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Abstract Over a period of 5 years, the Innovative

Medicines Initiative PROTECT (Pharmacoepidemiological

Research on Outcomes of Therapeutics by a European

ConsorTium) project has addressed key research questions

relevant to the science of safety signal detection. The

results of studies conducted into quantitative signal detec-

tion in spontaneous reporting, clinical trial and electronic

health records databases are summarised and 39 recom-

mendations have been formulated, many based on com-

parative analyses across a range of databases (e.g.

regulatory, pharmaceutical company). The

recommendations point to pragmatic steps that those

working in the pharmacovigilance community can take to

improve signal detection practices, whether in a national or

international agency or in a pharmaceutical company set-

ting. PROTECT has also pointed to areas of potentially

fruitful future research and some areas where further effort

is likely to yield less.

1 Introduction

The opportunities for effective signal detection in large

databases have improved substantially since the early days

of pharmacovigilance. In those early days, much effort

necessarily focussed on manual clinical review of incom-

ing reports—often in the form of handwritten or typed

reports of suspected adverse drug reactions (ADRs) by

pharmacovigilance experts. Adverse event reports, or sets

of reports, in some way triggering the suspicion of a clin-

ical reviewer would be further investigated by the reviewer

and in some instances go on to become signals with some

of these signals leading to further actions. While sophisti-

cated approaches to statistical signal detection had been

proposed and even tested in a limited methodological or

theoretical context [1–5], routine prospective screening

using tools and automated systems was a mere pipe dream.

Several decades later, systematic screening of adverse

event reports is not just a reality; it is today the de facto

standard in large datasets [6]. However, as adverse event

reports are exchanged electronically around the world, in

the tens of thousands on a daily basis, it is well accepted

that our capabilities for signal detection are far from per-

fect and should be improved. In addition, we are seeing a

significant shift of focus, beyond adverse event reports and

prescription event monitoring systems, on to the use of
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longitudinal observational databases and clinical trials for

signal detection. Although the former have been used

extensively in the past for epidemiological purposes, their

potential use for signal detection is novel and new

approaches for identifying safety signals in clinical study

data beyond basic comparisons of adverse event frequen-

cies have been slow to gain widespread use.

CIOMS VIII [7] was convened in part to address the

widespread and growing interest in quantitative analysis of

spontaneous reports and particularly the desire for guide-

lines around the appropriate use of such quantitative

approaches. There was also a need to contextualise the role

and use of such approaches, including disproportionality,

within a holistic signal management perspective. CIOMS

VIII was able to achieve these ambitions but also high-

lighted several areas of signal detection in spontaneous

report and observational data and in the use of terminolo-

gies that needed more research. PROTECT was set up to

address these, and a number of other important topics, in

signal detection.

The following recommendations1 relate to research

conducted into quantitative signal detection in spontaneous

reporting, clinical trial and electronic health records data-

bases conducted under the auspices of the Innovative

Medicines Initiative (IMI) PROTECT Work Package 3

(one of seven work packages) between September 2009

and February 2015. The PROTECT consortium (Pharma-

coepidemiological Research on Outcomes of Therapeutics

by a European ConsorTium; http://www.imi-protect.eu)

was a public–private partnership co-ordinated by the

European Medicines Agency (EMA) and received support

from the Innovative Medicines Initiative Joint Undertaking

(http://www.imi.europa.eu) under Grant Agreement No.

115004. Full details of IMI PROTECT, including specific

information about Work Package 3 and a detailed technical

report supporting the recommendations can be found at

http://www.imi-protect.eu/about.shtml.

In attempting to advance the science of safety quanti-

tative signal detection and with the overall goal of

increasing the efficiency of quantitative signal detection

practices, the scope of IMI PROTECT Work Package 3 has

been ambitious, with 12 separate work streams covering a

wide range of research questions and undertaken between

September 2009 and February 2015. To convert the

insights gained from these efforts into meaningful and

executable outputs, the following recommendations have

been developed: in total, 39 separate recommendations

have been formulated, many based on comparative

analyses across a range of databases (e.g. regulatory,

pharmaceutical company) and in several data sources

(spontaneous reporting, clinical trials and electronic patient

records). A further 25 recommendations for future research

are also offered. It is acknowledged that signal detection

relies on quantitative and qualitative elements and it should

be noted that the focus of Work Package 3 was primarily

concerning the former. The majority of recommendations

are based on the outcomes of the signal detection research

conducted under the auspices of IMI PROTECT Work

Package 3. However, in attempting to provide holistic and

unambiguous messages of how the work can impact good

signal detection practices, some reference to recommen-

dations beyond the strict scope of PROTECT is necessary.

