic effects in newborns (Table 1). Male offspring 
from dams fed arsenic presented reduced corticosterone 
response to stress, whereas female pups were unaffected 
[20]. At adrenal level, activation of steroidogenesis, i.e., 
increased adrenal Star protein and 11ßhydroxylase activ-
ity, was observed in male offspring only [21]. Gender 
differences were less evident in older offspring from 
dams exposed to AHR ligands during gestation: In fact, 
increased basal plasma corticosterone but blunted corti-
costerone response to stress were observed in pubertal rats 

(6–7 weeks of age) of either sex [22, 23]. Likewise, abnor-
mal cortisol responses to stress were observed in young 
adult rats of both sexes from dams fed a variety of AHR 
agonists (Table 1).

Early postnatal exposure was also studied, albeit in 
male offspring only: Pups nurtured by AHR-agonist fed 
mothers presented reduced corticosterone response to 
stress [23, 24]; whether this applies also to female off-
spring remains to be established.

In vitro studies

The majority of in vitro studies with AHR ligands reported 
increased adrenal steroidogenesis (Table 1). Increased 
corticosterone secretion, both at baseline and with ACTH 
stimulation, as well as increased Cyp11a1 protein and 
activity, was observed in the mouse Y1 cell line [25] and 
rat adrenal primary cultures [26]. Remarkably, increased 
corticosterone secretion was observed both with bisphenol 
A and resveratrol [26], an AHR agonist and antagonist, 
respectively [27], indicating that this distinction carries 
little weight in the adrenal. Also of interest, upregulation 
of adrenal steroidogenic enzymes was observed in two 
ex vivo models with opposite effects in vivo: Adrenal Star, 
Cyp11b2, and Cyp21a1 expression was increased in rats 
treated with di-butyl phthalate [16] or a bromo diphenyl 
ester [18], but reduced serum corticosterone levels were 
observed in the former and increased levels in the latter 
model (Table 1).

Transgenic experiments

Transgenic models were also used to assess the involvement 
of the AHR pathway in adrenal function and development. 
Both Ahr and Arnt1 RNA and protein have been detected in 
the mouse embryo adrenal with highest expression at gesta-
tion days 14–16, corresponding to adrenal development and 
organization [28, 29]. Mice deficient for Ahr did not present 
alterations in adrenal morphology [30] and basal plasma 
corticosterone levels appeared unchanged [31]. However, 
the corticosterone response to electroshock was impaired, 
indicating reduced response to stressors [31]. Mice knock-
out for Arnt1 presented reduced plasma corticosterone and 
absent corticosterone response to stressors in vivo and to 
ACTH in vitro; the adrenal gland itself, albeit without gross 
histological alterations, presented reduced levels of pro-
teins associated with cholesterol transport within the cell, 
e.g., Star, Ldlr [32] indicating that Arnt1 is necessary for 
proper corticosterone production in mice. In this context, it 
is worth recalling that Arnt1––also known as Bmal1––is a 
core component of molecular circadian rhythm [33].
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Table 1   Studies with AHR ligands on corticosteroid secretion in rats in vivo and in vitro

OVX ovariectomized, sc subcutaneous injection, bw body weight, wk weeks

Species AHR ligand Experimental model Findings Reference

Studies in adult animals
 Adult male rat dioxin Single dose 50 µg/kg bw by oral 

gavage
Transiently increased corticos-

terone followed by long-last-
ing decrease

[10]

 Adult male rat bisphenol A 0.5 mg/kg bw daily for 3 days Increased serum corticosterone [25]
 Adult male rat di-butyl phthalate 100 mg/kg bw daily by oral gav-

age for 2 weeks
Reduced serum corticosterone,
increased Star, Cyp11b2, 

Cyp21a1 expression

[16]

 Adult male rat polybrominated diphenyl ester 100 µg/kg bw by oral dosing for 
16 weeks

Increased plasma corticosterone [19]

 Pubertal male rat (5 weeks) polybrominated diphenyl ester 200 mg/kg bw by oral dosing for 
3 weeks

Increased serum corticosterone,
increased Star, Cyp11b2, 

Cyp21a1 expression

[18]

