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Abstract: This study introduces a method to predict the remaining useful life (RUL) of plain bearings operating 

under stationary, wear-critical conditions. In this method, the transient wear data of a coupled elastohydrodynamic 

lubrication (mixed-EHL) and wear simulation approach is used to parametrize a statistical, linear degradation 

model. The method incorporates Bayesian inference to update the linear degradation model throughout the 

runtime and thereby consider the transient, system-dependent wear progression within the RUL prediction. 

A case study is used to show the suitability of the proposed method. The results show that the method can 

be applied to three distinct types of post-wearing-in behavior: wearing-in with subsequent hydrodynamic, 

stationary wear, and progressive wear operation. While hydrodynamic operation leads to an infinite lifetime, 

the method is successfully applied to predict RUL in cases with stationary and progressive wear. 
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1  Introduction 

Plain bearings are widely used in drivetrains because 

of their high load-carrying capacity, low space 

requirements, and good damping properties. New 

fields of application such as in wind turbines [1]  

and changed operating strategies such as automatic 

start-stop [2] as well as pulse-and-glide strategies [3] 

cause an increased proportion of low sliding speeds, 

which may prevent a sufficient hydrodynamic film 

formation in the bearings, leading to boundary or 

mixed-friction conditions. Furthermore, the use of 

low-viscosity oils and water for an efficient and 

environmentally acceptable lubrication (EAL) becomes 

more prominent, e.g. for marine propulsion systems 

[4–7], which results in a decrease of load-carrying 

capacity and thereby also in an increased risk of 

mixed-friction conditions. At such operation conditions, 

a plain bearing may be subject to high friction and 

wear, which affects the bearing behavior [7–13] and 

limits the service life [14]. Consequently, the reliability 

of a plain bearing due to mixed-friction conditions 

is a potential limiting factor in a drivetrain [15, 16]. 

Previous studies on failure modes of internal 

combustion engines show that an engine failure due 

to abrasive wear in plain bearings is a dominant 

cause of failure [14]. From a tribological point of view, 

mild abrasive wear typically leads to continuous 

degradation of the bearing shell, resulting in a 

continuous decrease of its remaining useful lifetime 

(RUL). In contrast, abnormal operational conditions, 

e.g. due to starved lubrication, may lead to an abrupt 

failure due to severe abrasive or adhesive wear [12, 17], 

which are not part of the regular continuous 

degradation during a bearing lifetime. 

For the specific purpose of RUL prediction of plain 

bearings subjected to mild abrasive wear, previous 

works concluded that the wear limit of a plain bearing 
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can be defined by the permissible wear depth 
limit

h , 

permissible contact angle 
limit

 as well as permissible 

wear volume 
limit

W , see Fig. 1.  

These are chosen as criteria at which the properties 

of the sliding layer can still be considered unchanged. 

The increase of the diametrical clearance C, characterized 

by the difference between the bearing diameter and 

the shaft diameter, can be used as a criterion. From 

this criterion, a maximum for the permissible wear 

depth 
limit

h  can be derived. For dynamically loaded 

bearings, the permissible wear depth 
limit

h  should not 

exceed 25% [18] to 50 % [11] of the initial bearing 

clearance ( 
limit

0.5h C ). For stationary loaded bearings, 

40% are acceptable without a major change of 

operational behavior [19]. The permissible contact 

angle 
limit

 should not exceed values of 100 to 110 [20]. 

In contrast, no design guidelines are available for 

the permissible wear volume 
limit

W , which somewhat 

considers the bearing dimensions, wear angle, and 

wear depth. Therefore, a system-dependent 
limit

W  

should be considered as a suitable alternative. The 

prognosis of bearing wear is commonly conducted 

with coupled mixed-elastohydrodynamic (mixed-EHL) 

and wear simulations [21, 22]. However, for the 

forecasting of bearing wear during operation, less 

computationally expensive surrogate or meta models 

have been developed. For this purpose, recurrent 

neural networks [23–25], which are generally employed 

for time-series forecasting, or time-delay neural 

networks [26] are potential solutions. In previous works, 

we employed long-short-term-memory (LSTM) neural  

 
Fig. 1 Sketch of the criteria for a plain bearing’s wear lifetime. 

networks. For the training of the LSTM, a mixed-EHL 

and wear simulations were employed to learn the 

correlation between radial load, temperature, speed, 

friction coefficient as input and wear volume as 

output. The approach was successfully applied on a 

plain bearing test rig [24]. 

