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Abstract
Introduction  Time- and resource-demanding activities related to processing individual case safety reports (ICSRs) include 
manual procedures to evaluate individual causality with the final goal of dismissing false-positive safety signals. Eminent 
experts and a representative from pharmaceutical industries and regulatory agencies have highlighted the need to automatize 
time- and resource-demanding procedures in signal detection and validation. However, to date there is a sparse availability 
of automatized tools for such purposes.
Objectives  ICSRs recorded in spontaneous reporting databases have been and continue to be the cornerstone and the most 
important data source in signal detection. Despite the richness of this data source, the incessantly increased amount of ICSRs 
recorded in spontaneous reporting databases has generated problems in signal detection and validation due to the increase in 
resources and time needed to process cases. This study aimed to develop a new artificial intelligence (AI)-based framework 
to automate resource- and time-consuming steps of signal detection and signal validation, such as (1) the selection of control 
groups in disproportionality analyses and (2) the identification of co-reported drugs serving as alternative causes, to look to 
dismiss false-positive disproportionality signals and therefore reduce the burden of case-by-case validation.
Methods  The Summary of Product Characteristics (SmPC) and the Anatomical Therapeutic Chemical (ATC) classification 
system were used to automatically identify control groups within and outside the chemical subgroup of the proof-of-concept 
drug under investigation, galcanezumab. Machine learning, specifically conditional inference trees, has been used to identify 
alternative causes in disproportionality signals.
Results  By using conditional inference trees, the framework was able to dismiss 20.00% of erenumab, 14.29% of topiramate, 
and 13.33% of amitriptyline disproportionality signals on the basis of purely alternative causes identified in cases. Further-
more, of the disproportionality signals that could not be dismissed purely on the basis of the alternative causes identified, 
we estimated a 15.32%, 25.39%, and 26.41% reduction in the number of galcanezumab cases to undergo manual validation 
in comparison with erenumab, topiramate, and amitriptyline, respectively.
Conclusion  AI could significantly ease some of the most time-consuming and labor-intensive steps of signal detection and 
validation. The AI-based approach showed promising results, however, future work is needed to validate the framework.
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Key Points 

We developed a new framework on the basis of both AI 
and non-AI approaches to ease some of the most time-
consuming and labor-intensive steps of signal detection 
and validation, such as the selection of controls and 
the identification of co-reported drugs that may serve 
as alternative causes for the reported adverse events in 
signals of disproportional reporting.

Future work is needed to further assess the extent of 
impact of our framework for other drugs and spontane-
ous reporting databases when performing routine signal 
detection and validation activities.

1  Introduction

Individual case safety reports (ICSRs) recorded in sponta-
neous reporting databases have been and continue to be the 
cornerstone and the most important data source in signal 
detection. In recent years, regulatory agencies could identify 
more than 80% of potential safety signals leading to regula-
tory action using ICSRs [1]. Despite the richness of this data 
source, the incessantly increased amount of ICSRs recorded 
in spontaneous reporting databases has generated problems 
in signal detection and validation due to the increase in 
resources and time needed to process cases. The number of 
ICSRs recorded in the US Food and Drug Administration 
Adverse Event Reporting System (FAERS) in the last 10 
years (2011–2021) has increased threefold, and a similar 
trend is seen in Europe (i.e., EudraVigilance) [2].

Time- and resource-demanding activities related to 
processing ICSRs include manual procedures to evaluate 
individual causality with the final goal of dismissing false-
positive safety signals. One of the most time- and resource-
demanding procedures for dismissing safety signals is the 
identification of alternative causes for the reported adverse 
events (AEs) in ICSRs after disproportionality signals have 
been identified. This case assessment/signal validation pro-
cedure is currently normally performed manually by evalu-
ating variables such as the co-reported drugs in ICSRs [3]. 
Co-reported drugs are screened to identify identifying alter-
native potential causes for the newly identified drug–event 
pair. Additionally, co-reported drugs are screened to evaluate 
whether the disease for which these drugs are used (i.e., the 
therapeutic indication) may itself represent an alternative 
cause for the AEs. Naturally, care must be taken, as listed 
drugs that were used to treat the AE may have been listed by 