 Adult female rat genistein, bisphenol A, resvera-
trol

3 mmoles/100 g bw daily sc for 
10 days; adrenal enucleation 
on day 5

Reduced plasma corticosterone 
with genistein; no effect with 
bisphenol A and resveratrol

[15]

 Adult female rat hexachlorobenzene 200 mg/kg bw by oral dosing for 
5 days

Reduced serum corticosterone 
up to 8 weeks

[17]

 Adult female OVX rat hexachlorobenzene 1 mg/kg bw daily by oral gavage 
for 4 weeks

Reduced plasma corticosterone [14]

Pre- and postnatal exposure
 Newborn and adult mice arsenic 0.05 mg/l in water to dams Blunted corticosterone response 

to stress in male offspring, 
normal response in female 
newborns,

decreased basal plasma corti-
costerone in adult male and 
females

[20]

 Pubertal rat (6 weeks) bisphenol A 40 µg/kg bw in chow to dams Increased basal plasma corticos-
terone in female offspring,

blunted corticosterone response 
to stress in both male and 
female offspring

[22]

 Pubertal male rat (7 weeks) dichlorodiphenyl trichloroethane 
(DDT)

20 µg/l in water
Prenatal exposure: to dams
Postnatal exposure: until puberty

Prenatal: increased plasma 
corticosterone

Postnatal: decreased plasma 
corticosterone

[26]

 Young adult rat (10 weeks) dioxins
polychlorobiphenyls
polychlorobenzofurans

Mixture in chow to dams up to 
20 days after birth

Abnormal cortisol response to 
stress

[23]

 Young adult rat (10 weeks) bisphenol A 5 mg/kg bw in chow to dams Increased basal plasma corticos-
terone in both male and female 
offspring

[93]

 Young adult rat (13 weeks) nonylphenol 2 µg/ml in water to dams Marked increase in serum cor-
ticosterone in male offspring, 
modest increase in female 
offspring

[21]

 In vitro studies
 Mouse Y1 cell line bisphenol A 10 nM – 1 µM for 24 h Increased basal corticosterone 

secretion
Increased Cyp11a1 protein and 

activity

[25]

 Rat adrenal primary culture bisphenol A, resveratrol 1 pM – 10 nM for 24 h Increased corticosterone 
response to ACTH

[26]
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Fish and marine mammals

Ichthyology has contributed significantly to the study of 
endocrine disruptors, with fish being the primary target 
of water pollution. Two main effects appear to occur: On 
the one side, short-term exposure to pollutants results in a 
stress-like cortisol increase; on the other hand, long-term 
exposure has been linked to decreased cortisol response 
to stressors, thereby possibly endangering marine wildlife 
survival.

In vivo studies

Increased plasma cortisol levels after short-term incuba-
tion have been observed in several experimental models 
(Table 2), with agents such as phenanthrene or petroleum-
derived wastewater mixtures added to tank water/feed or 
administered via intraperitoneal injection. Species tested 
range from toadfish to tilapia to trout and results appear 
consistent (Table 2).

Biphasic results were observed during longer expo-
sures: Increased plasma cortisol at 96 h but decreased 
cortisol levels at 20 days were observed in freshwater 
tilapia (Oreochromis sp.) exposed to arsenic [34]. In 
another freshwater species, the catfish (Clarias batrachus), 
exposed to mercury pesticides, was initially associated 
with increased adrenocortical activity followed by reduced 
plasma cortisol upon 90- and 180-day exposure [35].

Lastly, the cortisol response to stress, e.g., crowding 
and capture, was impaired in fish exposed to a variety 
of AHR ligands, from petroleum-derived hydrocarbons 
[36] and polychloro biphenyl congeners [37], to naphtha-
lene, phenanthrene [38], and ß-naphthoflavone [39–41] 
(Table 2).