Bote-Garcia et al. [27] developed a wear prediction 

method for plain bearings that uses acoustic emission 

data and machine learning methods; namely, linear 

regression, random forest regressor, multilayer 

perceptron, and recurrent neural networks were 

applied. The wear volume has been estimated with a 

root mean square error of 0.32 mm3 and a coefficient 

of determination of 93%. Shutin et al. [28] used a 

combination of physics-based simulations and neural 

networks for bearing RUL and wear prediction in 

locomotive traction motor axle bearings. 

However, as of today, the prediction of the wear- 

induced RUL of a plain bearing is a major challenge. 

The reasons for this are twofold. On the one hand, 

selecting suitable degradation indicators is not 

straightforward because the failure thresholds for 

common measured variables, e.g. temperature or 

vibration, are often unknown. Particularly, this is the 

case when historical data of comparable systems is 

limited. On the other hand, the direct use of physically 

meaningful degradation indices, such as wear volume 

or depth as indices, is difficult, since these physical 

indices often cannot be measured directly. 

The core idea to overcome these limitations is to 

extend an existing physics-based wear simulation of 

a plain bearing towards the analysis of the RUL using 

a statistical degradation model based on Bayesian 

inference [29]. Bayesian-inference models allow the 

model parameters to be updated based on actual 

measurements and therefore always track wear 

behavior without model pre-training, even if it deviates 

from expectations. This is of particular interest since 

the wear behavior in a complex mechanical system 

may change over time due to varying conditions.  

As a first step, the purpose of this study is to show 

the suitability of this approach for plain bearing 

wear prediction. Therefore, simulations of different 

stationary, mixed-friction operating conditions were 

conducted and compared to the experimental test rig 

results obtained under similar operating conditions. 

Subsequently, the RUL was calculated for different 
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stationary, mixed-friction operating conditions using 

the statistical reliability model. 

2 Materials and methods 

To follow this idea, plain bearing experimental and 

physics-based simulation results of previous works 

[22, 30], which are briefly summarized in Section 2.1, 

were further analyzed and evaluated. Subsequently, 

the wear simulation results were used to parametrize 

the statistical degradation model introduced in 

Section 2.2. 

2.1 Bearing wear experiments and physics-based  

simulations 

The onset of this study are bearing wear experiments 

on a model test rig with bronze plain bearings  

made of CuSn12NiC-GCB. Three sets of experiments 

were conducted with different stationary operational 

conditions in terms of load and temperature as  

well as a varying number of shaft revolutions. Each 

experiment was conducted in duplicate. In each set, 

the number of shaft revolutions was varied between 

30,000, 360,000, and 720,000, while the rotational 

speed was set to 250 min-1. Consequently, the duration  

of the short experiments in each set was 2 hours, 

whereas the bearing was operated for 48 hours in 

the longest experiments. The operating conditions, 

which have been chosen based on the experience of 

previous experiments with similar specimens [22], 

are summarized in Table 1.  

After each experiment, the wear pattern, viz. the 

location and severity of wear, in a plain bearing was 

analyzed using a form tester MarForm MMQ 100 

with probe T2W (Mahr, Göttingen, Germany). Similar 

to our previous works, the contour of a new and worn 

plain bearing was measured in multiple equally 

distributed positions across the bearing width, which 

is exemplarily shown in Fig. 2. In this study, a total 

number of 10 positions was measured prior and post 

testing. Subsequently, the wear volume was calculated 

via numerical integration [22]. 

To obtain transient wear data, a mixed-EHL 

simulation model of the plain bearing was built up in 

AVL Excite Power Unit. For the reader’s convenience, 

this is shortly summarized. The model consists of a 

rotating steel shaft and a flexible bronze bearing, whose 

dimensions and material properties are identical to 

the experimental setup. Furthermore, the local mixed 

friction intensity is considered with a generic friction  

Table 1 Properties of the used lubricant and summarized testing parameters. 