the reporter as well. For the latter, recent research has shown 
that the appropriate selection of controls in disproportion-
ality analysis can mitigate the need for such activity, espe-
cially when drugs used for the same therapeutic indication 
are chosen as controls [4, 5]. Activities to identify alternative 
causes or appropriate controls in disproportionality analy-
sis are time- and resource-demanding [3] when performed 
manually. However, these activities are crucial to dismiss 
false-positive signals, as shown in the 2020 annual report 
on EudraVigilance from the European Parliament, in which 
80% of all potential safety signals in 2018–2020 ended up 
being not validated, or rather being false positives [2].

Eminent experts and a representative from pharmaceuti-
cal industries and regulatory agencies have highlighted the 
need to automatize time- and resource-demanding proce-
dures in signal detection and validation [6]. However, to 
date there is a sparse availability of automatized tools for 
such purposes.

Therefore, this study aimed at developing automatized 
procedures for the identification of alternative causes for 
reported AEs in disproportionality signals originating from 
spontaneous reporting databases, with the final goal of dis-
missing false-positive disproportionality signals. For this 
purpose, FAERS was used as a data source and galcane-
zumab as a proof-of-concept drug, as this is a drug recently 
approved for which no studies have been conducted using 
spontaneous reporting databases.

2 � Methods

2.1 � Automatic Selection of Controls

In this article, we present a dual approach combining the 
Anatomical Therapeutic Chemical (ATC) classification 
system code and the approved therapeutic indication in the 
US Summary of Product Characteristics (SmPC) of gal-
canezumab for automatizing the selection of controls for 
disproportionality analysis when using FAERs. The ATC 
code is a unique code assigned to all active ingredients and 
consists of five levels: (1) the anatomical main group, (2) 
the therapeutic subgroup, (3) the pharmacological subgroup, 
(4) the chemical subgroup, and (5) the chemical substance 
[7]. By using the 4th level of the ATC code, or rather the 
chemical subgroup, we identified all active ingredients with 
the same therapeutic target (i.e., CGRP antagonists) as gal-
canezumab. Additional controls were identified by selecting 
active ingredients outside the chemical subgroup of galcan-
ezumab but with the same approved therapeutic indication to 
avoid masking due to drug class effect [8] and confounding 
by indication. Drug class effect masking is a phenomenon 
that can occur when only drugs within the same chemical 
subgroup are used as controls in disproportionality analysis 
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[8]. Confounding by indication is a type of bias that can 
occur when drugs used for different therapeutic indications 
are compared in disproportionality analysis [9].

To identify controls with the same approved therapeutic 
indication but outside the chemical subgroup of galcane-
zumab, DrugBank was used. DrugBank is a comprehensive 
online database containing information on active pharma-
ceutical ingredients and their respective pharmacological 
targets. In DrugBank it is possible to obtain a list of all 
active ingredients approved for a certain disease by search-
ing a structured field known as “associated condition.” An 
“associated condition” is a term found in the drug indica-
tion section of DrugBank and refers to any specific state 
or medical condition for which the drug is indicated. By 
searching this field in DrugBank it is possible to obtain a 
list of drugs with an approved therapeutic indication for the 
medical condition under investigation which, in the case 
of galcanezumab, is “migraine prophylaxis.” To test the 
reliability of our approach for selecting controls in dispro-
portionality analysis, we computed the proportion of drug 
classes correctly retrieved among drug classes mentioned 
in two recently published articles [10, 11]: (number of drug 
classes retrieved with our approach / number of drug classes 
mentioned in the two recently published reviews) × 100%. 
For each active ingredient, drug classes were obtained from 
the 4th level of the ATC code.