In vitro studies

Corticosteroids are secreted by head kidney cells in fish 
and experiments were carried out with intrarenal tissue 
collected from healthy animals or fish exposed to AHR 
ligands in vivo. Either experimental approach resulted in 
reduced cortisol response to ACTH with muted increase in 
the rate-limiting steroidogenic enzymes, Star and Cyp11a1 
[39] (Table 2). Interestingly, the cortisol response to cAMP 
was also blunted [37, 42], indicating that impairment of 
cortisol release occurs downstream to the ACTH recep-
tor. Of note, dampening of the cortisol response occurred 
at 20-fold lower AHR ligand concentrations compared to 
concentrations associated with adrenotoxic effects [42].

Real‑world studies

In settings closer to real life (Fig. 2), fish such as yellow 
perch (Perca favescens) and northern pike (Esox lucius) 
captured from sites with high concentrations of polycyclic 
hydrocarbons, polychlorinated biphenyls or from bleached 
kraft mill effluents––containing a mixture of chlorinated 
chemicals––were unable to increase cortisol in response 
to capture stress [43, 44]. Field studies in rainbow trout 
(Salmo trutta) after the accidental leak from the Eagle 
mine in Colorado revealed delayed and depressed cortisol 
response to cage stress [45]. Perca favescens and Esox 
lucius resident in waters polluted with mercury from 
industrial drainage in the Saint Lawrence river in Canada 
also present an impaired cortisol response to capture stress 
or ACTH challenge [43, 46]. Reduced cortisol secretion 
was associated with the length of exposure to contami-
nants, as young yellow perch from smelter-contaminated 
lakes in Northern Canada presented normal cortisol levels, 
whereas, in older fish, plasma cortisol was lower compared 
to fish from reference sites [47].

The evidence collected so far suggests that prolonged 
exposure to water pollutants compromises the cortisol 
reserve, and this was indeed proven by studies performed 
after the Deepwater Horizon oil spill in 2010. The spill led 
to high levels of polycyclic aromatic hydrocarbons along 
the Gulf of Mexico coastal water [48] and exposed marine 
wildlife to petroleum compounds for several years. Studies 
on bottlenose dolphins (Tursiops truncatus) revealed that 
cortisol levels in cetaceans close to the spill were lower 
compared to dolphins living along the Florida coast; in 
fact, concentrations were subnormal in over 40% of mam-
mals [49]. Stranded animals presented atrophied adrenals 
with thin adrenal cortex and reduced cortico:medullary 
ratio [50]. Unusual deaths were recorded after the spill, 
mostly due to infectious diseases; indeed, the dolphin 
population declined considerably following the Deepwater 
Horizon oil spill [51]. Normalization of cortisol concentra-
tions in dolphins appeared to occur over time although low 
plasma cortisol levels were recorded for up to 4 years in 
some animals [52]. The effect of polycyclic hydrocarbons 
from the Deepwater Horizon oil spill was also assessed 
in another fish species, the Gulf toadfish (Opsanus beta). 
Swimming for 1 week in water fractions from the surface 
oil spill resulted in impaired cortisol response to stress 
several days after exposure, although no change in Star, 
Cyp11a1, or Cyp11b1 expression was observed [53]. The 
authors suggested altered cholesterol availability as a pos-
sible cause and, indeed, cholesterol levels were reduced 
in mahi-mahi (Coryphaena hippurus) larvae exposed to 
surface oil from the Deepwater Horizon spill [54].
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Table 2   Experimental studies with AHR ligands on fish and marine animals in vivo and in vitro

bw body weight

Species AHR ligand Experimental model Findings Ref.

In vivo studies on baseline cortisol levels
 Pacific herring (Clupea pal-

lasii)
polycyclic aromatic hydrocar-

bons
100 µg/l in tank for 96 h Increased plasma cortisol [36]

 Golden gray mullet (Chelon 
auratus)

phenanathrene 0.3–2.7 µM in tank for 16 h Increased plasma cortisol [94]

 Three-spined stickleback (Gas-
terosteus aculeatus)

mixture (offshore oil wastewater) In tank for 72 h Increased plasma cortisol [95]

 Gulf toadfish (Opsanus beta) naphthalene
phenanthrene

5 µg intraperitoneal injection, 
evaluation after 72 h

Increased plasma cortisol [38]