 Running-in test series A Running-in test series B Running-in test series C 

Lubricant FVA 2 

Kinematic viscosity (40 °C) (mm²s-1) 32 

Kinematic viscosity (100 °C) (mm²s-1) 5.35 

Testing parameters    

Shaft roughness Ra (µm) 0.25 0.25 0.25 

Bearing temperature (°C) 40 80 64 

Oil inlet temperature (°C) 30 70 54 

Operational viscosity (mPas) 27 7.2 11.5 

Oil inlet pressure (bar) 3 3 3 

Radial load (N) 2,250 2,250 3,600 

Specific pressure (Nmm-2) 5 5 8 

Rotational speed (min-1) 250 250 250 

Sliding velocity (ms-1) 0.392 0.392 0.392 

Sommerfeld number (–) 19.6 75 75 

Test time (h) 2; 24; 48 2; 24; 48 2; 24; 48 

Runtime / shaft revolutions 30,000; 360,000; 720,000 30,000; 360,000; 720,000 30,000; 360,000; 720,000 
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Fig. 2 Bearing contour analysis: The worn area is located at 
the bottom-left side whereas the oil-supply bore is located at the 
right side. 

model [31]. The bearing loads are accumulated into  

a severity factor. Subsequently, the energetic wear 

law according to Fleischer is used to calculate the 

macroscopic wear. In each simulation step, a maximum 

permissible wear depth of 0.125 μm is set, thereby 

setting the runtime between two simulations. 

Furthermore, the wear-induced changes of the surface 

topography are considered by adapting the input 

surfaces for the asperity contact model in the mixed-EHL 

simulation. Consequently, the effect of a transient 

change of mixed-friction intensity throughout the 

bearing lifetime can be considered [22]. 

2.2 Model-based RUL prediction 

As motivated in Ref. [32], where the contact pressure 

and Archard's wear law are used within a data- 

driven degradation model, the target is to predict 

the RUL of plain bearings subjected to the abrasive 

wear failure. The proposed degradation model is 

based on a linear degradation model, see Eq. (1). It 

should be noted that such a model can be used since 

the condition monitoring data, i.e., experimental or 

simulation data, is available and the system-specific 

damage criterion is known. The choice of a permissible 

wear volume as a damage criterion is typical from a 

reliability engineering point of view, however, in 

engineering practice, the definition of a permissible 

wear depth or angle can be more appropriate as stated  

in the introduction. Nevertheless, the permissible wear 

volume 
limit

W  has been chosen as a damage criterion 

on the basis of empirical knowledge of the given 

bearing system. Consequently, the simulated wear 

volume, which is determined in the coupled mixed-EHL 

and wear simulations, forms the condition indicator 

of the degradation model. The degradation model 

is used to predict future degradation development. 

Specifically, the future wear volume  kt t
V  in Eq. (1)  

is predicted based on past information about the 

simulated wear volume 
t

V . This makes it possible 

to predict when the condition indicator will reach the 

specified threshold, allowing the system’s RUL to be 

estimated. Also, the use of a linear degradation model 

implies that the continuous rubbing causes solely 

abrasive wear.  

    
kt t t t k

V V t               (1) 

where  kt t
V  is the predicted wear volume at runtime 


k

t t . The model parameter 
t
 at runtime t follows 

the normal distribution ( , )
t t

N m  and for runtime 


0

t t  the model parameter 
0

 follows the normal 

distribution 
0 0

( , )N m . The error term   also follows 

a normal distribution (0, )N . A threshold for the 

degradation parameter must be defined according to 

the permissible wear values described in Section 1. In 

this study, the limit for the permissible wear volume 

limit
W  was chosen and set to D  1.416 mm3, which 

marks the maximum value of the physical simulation 

of test series B. It should be noted that this value is 

thereby chosen on the basis of empirical knowledge 

for the given bearing system.  

The prediction of the RUL can be continuously 

updated at each step using Bayesian inference until 

the calculated wear volume threshold is reached. 