2.2 � Data Sources and Management

ICSRs in which galcanezumab and the selected control 
groups (see Sect. 2.1) were reported as the suspected drugs 
were extracted from FAERS. FAERS is the spontaneous 
reporting database maintained by the FDA. The goal of 
FAERS is to support the FDA’s post-marketing safety sur-
veillance. The database consists of spontaneous reports of 
AEs and product quality complaints, and medication errors 
reported by health care professionals and consumers are col-
lected. ICSRs recorded in FAERS use the structure provided 
by the International Council for Harmonization of Technical 
Requirements for Pharmaceuticals for Human Use (ICH) 
E2B guideline to collect ICSRs. This structure is used in all 
spontaneous reporting databases from the countries partici-
pating in the World Health Organization’s Programme for 
International Drug Monitoring, which accounts for 99% of 
countries worldwide [12]. All available zipped ASCII quar-
terly data extract files from the fourth quartile of 2012 to 
the third quartile of 2021 from FAERS were downloaded 
from the OpenFDA website. A local database was set up in 
R (version 4.1.2, R Development Core Team) by using the 
primary identifier of each ICSR as the key to linkage based 
on the relational structure described by Kass-Hout and col-
leagues [13].

2.3 � Statistical Analysis

2.3.1 � Comparability of Controls

For descriptive purposes, the comparability of galcanezumab 
cases and the selected controls were examined by compar-
ing their distribution of sex, age, weight (kg), reporter’s 
qualification, number of co-reported drugs, and the year of 
reporting, as these variables have been previously identi-
fied as potential sources of confounding in disproportionality 
analysis [14]. Additionally, as a measure of comparability, 
the density functions of the propensity score of being in a 
report having galcanezumab as the suspected drug of these 
variables was computed for assessing the overlap in density 
functions among galcanezumab cases and selected controls 
[15, 16]. The propensity score was calculated using a logistic 
regression model with the following covariates: sex, age, 
weight (kg), reporter’s qualification, number of co-reported 
drugs, and the year of reporting. For the calculation of the 
propensity score, we replaced the missing values with an 
index value (e.g., for age we assigned the value 9999) to 
perform the computation for all cases. The default imputed 
value for age is convenient for categorization but may be 
suboptimal when included as a continuous explanatory vari-
able in a model. Therefore, a subsequent sensitivity analysis 
was performed for the calculation of the propensity score 
where instead of using 9999, we imputed with the mode age 
and added another variable for whether age is missing or not.

2.3.2 � Dismissal of False‑Positive Disproportionality Signals

In the pool of the potential controls (see Sect. 2.1), two drugs 
within the chemical subgroup of galcanezumab and two 
drugs outside the chemical subgroup with the same thera-
peutic indication of galcanezumab were randomly chosen for 
disproportionality analyses. The reporting odds ratio (ROR) 
was used as a disproportionality measure and the 95% con-
fidence interval (CI) of all AEs recorded for galcanezumab 
and the selected controls in FAERS with a frequency of 
reporting greater or equal to 3 was calculated according to 
the recommendations described by the European Medicine 
Agency (EMA) [17]. Of note, in the context of this frame-
work, the ROR is defined as the ratio of spontaneous reports 
for a given drug that report a specific AE divided by the cor-
responding ratio of the drug used as a control in dispropor-
tionality analysis. Heatmaps of RORs for disproportionality 
analysis were plotted. Disproportionality signals for which 
the lower limit of the 95% CI was greater than 1 were further 
analyzed by using conditional inference trees (R Package: 
partykit; Version: 1.2–16; function: ctree) [18] to identify 
alternative cause co-reported drugs.

The use of a conditional inference tree required data 
management, as information stored in FAERS was not 
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immediately usable for such a purpose. In particular, all the 
information on co-reported drugs in the ICSRs were stored 
as binary variables. Before using the conditional inference 
trees, binary variables were filtered on the basis of variance, 
and variables having ≥ 95% identical values across cases 
and controls were removed. The idea of this filter was to get 
rid of variables that only consist of noise and therefore have 
very little variation [19]. Pre-filtering has been performed to 
reduce the size of the dataset and increase speed in computa-
tional power while reducing RAM resources needed to store 
in R the highly dimensional dataset. The pre-processing is 
automatized and there is no human time involved in this 
procedure. For each disproportionality signal, conditional 
inference trees were used to identify disproportionally co-
reported drugs among those variables kept after filtering 
based on variance. The steps for fitting the conditional infer-
ence trees were the following:

1.	 We first filtered all cases with the adverse event of inter-
est;

2.	 We generated a highly dimensional set of co-reported 
drugs for cases identified in step 1);

3.	 We fitted the conditional inference tree using as the class 
a binary variable named outcome, which included infor-
mation on the drugs for which we performed the head-
to-head comparison and co-reported drugs as predic-
tors. For example, if we compared galcanezumab versus 
erenumab, the outcome variable will have two levels 
with labels “galcanezumab” and “erenumab.” The main 
reason for doing so is that we wanted disproportion-
ally co-reported drugs only for the adverse event under 
investigation;

4.	 All the co-reported drugs with a p-value < 0.05 were 
considered disproportionally co-reported and underwent 
validation.

The SmPC of disproportionally co-reported drugs was 
screened to identify those drugs that listed in the SmPC 
the AE in disproportionality signal mimicking procedures 

performed during signal validation [3, 20–25]. The dispro-
portionality analysis was conducted again by removing cases 
with co-reported drugs for which the AE under investigation 
was listed in the SmPC as these cases had alternative causes 
for the AE. Finally, we calculated the fraction of dispropor-
tionality signals dismissed by using this procedure. A dispro-
portionality signal, that is, a statistical alert, was considered 
dismissed if there was no statistical significance, according 
to the threshold set by EMA, after dismissing cases with 
co-reported drugs for which the AE under investigation was 
listed in the SmPC of the co-reported drugs [17].

A flowchart showing the implementation of automatic 
selection of controls and dismissal of false positive signals 
using conditional inference tree is shown in Fig. 1.

2.4 � The Rationale for Using Conditional Inference 
Trees

A conditional inference tree is a method to build up a pre-
diction model via classifying characteristics of cases and 
controls (i.e., predictors) to the outcome (i.e., the AE). In 
a decision tree, the characteristics of the cases/controls and 
outcomes under investigation can be binary: true or false, 
yes or no.

A conditional inference tree consists of a root, branches, 
and leaves. The predictor that has a higher degree of associa-
tion with the outcome represents the root node of the tree. 
To determine the strength of association of individual pre-
dictors and therefore determine the hierarchy of the condi-
tional inference trees, impurity measures are used (e.g., Gini 
Impurity Index) and statistical tests are used to determine 
disproportionality (i.e., chi-squared test). Impurity measures 
assess how good a predictor is in classifying individuals as 
having/not having the outcome. Each time before adding a 
new set of predictors for the outcome, the impurity of the 
whole tree is computed. The smaller impurity the better the 
classification is. Where to draw the line to divide the numeri-
cal value depends on the impurity as well.

Fig. 1   Flowchart showing 
implementation of automatic 
selection of controls and dis-
missal of false positive signals 
using conditional inference tree
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In this study, conditional inference trees were used to 
identify co-reported drugs that were disproportionally 
reported between cases and controls reporting the AE under 
investigation. The advantage of using decision trees in this 
setting relies on the fact that this technique, if compared with 
the current approach used in disproportionality analysis (i.e., 
stratification), can investigate preemptive non-linear rela-
tionships between predictors and the outcome. The rationale 
for using conditional inference trees is also epidemiological. 
If cases and controls have statistically significant differences 
in the proportion of a co-reported drug, the latter may repre-
sent a potential confounder for the investigated signals if we 
subset cases and controls with the AE under investigation.

2.5 � Framework Validation Using Simulated Data

The objective of the simulation was to show some generaliz-
ability of the conditional inference trees for the identification 
of confounders among co-reported drugs in disproportional-
ity signals. The method was able, in three different scenarios, 
to correctly identify the disproportionally co-reported drugs 
serving as confounders for the disproportionality signals.