 Rainbow trout (Oncorhynchus 
mykiss)

naphthoflavone
benzopyrene

10 mg/kg bw intraperitoneal 
injection, evaluation after 
24–72 h

Increased plasma cortisol [96]

 Rainbow trout (Oncorhynchus 
mykiss)

hexachlorocyclo-hexane 0.05 mg/100 g bw intraperitoneal 
slow-release implant, evalua-
tion after 18 days

Increased plasma cortisol [97]

 Freshwater tilapia (Oreo-
chromis sp.)

arsenic 1–3 mg/l in tank for 20 days Increased plasma cortisol at 
96 h,

reduced plasma cortisol at 
20 days

[34]

 Catfish (Clarias batrachus) mercury chlorides 0.5 mg/l in tank for 3–6 months Reduced plasma cortisol [35]
In vivo studies on cortisol response to stressor
 Gulf toadfish (Opsanus beta) naphthalene

phenanthrene
5 µg intraperitoneal injection, 

evaluation after 72 h
Reduced cortisol response to 

stressor
[38]

 Pacific herring (Clupea pallasi) polycyclic aromatic hydrocar-
bons

100 µg/l in tank for 9 weeks Reduced cortisol response to 
stressor

[36]

 Rainbow trout (Oncorhynchus 
mykiss)

ß naphthoflavone 10 mg/kg bw in feed for 5 days Reduced cortisol response to 
stressor

[39]

 Rainbow trout (Oncorhynchus 
mykiss)

ß naphthoflavone 50 mg/kg bw intraperitoneal 
injection, evaluation after 72 h

Reduced cortisol response to 
stressor

[40]

 Rainbow trout (Oncorhynchus 
mykiss)

ß naphthoflavone 10 mg/kg bw intraperitoneal 
injection, evaluation after 72 h

Increased cortisol response to 
acute stressor,

reduced cortisol response to 
prolonged stress

[41]

 Tilapia (Oreochromis 
Mossambicus)

polychlorinated biphenyl 126 50 µg/kg bw in feed for 5 days Reduced cortisol response to 
stressor

[37]

 In vitro studies
 Gulf toadfish (Opsanus beta) - Deepwater horizon spill water

- naphthalene
phenanthrene

- Kidney slices from fish held 
for 24 h in tank containing 3% 
mixture

- Reduced cortisol response to 
ACTH

[38]

- Kidney slices collected after 
72 h 5 µg intraperitoneal injec-
tion

- Reduced cortisol response to 
ACTH

 Rainbow trout (Oncorhynchus 
mykiss)

ß naphthoflavone Kidney slices incubated for 1 h 
at 1 µM

Reduced cortisol response to 
ACTH,

blunted Star and Cyp11a1 
increase after ACTH

[39]

 Rainbow trout (Oncorhynchus 
mykiss)

Endosulfan Kidney slices incubated for 1 h 
at 50 µM

Reduced cortisol response to 
ACTH and cAMP

[42]

 Tilapia (Oreochromis 
Mossambicus)

Polychlorinated biphenyl 126 Kidney slices from fish fed 
50 µg/kg bw for 5 days

Reduced cortisol response to 
ACTH and cAMP

[37]
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Reptiles and amphibians

Reptiles and amphibians are exposed to both earth- and 
water-bound contaminants and represent sentinel species 
for endocrine-disrupting chemicals (Fig. 2). Activation 
of the HPA axis was observed following 12- and 22-day 
injections of nonyl- and octylphenol surfactants in Italian 
wall lizards (Podarcis sicula), a common reptile in Medi-
terranean countries [55]. The animals presented increased 
plasma corticotrophin-releasing hormone, ACTH, and 
corticosterone as well as steroidogenic cell hypertrophy. 
Of note, adrenal morphology was altered in lizards even 
2 weeks after the last injection, suggesting lasting cell 
alterations. Conversely, blunted corticosterone surge after 
confinement stress and ACTH challenge was observed 
in Necturus maculosus, an aquatic salamander living in 
Canadian rivers with life-long exposure to chlorinated 
hydrocarbons [56]. Likewise, subchronic exposure of 
leopard frogs (Rana pipiens)––an amphibian native to 
American Midwest wetlands––to low doses of a polychlo-
rinated biphenyl congener resulted in decreased whole-
body corticosterone and reduced corticosterone response 
to ACTH stimulation [57], indicative of impaired adrenal 
secretory capacity after chronic exposure.