According to Eq. (2), the increment in wear volume 

between two consecutive steps is defined as  kt t
L . 

  
k kt t t t t

L V V                (2) 

At runtime 
k

t t , given the observed wear volume 

 ,
kt t

V  the posterior distribution of   kt t
 can be 

evaluated by Eq. (3), using Bayesian inference [33]. 

The method is briefly explained in Eq. (3). 

         
post pri

| |
k k kt t t t t t t t

f V l V f  
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where ( )
t

f  is the prior distribution of 
t

, i.e., 

( , )
t t

N m , and ( | )
kt t t

l V  is the likelihood function  

at runtime  .
k

t t  Since the posterior distribution 

  post
( | )

k kt t t t
f V  also follows a normal distribution 

 ( , )
k kt t t t

N m , Eq. (4) can be derived. 
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Based on Eqs. (3) and (4), the parameters of the 

posterior distribution of   kt t
 can be evaluated using 

Eqs. (5) and (6). Hence, these values are updated for 

each subsequent step on the basis of the current step. 
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For a heuristically chosen, initial  8

0
10m  and 

  4

0
10 , it is possible to observe  kt t

V  at runtime 


k

t t . Then,  kt t
L  can be calculated to update  

2

kt t
 

and  kt t
m , respectively, based on  2

t
 and 

t
m  

obtained at runtime t with Eqs. (5) and (6). It should 

be noted that  kt t
L  is positive at all times. However, 

 2

t
 can be subjected to change, therefore a posterior 

mean of the model parameter  , i.e.,  kt t
m  can decrease 

or increase compared to 
t

m  according to the change 

of the wear volume. At runtime t, the wear volume at 

a specific point of runtime 
k

t  in the future can be 

predicted based on 
t
 by Eq. (7). 

    ˆ
kt t t t k

V V t               (7) 

where 
t

V  is the observed volume at runtime t, and 


ˆ

kt t
V  is the predicted wear volume at runtime  . 

k
t t  

In contrast to  kt t
V  in Eq. (1), 

ˆ
kt t

V  in Eq. (7) indicates 

that the wear volume is unknown and thereby 

estimated during the Bayesian updating process. The 

mean  , kv t t
 and variance  , kv t t

 of the predictive 

distribution of 
ˆ

kt t
V  are given by Eqs. (8) and (9).  

   
, kv t t t t k

V m t               (8) 

    2 2 2 2

, kv t t t k
t               (9) 

The predictive distribution of 



kt tV  is used to compute 

the distribution of the remaining useful life .
r

T  For 

this purpose, the predetermined failure threshold D, 

which is associated with the wear volume, is obtained 

using Eq. (10). At runtime 
r

t T ,  ˆ .
rt T

V D  Thus, 

the probability density function (PDF) for the RUL 

can be calculated by determining the probability that 

the wear volume at runtime 
k

t t  is higher than D.  
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     (10) 

where  ( )  is the cumulative density function of a 

standardized normal random variable Z. Hence, the 

cumulative density function  ( )  is calculated using 

the statistical parameters  0μ  and   1 . With this 

method, it is possible to calculate the PDF throughout 

the lifetime of a technical system. Further information 

on this process can be found in Ref. [34]. 

3 Results and discussion 

Plain bearing experiments and coupled mixed-EHL 

and wear simulations were conducted to study the 

wear behavior under three mixed-friction conditions 
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listed in Table 1. The results of the wear simulation 

and the measured wear volumes are compared in  

Fig. 3. For test series A, the wear volume increases 

significantly within the first 30,000 shaft revolutions. 

After this initial run-in wear, experiments show 

no further increase in wear volume. After approx. 

120,000 shaft revolutions, the simulation model predicts 

an infinite lifetime. The different step sizes between 

two simulation steps are related to the fixed maximum 

wear depth per coupled mixed-EHL and wear 

simulation as introduced in Ref. [22]. The reason for 

this is the additional load-carrying capacity of the 

plain bearing as a result of the running-in process. As 

can be seen in Fig. 3(b), the number of simulation 

steps is high during the running-in phase, which is 

necessary to accurately capture the wearing-in of the 

surface topography. In test series B, the wear volume 

increases within the first 30,000 shaft revolutions with 

a higher wear rate than in test series A. Subsequently, 

experiments and simulations show a significantly 

decaying wear rate between 30,000 and 360,000 shaft 

revolutions. Between 360,000 and 720,000 shaft 

revolutions, a progressive development of the wear 

volume can be observed. This can be explained by 

the increasing conformity between the shaft and plain 

bearing, which leads to a decrease in load-carrying 

capacity and results in a higher mixed friction intensity. 