Scenario 1: We have simulated 1000 cases of a hypo-
thetical AE for galcanezumab (500 cases) and a control (500 
cases) from the multivariate normal distribution of three 
Gaussians [26] as follows: age~N(40,1), weight~N(75,1), 
and number of co-reported drugs~N(2,1). The correlation 
between age and weight was −0.8, the correlation between 
age and the number of co-reported drugs was 0.7, and the 
correlation between weight and the number of co-reported 
drugs was −0.9. We have then generated three binary vari-
ables (i.e., co-reported drug 1, co-reported drug 2, and co-
reported drug 3) with marginal probabilities of 0.25–0.75, 
0.75–0.25, and 0.5–0.5 with a binary variable named out-
come. The variables co-reported drug 1, co-reported drug 
2, and co-reported drug 3 were generated by thresholding 
a normal distribution. The threshold was the median of the 
numerical variable generated with a normal distribution as 
shown in Electronic Supplementary Material (ESM) 1. The 
correlations of the components were specified as a correla-
tion matrix of the binary distribution [27]. Co-reported drug 
1 was correlated with co-reported drug 2 (i.e., 0.514) while 
co-reported drug 3 was not correlated with co-reported drug 
1 and co-reported drug 2 (i.e., −0.020 and 0.048). The vari-
able outcome was correlated with co-reported drug 1 (i.e., 
−0.628) and co-reported drug 2 (−0.370) but not with co-
reported drug 3 (i.e., −0.026).

This setup accounts for a scenario where co-reported 
drug 1 and co-reported drug 2 are correlated with the out-
come, as they are disproportionally co-reported between 
galcanezumab and the control cases having a hypothetical 
AE. Additionally, in this scenario, co-reported drugs 1 
and 2 are correlated variables with different strengths of 

correlation with the outcome. It is expected that the frame-
work identified in the decision tree co-reported drug 1, as 
it is the co-reported drug with the strongest correlation 
with the outcome.

Scenario 2: We used the same setting as in scenario 1 
but we reduced the sample size to 50 cases. This setup 
accounts for a scenario in which there is a limited amount 
of cases to perform disproportionality analysis. It is 
expected that the framework identified in the decision tree 
co-reported drug 1, as it is the co-reported medication with 
the strongest correlation with the outcome.

Scenario 3: We used the same setting as in scenario 1 
but we dropped co-reported drug 1 from the dataset and 
changed the marginal probabilities of co-reported drug 2 
to obtain a 20% disproportionality between galcanezumab 
and the control’s cases. This setup accounts for a scenario 
in which there is a relatively small disproportionality 
between cases and controls for co-reported drug 2. It is 
expected that the framework identified in the decision tree 
co-reported drug 2, as it is the co-reported medication with 
the strongest correlation with the outcome.

In all scenarios, we performed a descriptive analysis 
by presenting frequencies and percentages of binary vari-
ables and plotting the kernel density distribution of age, 
weight, and number of co-reported drugs and correlation 
matrix of variables in the analytical datasets. Addition-
ally, we modeled a conditional inference tree to identify 
co-reported drugs that were disproportionally reported 
between galcanezumab and the control reporting the AE 
under investigation.

3 � Results

3.1 � Automatic Selection of Controls 
and Comparability

Table 1 provides an overview of drugs that were identified 
as potential control groups for galcanezumab. Erenumab, 
fremanezumab, amitriptyline, and topiramate were finally 
used as control groups for disproportionality analysis. In 
total, 86% of drug classes among those eligible for dis-
proportionality analysis were identified. Supplementary 
Figs. 1, 2, 3, and 4 and Supplementary Table 1 presents 
the comparability of erenumab, fremanezumab, topira-
mate, and amitriptyline cases, respectively, in comparison 
with galcanezumab cases for density distributions of age, 
sex, weight (kg), reporter’s qualification, number of co-
reported drugs, the year of reporting, and propensity score. 
The results of the sensitivity analysis for the computation 
of propensity score did not show major differences from 
the main analysis (ESM 2).
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3.2 � Dismissal of False‑Positive Disproportionality 
Signals

In total, 399 signals of disproportionate reporting were iden-
tified for galcanezumab when compared with fremanezumab 
(n = 22), erenumab (n = 111), topiramate (n = 130), and 
amitriptyline (n = 136). Supplementary Figs. 5, 6, 7, and 8, 
show heatmaps of RORs of all identified disproportional-
ity signals when fremanezumab, erenumab, topiramate, and 
amitriptyline were used as controls, respectively.