Other mammals

The polar bear (Ursus maritimus), a top predator with nearly 
50% body fat, is among the most highly organochloride-con-
taminated Arctic mammals [58]. Cross-sectional analysis of 
pesticide exposure in polar bears from Norwegian Svalbard 
Islands (Fig. 2) revealed lower cortisol responses to capture 
stress in animals with higher plasma concentrations of organ-
ochlorides, such as hexachlorobenzene and polychlorinated 
byphenyl congeners [59]. Organochloride exposure was also 
associated with lower plasma cortisol levels in free-living Nor-
wegian Artic polar bears [60].

The effect of petroleum-derived polycyclic hydrocarbons 
has also been investigated in ranch mink (Mustela vison), a 
species living close to the marine environment, with com-
parable results: Exposure to ship fuel oil for 2 months led 
to slightly reduced resting plasma corticosteroid levels and 
blunted cortisol response to ACTH [61, 62].

Fig. 2   Worldwide studies on the 
effects of AHR ligands on cor-
tisol secretion in free-ranging 
animals. PCH polychlorinated 
hydrocarbons, PCB polychlorin-
ated biphenyls
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Humans

AHR as well as ARNT and AHRR mRNA has been detected 
in human adrenal tissues, providing the basis for direct 
action of AHR ligands on the adrenal [63–65]. In addition, 
organochloride pesticides and polychlorinated biphenyls 
have been detected in adrenal cortex from kidney donors 
[66].

In vitro studies

Several studies have been carried out using H295R, the 
human androgen-secreting adrenal carcinoma-derived cell 
line approved for the study of endocrine disruptors on testos-
terone and estradiol production [67]. It also allows testing for 
corticosteroid secretion [68], and results with AHR ligands 
are summarized in Table 3.

Reduction of cortisol secretion and microsomial and 
mitochondrial steroidogenic enzymes was observed with 
dietary AHR ligands such as 6-hydroxyflavone or genistein 
[69]. Likewise, steroid profiling after exposure to prochloraz 
revealed a dose-dependent reduction in 17 hydroxylase, 21 
hydroxylase, and 3ß-hydroxydehydrogenase activity, result-
ing in decreased cortisol and 11-deoxycortisol [70].

Conversely, exposure of H295R cells to liver extracts 
from fish living in contaminated lakes resulted in marked 
cortisol release and increased steroidogenic enzyme expres-
sion [71]. Hexachlorobenzene and polychlorinated biphe-
nyls were among organic pollutants in liver extracts. Simi-
lar results were observed with the polychlorinated byphenyl 
congener PCB126 [72] or with alfa and ß-naphthoflavone 
[73].

These studies also reported induction of CYP21A2, 
CYP11B1, CYP11B2, and MCR2 expression [71, 72] 
although, interestingly, no AHR-binding elements have been 
detected on promoters for these genes [73, 74]. The fact that 
increased gene expression was observed at high doses of 

the compound suggests a “ripple effect” of AHR activation, 
rather than direct induction of steroidogenic enzyme synthe-
sis [72]. In a similar fashion, incubation with ß-naphthofla-
vone revealed opposite effects on STAR​ promoter activity, 
with submicromolar concentrations proving stimulatory 
effect and higher concentrations proving inhibitory effect 
[63]. AHR required ARNT for maximal stimulatory activ-
ity on STAR​ and appeared to act at the SP1-binding site in 
the human STAR​ promoter; indeed, as with adrenal CYP 
genes, no consensus XRE could be identified upstream to 
the human STAR​ gene [63].

Real‑world setting

There are varied data on the effect of AHR ligands on cor-
tisol secretion in human beings, mostly garnered from envi-
ronmental studies. Organophosphate exposure in Thai farm 
workers was not associated with either reduced or increased 
plasma cortisol concentrations [75]; likewise, urinary cor-
tisol metabolites measured in electrical maintenance staff 
exposed to polychlorobiphenyl mixtures were comparable to 
controls [76]. Further, plasma cortisol levels did not differ in 
Chinese children exposed to polychlorinated biphenyls and 
dioxins from electronic waste compared to children native 
to other regions [77].