Also, the number of simulation steps increases due 

to a low number of shaft revolutions to reach a fixed 

maximum wear depth of 0.125 μm per step. In test 

series C, the wear volume grows within the first 

30,000 shaft revolutions at a higher wear rate than 

in test series A and B. Subsequently, experiments 

and simulations show a clearly decaying wear rate 

between 30,000 and 720,000 shaft revolutions with an 

approximately linear development of the wear volume 

[30], which is also in agreement with other works 

[13, 35]. In all experiments and simulations, derivations 

at 30,000 shaft revolutions can be observed. The reason 

for this is twofold. Firstly, tolerances in surface 

roughness, cylindricity can lead to deviations between 

the physics-based model and the distribution of 

experimental results. Secondly, the radial load is 

applied and increased within the first minute after 

the initial start of the rotation. This kind of dynamic 

effect could potentially affect the wear pattern as well 

as the temperature distribution in the bearing, especially 

in cases with high temperatures and loads.  

 

Fig. 3 Wear volume evolution: Wear volume evolution of running-in test series A to C. The markers indicate the number of simulation
steps in the physics-based simulation model: (a) linear scaled runtime, (b) log-scaled runtime. Reproduced with permission from 
Ref. [30], © Verlag Mainz, 2020. 
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In the following section, Bayesian inference-based 

RUL prognostics are conducted. To predict the RUL, 

the previous physics-based wear simulations were 

fitted into the linear degradation model according  

to Eq. (1). The simulated wear volume 
t

V  is the 

input variable for the linear degradation model. The 

remaining model parameters according to Eq. (1) are 

continuously updated by the statistical approach 

using Bayesian inference to predict the future   

wear volume  .
kt t

V  Hence, the physics-based wear 

simulation results are translated into a statistical, 

mathematical problem. The wear simulation result 

of test series B is compared to the predicted wear 

volume in Fig. 4. The prediction generally agrees 

very well with the simulation results. A deviation 

between the simulation result and prognosis can be 

observed in the transition from running-in wear to 

operational wear. This deviation is due to the chosen 

approach and the high gradient change, which cannot 

be accurately captured in the statistical model. This 

can be explained by the updated mean and variance 

in each step. As introduced in Section 2.2, these 

values are calculated from the data of the previous 

step (Eqs. (5) and (6)). 

The PDF for the failure runtime of the plain bearing, 

is shown in Fig. 5, where a dashed line indicates 

the corresponding number of shaft revolutions, at 

which the physics-based wear simulation crosses 

the predefined threshold value of suitable wear 

volume. The area between the abscissa and the curve 

corresponds to the probability. Figure 5(a) shows an 

overview and maps both the running-in and the 

subsequent wear. Figure 5(b) corresponds to a detailed 

view of Fig. 5(a), where only the running-in wear  

is shown. Due to the rather constant wear rate, i.e., 

close-to-linear wear progress over multiple simulation 

 

Fig. 4 Comparison of the predicted wear volume to the simulation 
data of test series B. 

 

Fig. 5 PDF of the predicted bearing lifetime of test series B.  
(a) Full wear lifetime evolution, (b) running-in period, and     
(c) stationary and progressive wear period. 