On the basis of purely co-reporting, it was possible to 
dismiss 22 (20.00%), 19 (14.29%), and 18 (13.33%) of the 
disproportionality signals identified for galcanezumab in 
comparison with erenumab, topiramate, and amitriptyline, 
respectively. In all, 340 disproportionality signals were not 
dismissed. Among disproportionality signals that cannot be 
dismissed on the basis of purely co-reported drugs, we esti-
mated a further 0%, 15.32%, 20.88%, and 23.35% reduction 
in the number of galcanezumab cases to undergo manual 
validation in comparison with fremanezumab, erenumab, 
topiramate, and amitriptyline, respectively, as these propor-
tions of cases have co-reported drugs as alternative causes.

3.3 � Framework Validation

Descriptive analysis of cases simulated in scenarios 1, 2, 
and 3 are presented in Supplementary Tables 2–4 and Sup-
plementary Figs. 10–12. The results of the conditional infer-
ence trees are plotted in Supplementary Figs. 13–15. In all 
scenarios, the framework was able to correctly identify the 

co-reported drug simulated as an alternative cause for the 
disproportionality signal.

4 � Discussion

4.1 � Automatic Selection of Control Groups 
and Comparability

At the moment, neither the EMA nor the FDA have 
described any guidelines concerning the selection of controls 
in disproportionality analysis, however, it is well known and 
acknowledged that the control group influences the results of 
a disproportionality analysis [28, 29]. This is in part as dis-
proportionality analyses are frequently conducted against a 
background of the rest of the database [30]. It has to also be 
admitted, however, that choice of an appropriate control can 
sometimes be nearly impossible in a given dataset and the 
subjectivity associated with selection of controls. Neverthe-
less, this approach seems promising in some circumstances, 
in particular when the automatic process proposed in this 
study for the selection of controls within and outside the 
chemical subgroup of galcanezumab showed an 86% suc-
cess rate, as 6 of 7 chemical subgroups indicated for acute 
and/or preventative migraine were identified. The selection 
of controls was based on pharmacoepidemiological princi-
ples of trying to increase the similarity in case characteris-
tics among compared drugs in disproportionality analysis 
by including controls within the same chemical subgroup 
and controls outside the chemical subgroup with the same 

Table 1.   Potential control 
groups of galcanezumab 
identified within and outside the 
chemical subgroup

Drug under investigation Control group Chemical subgroup 
(within/outside)

Migraine 
prophylaxis 
(yes/no)

Galcanezumab Erenumab Within Yes
Ubrogepant Within Yes
Eptinezumab Within Yes
Rimegepant Within Yes
Atogepant Within Yes
Acetylsalicylic acid Outside Yes
Almotriptan Outside Yes
Amitiptylin Outside Yes
Fremanezumab Within Yes
Galcanezumab Within Yes
Ketoprofen Outside Yes
Metoclopramide Outside Yes
Naproxen Outside Yes
Propanolol Outside Yes
Topiramate Outside Yes
Valproic acid Outside Yes
Zolmitriptan Outside Yes
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therapeutic indication. To assess similarity among cases 
and controls, we compared the propensity score of being in 
a report having galcanezumab as the suspected drug built 
using covariates that were known to introduce confounding 
in disproportionality analysis [31]. As expected, the drugs 
within the same chemical subgroup (i.e., fremanezumab and 
erenumab) were the most comparable to the galcanezumab 
group as shown by higher overlapping between propen-
sity score density functions. Topiramate and amitriptyline 
were not as comparable, as they had a smaller proportion of 
female participants, a fewer number of co-reported drugs, a 
difference in years of reporting, as topiramate and amitrip-
tyline have been marketed for a longer period, and lastly a 
higher median age. Such differences may be explained by 
the use of topiramate and amitriptyline for other therapeu-
tic indications (i.e., depression), which is known to affect 
older adults more than those receiving galcanezumab for 
migraine prophylaxis [32, 33]. An interesting observa-
tion that was made during this study was the correlation 
between the comparability of cases and the control groups 
and the number of disproportionality signals identified in 
the statistical analysis, as shown in Supplementary Table 1. 
In this regard, we hypothesized that the number of dispro-
portionality signals is influenced by the comparability of 
the selected control group to the drug under investigation. 
Furthermore, we believe using the overlap of the propensity 
score to prioritize controls in disproportionality analysis will 
be problematic, as most drugs within the 4th level of the 
ATC code will be retained as controls in disproportionality 
analysis. Finally, we believe that other approaches may be 
more effective in computing propensity score, such as the 
use of co-reported drugs as individual covariates rather than 
the number of co-reported drugs and the restriction of the 
study period. However, further studies are needed to validate 
these hypotheses, and while theoretically this is the case, 
non-random reporting patterns may mean that this is not 
the case in practice.