Differing effects were recorded in women exposed during 
pregnancy. In farm-dwelling women from Argentina, expo-
sure to organophosphate pesticides during pregnancy led 
to a reduction in plasma cortisol compared to non-exposed 
mothers, with a proportion of women presenting subnormal 
values [78]. In community-dwelling mothers from Canada, 
bisphenol A was detected in urine during pregnancy and 
associated with reduced salivary cortisol at awakening dur-
ing the second trimester [79]. Conversely, in Vietnamese 
mothers from areas sprayed with pesticides during the Viet-
nam War, dioxin was detectable in breastmilk and morning 

Table 3   Studies with AHR ligands on cortisol secretion by the human H295R cell line

3BHSD 3ß hydroxydehydrogenase, 17HSD 17 alfa hydroxylase, 21OHD 21 hydroxylase, 11OHD 11ß hydroxylase, 17OHP 17 hydroxyproges-
terone

AHR ligand experimental model findings Ref.

6-hydroxyflavone
genistein

12.5 µM for 24–48 h Reduced cAMP-stimulated cortisol
Reduced 3BHSD, 17OHD, 21OHD, 11OHD activity

[69]

prochloraz 0.1–10 µM for 24–48 h Reduced cortisol secretion
Reduced secretion of 11deoxycortisol, 17OHP

[70]

liver extracts from contaminated fish 1000–10,000 extract dilu-
tion for 48 h

Increased cortisol release
Increased CYP11B2, CYP11B1, and MC2R expression

[71]

polychlorinated biphenyl 10 µM for 10 days Enhanced 17OHP to cortisol conversion
Increased CYP21A2, CYP11B1, CYP11B2, MCR2 expression

[72]

α naphthoflavone
ß naphthoflavone

10 µM for 24 h Increased cortisol secretion
Increased CYP11B1 expression

[73]
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cortisol in both serum and saliva was higher compared to 
mothers from non-exposed areas [80].

Effect on offspring of exposed mothers again proved sex 
dependent. Bisphenol A exposure in Canadian mothers led 
to newborn girls presenting higher baseline cortisol levels 
but lesser response to stress and the converse occurred in 
boys [81]. Similar results were observed in Chinese moth-
ers exposed to phthalates, with urinary metabolite levels in 
mothers associated with increased cord blood cortisol in 
female infants and reduced cortisol levels in male infants 
[82].

Lastly, decreased cortisol levels were observed in indi-
viduals exposed to hydrocarbons during cleanup of the oil 
tanker Prestige spill in 2002 [83]. Reduced cortisol concen-
trations were most evident in young males who worked as 
high-pressure cleaners, as mean levels were nearly half those 
observed in unexposed individuals. Evaluation of cortisol 
plasma concentrations in fishermen 7 years after cleanup 
of the Prestige spill revealed cortisol concentrations within 
the normal range [84], suggesting full recovery of adrenal 
function.

Other interactions between AHR 
and corticosteroids

Our review focused on the effect of AHR ligands on corti-
costeroid synthesis, but other important interactions between 
the two pathways are worth recalling. On the one side, sev-
eral AHR ligands have been shown to interact with the glu-
cocorticoid receptor itself. In fact, modeling of molecular 
docking has provided support for binding of dioxin and bis-
phenol A to the glucocorticoid receptor [85, 86]. To what 
extent endocrine disruptors mimic or antagonize glucocor-
ticoid receptor action has yet to be fully clarified. Further, 
phthalates may compete with cortisol for binding to corticos-
teroid-binding globulin [87], thereby disrupting equilibrium 
between bound and available cortisol.

On the other hand, hydrocortisone has been shown to bind 
AHR [88] and increase AHR expression [89]. Indeed, integ-
rity of the adrenal is required for full potential of AHR liver 
activity, as shown by studies on adrenalectomized rats [90] 
and in liver cells themselves [91].