steps, as shown in Fig. 3(a), the failure runtime   

for the simulation steps 10‒40 converges to a rather 

distinct lifetime prediction, which can be recognized 

by the high peak value of the PDF and the low 

variance. However, as observed in the results of the 

physics-based simulations (Fig. 3), this marks the 

transition from running-in to steady-state wear. Hence, 

at step 50, which is also included in Fig. 5(b), the 

predicted failure runtime and fuzziness increases 

significantly. However, as shown in Fig. 5(c), the 

predicted failure runtime at step 90 onwards decreases 

again due to the transition from stationary to progressive 

wear. Eventually, the lifetime converges to a fixed 

value, see Fig. 5(c). With decreasing difference between 

the condition indicator and the damage criterion, a 

smaller span and larger PDF can be observed, which 

leads to a more accurate RUL prognosis.  
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For the conditions of test series C, a good 

agreement between physics-based simulation and the 

statistical reliability model can be achieved. As can be 

seen in Fig. 6 at approximately 50,000 shaft revolutions, 

there is an overshoot in the signal at the transition 

from running-in wear to operational wear. Similar to 

test series B, this can be explained by the stepwise 

update of the statistical model, which cannot follow 

the strong change in the gradient of the numerical 

model. 

The PDF for test series C is shown in Fig. 7, where 

the same classification as for test series B is used. 

Figure 7(a) shows the lifetime prognosis for both 

wear cases, whereas Fig. 7(b) shows the life for  

running-in wear and Fig. 7(c) shows the life for 

subsequent stationary wear. Similar to the running-in 

in test series B, the RUL firstly converges towards a 

fixed value, as shown in Fig. 7(b). Subsequently, the 

RUL increases again due to the decreasing wear rate 

after wearing-in as shown in Fig. 7(c). The predicted 

failure runtime at step 75 is approximately 8.3×106 

shaft revolutions or 23.1 days.  

As can be seen in Fig. 7, test series C does not 

represent the entire wear lifetime of the plain bearing. 

Similar to test series B, approximately 50% of the 

permissible wear occurred during the running-in, 

which is occurring within the first 40 simulation steps. 

During the subsequent stationary wear regime, the 

ratio between wear volume and threshold reaches 

58% at simulation step 75. Furthermore, it can be 

seen that the statistical approach leads to comparable 

results with the physics-based wear simulation. Hence, 

the application of a statistical reliability model with 

the assumption of linear degradation is valid for  

the particular use case of steady-state operated 

plain bearings. In the future, the idea is to replace 

the physics-based simulations with other condition 

indicators that can be used for condition monitoring 

of bearing systems. During running-in and progressive 

wear, cumulative damage has a significant effect  

on the degradation rate. Cumulative damage may 

accelerate or decelerate the variation frequency of the 

degradation process. Since false predictions during 

the running-in period can only be ignored by the 

knowledge of the system, future research should also 

consider the potential use of exponential degradation   

 

Fig. 6 Comparison of the predicted wear volume to the simulation 
data of test series C. 

 

Fig. 7 PDF of the predicted bearing lifetime of test series C.  
(a) Full wear lifetime evolution, (b) running-in period, and     
(c) stationary wear period 

models, which can better characterize situations 

where the degradation rate changes sensitively. This 

is not limited to running-in but can also include 

dynamic load or speed cycles.  
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4 Conclusions 

The aim of this study was to predict the remaining 

useful life (RUL) of plain bearings operating under 

different stationary, mixed-friction conditions. Due 

to the non-stationary wear behavior of plain bearing, 

a numerical simulation approach based on coupled 

mixed-elastohydrodynamic (mixed-EHL) and wear 

simulations was linked to a degradation model based 

on Bayesian inference.  

For validation of the proposed method, multiple 

plain bearing experiments under mixed-friction 

conditions were conducted. On the basis of the 

results obtained, the following conclusions can be 

drawn:  

1) Depending on the operational conditions, plain 

bearing may show an initial operation in mixed 

friction. After wearing-in, the bearing may operate in 

a wear-free hydrodynamic regime or within a mixed- 

friction regime with either stationary or progressive 

wear. A linear degradation model can be used to 

model these transitions with reasonable accuracy. 

2) With the statistical reliability model based on 

Bayesian inference, it is possible to estimate the RUL 

throughout the non-stationary wear progression of  

a plain bearing system. Changes in the wear rate 

throughout the bearing lifetime can be considered 

due to the continuous updating of the RUL. 

Future works will focus on elucidating the benefits 

of the proposed method compared to previously 

reported methods. Also, the combination with condition 

monitoring systems and machine learning methods 

is possible and thereby replaces the time-consuming 

mixed-EHL and wear simulations for real-time wear 

prognosis.  
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