4.2 � Automatic Identification of Alternative Causes 
in Disproportionality Signals

Our AI-based approach introduced automation in the 
identification of confounders during signal validation by 
identifying co-reported drugs that were disproportion-
ately co-reported among galcanezumab cases and control 
groups. The rationale for conducting this analysis relies 
on pharmacoepidemiological principles. To be an alter-
native cause in disproportionality analysis, a co-reported 
drug needs to be associated with the occurrence of the 
AE under investigation and needs to be disproportion-
ally co-reported between cases and controls. Our analyti-
cal approach performs this evaluation by using a condi-
tional inference tree to identify the disproportionality of 

co-reported drugs among galcanezumab and controls in 
ICSRs with the AE under investigation. Only in one analy-
sis, or rather, when fremanezumab was used as the control 
group to galcanezumab, were we not able to dismiss any of 
the disproportionality signals using conditional inference 
trees. We believe that a plausible cause for this result is 
that fremanezumab was the control group with the highest 
comparability to galcanezumab (i.e., 68.49% overlap of 
density functions of the propensity scores).

4.3 � Limitations

The necessary step of checking the presence of an AE in 
the SmPC of co-reported drugs is a major component of 
the aforementioned time-limiting activities in signal vali-
dation, and it is not addressed in the automatic process 
proposed in our framework. However, we anticipate that 
soon there will be ad hoc tools for this task. Of note, the 
commercial version of DrugBank already includes this 
data.

Other machine learning approaches other than conditional 
inference trees could have been tested to assess the dispro-
portionality of co-reported drugs but, for this pilot project, 
we limited our choice to conditional inference trees on the 
basis of the reasons provided in Sect. 2.3.

Currently, we do not have a clear cutoff to define “good” 
or “bad” regarding the number of drug classes that should 
be correctly identified by our framework during the selection 
of viable controls for disproportionality analysis. Therefore, 
future work is needed to identify the optimal cutoff.

We have arbitrarily decided to use four controls in dispro-
portionality analysis because we are aware that the number 
of disproportionality signals generated in the framework 
will proportionally increase with the number of controls 
chosen (Supplementary Fig. 9). However, future work is 
needed to determine the optimal number of controls in our 
framework. In this regard, a challenge will be whether the 
optimal number would vary by drug under consideration, but 
evaluation of this issue and developing a systematic frame-
work is extensive and challenging. It should be emphasized 
that increasing the number of controls also increases the 
number of disproportionality signals. However, this is also 
true because the same threshold is used to define a dispro-
portionality signal irrespective of the number of tests. In 
other words, the problem of multiplicity is ignored. We 
hypothesized that the increase in the number of alerts largely 
depends on which control is being progressively added. 
Hence, the result is not general and further studies are nec-
essary to clarify this result.

Finally, it is important to highlight that 340 out of 399 
disproportionality signals were not dismissed, and that still 
represents an important number of signals to validate.
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5 � Conclusion

We developed a new framework that includes AI and non-
AI approaches to ease some of the most time-consuming 
and labor-intensive steps of signal detection and valida-
tion, such as the selection of controls and the identification 
of co-reported drugs that may serve as alternative causes 
for the reported AEs listed in disproportionality signals. 
Future work is needed to further assess the extent of use of 
our framework for other drugs and spontaneous reporting 
databases when performing routine signal detection and 
validation activities.
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