Discussion and conclusions

The adrenal gland is particularly vulnerable to endocrine-
disrupting chemicals by virtue of its lipophilicity and high 
CYP enzyme content. At the same time, the AHR pathway 
stands at the crossroads of both cellular detoxification and 
implementation of toxic effects. Thus, the impact of AHR 
ligands on the adrenal carries considerable interest.

Altogether, in vitro and in vivo evidence suggests that 
AHR ligands exert multiple, possibly superimposed, effects 
on adrenal steroidogenesis. AHR ligands appear to induce 
an initial stress-like response followed by decreased cortisol 
responsivity to stimuli. Of note, AHR itself does not interact 
directly with steroidogenic enzyme genes, given the absence 
of clearly identifiable XRE-binding sites, thus additional fac-
tors are likely involved. The impairment of adrenal function 
may lead to altered metabolism, immune function, growth, 
reproduction, cardiovascular homeostasis, and, ultimately, 
survival. Indeed, increased mortality due to infectious dis-
eases in dolphins with reduced cortisol secretion after the 
Deepwater Horizon spill provides real-world outcomes for 
this hypothesis.

Further studies on the impact of AHR ligands on adrenal 
function are of considerable clinical relevance and avenues 
of research could be tailored to currently available evidence. 
Studies carried out so far revealed that the effects of AHR 
ligands on adrenal secretion are determined by timing, 
length and degree of exposure. However, one major issue 
in the study of endocrine disruptors in real life is the expo-
sure to multiple contaminants at the same time, the so-called 
“cocktail effect”, which does not allow clear cause–effect 
conclusions to be drawn. As the AHR pathway is activated 
by hundreds of endogenous and exogenous compounds and 
interacts with multiple molecular pathways, effects may 
prove extremely difficult to unravel. An additional layer of 
complexity is the bidirectional cross talk between AHR and 
the corticosteroid pathway, with cortisol proving essential 
to AHR detoxifying activity. The sex hormone milieu also 
plays a role, as shown by sexually dimorphic consequences 
of intrauterine exposure to AHR ligands in both animals 
and humans.

Results from exposure to individual disruptors in con-
trolled experimental settings, e.g., rodent studies, H295R 
cells, are essential to establish specific features of the com-
pound but must be placed in context with wider scoping 
studies. In this context, although the H295R cell line is 
approved for studies of endocrine disruptors [67], the limi-
tations inherent to extrapolating findings from adrenal carci-
noma to normal adrenal physiology should always be kept in 
mind. With this caveat, two AHR ligands with known effects 
on the adrenal, i.e., ketoconazole and mitotane [9, 13], have 
been extensively studied in H295R and are the most long-
standing drugs for Cushing’s syndrome and adrenal carci-
noma [98]. However, the potential impact of environmental 
AHR ligands on treatment response, which is known to vary 
over time, has yet to be investigated.

Given the pervasiveness of exposure to pollutants, some 
limitations––such as the “cocktail effect” or background 
environmental hazards––are unavoidable and may be used 
to advantage. In fact, the study of cortisol secretion can be 
linked to increasing concentrations of multiple pollutants, 
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rather than compared to non-exposed individuals. Cortisol 
measurements should tailored to detect cortisol hypose-
cretion, i.e., morning plasma levels or response to ACTH 
testing, or hypersecretion, e.g., 24 h urine collections and 
midnight salivary samples [92]. In this context, non-invasive 
sampling, e.g., cortisol in urine or saliva, while easy to per-
form, is of little value for the detection of subnormal cortisol 
secretion. On the contrary, salivary cortisol could be used to 
assess disruption of cortisol circadian rhythm, an extremely 
interesting avenue of research given the links between AHR, 
ARNT1, and clock genes. Lastly, environmental impact on 
the AHR pathway is known to be involved in endocrine 
tumorigenesis, as shown for pituitary GH-secreting pitui-
tary tumors [99], but the potential impact on the adrenal has 
yet to be established.

In conclusion, the evidence collected so far indicates 
that AHR ligands impact adrenal corticosteroid secretion. 
Several avenues of research should be pursued to provide a 
better understanding of its clinical consequences.
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