2 Précis of the Research and Recommendations

The studies undertaken though IMI PROTECT, which

provide the evidence base for each set of recommendations

that follow, are summarised here. For a full description of

the studies, refer to the cited original publication or tech-

nical report.

2.1 Timeliness of Quantitative Signal Detection

Using MedDRA� Terms and Groupings

Different terms in standard medical terminologies can be

used to describe the same suspected ADR. Many organi-

sations rely on disproportionality analysis for first-pass

screening of large collections of individual case safety

reports, in which the observed rate of a drug and adverse

reaction reported together is compared with an expected

value based on their relative frequencies reported individ-

ually in the spontaneous reporting database. Confidence

intervals or statistical significance tests are used to provide

some protection against spurious associations and a certain

number of reports are generally required before an asso-

ciation can be detected. By grouping together related

medical terms for the purpose of analysis, the observed

count will increase, but so too may the corresponding

expected value. It is not known whether lumping or split-

ting is preferable for timely quantitative signal detection. A

previous study reported lower sensitivity but higher posi-

tive predictive value for MedDRA� groupings than for

preferred terms (PTs) using cumulative data, but did not

evaluate the timeliness of statistical signalling [8].

The study of Hill et al. [9] sought to determine to what

extent the use of standard MedDRA�2 groupings could

expedite the detection of disproportionate reporting pat-

terns for historical safety signals, relative to analysis by

1 The non-binding recommendations presented in this report repre-

sent the views of the authors and do not represent the views or

policies of the authors’ respective affiliations (unless by coincidence),

even if employees of those organisations at the time of preparing this

paper. 2 MedDRA is Medical Dictionary for Regulatory Activities.
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individual MedDRA� PTs, separately, as is common

practice. Analyses were performed in the World Health

Organization (WHO) Global Individual Case Safety

Reports Database, VigiBase� as of 5 February, 2010. The

scope of the study was restricted to 13 medical concepts

identified as having medium to high probability of being

drug related [10]. The ADRs consisted of 43 historical

labelling changes by the EMA related to one of the 13

medical concepts, derived from a previously published

reference set [11]. Each labelling change had an associated

index date indicating when the EMA first became aware of

the potential signal and initiated their investigation, which

was used for reference. For each medical concept, related

high-level terms (HLTs), narrow standardised MedDRA�

queries (SMQs) and PTs were manually identified. The

latter were selected among the PT associated with either

the HLT or the SMQ for each concept. For each medical

concept, separate analysis of each PT was conducted and

also a joint analysis of all related PTs together as a custom

group. Disproportionality analysis was based on the

information component (IC), adjusted for country of origin

and year of submission to VigiBase (simultaneously),

through a Mantel–Haenszel-type stratification, as described

previously [12]. Lower 95 % two-sided credibility interval

limits of the IC (IC025) were computed retrospectively for

each quarter of a year from 1995 to 2010. For each level of

the hierarchy, the quarter in which IC025 first exceeded zero

was determined. For the analysis using individual PTs, this

was the first quarter that an IC025 value related to any

single PT in the group exceeded zero.

The study found no overall benefit in conducting signal

detection using MedDRA� HLTs or SMQs compared with

using PTs. Some relatively minor gain in time to signalling

was seen when closely related (in a clinical sense) ADR

terms where grouped together and this should be explored

further in future studies.

2.2 Use of Novel Term Groupings Generated

by Knowledge Engineering Techniques

New methods based on knowledge engineering techniques

have been used to support the development of new

groupings of terms or new terminologies, respectively.

For example, the French Common Classification of

Clinical Procedures (CCAM) was built using artificial

intelligence tools from the European GALEN (General-

ized Architecture for Languages, Encyclopaedias and

Nomenclatures) project [13]. Version 11 of the Interna-

tional Classification of Diseases (ICD), which includes

reference to multiple factors such as body systems,

symptoms and causal agents, was developed using the

experience of international experts in medical informatics

[14]. Thus, knowledge engineering techniques can be

used to derive novel groupings of adverse event terms

based on semantic definitions of each term [15] and these

groupings may provide an alternative to the standard

groupings available in an adverse event terminology, such

as MedDRA� HLTs or SMQs. In particular, knowledge

engineering may allow for a more flexible approach to

defining groups, based on the relevant dimensions for a

specific topic of interest.

Two PROTECT studies [16, 17] employed a bespoke

ontology (OntoADR [17, 18]) created using formal

definitions of MedDRA� PTs. The formal definitions

were either inherited from mapped SNOMED clinical

terms or defined in semi-automatic or manual processes

[18]. The semantic definition for the MedDRA� PT,

‘Upper gastrointestinal haemorrhage’, is illustrated as an

example:

Recommendation Rationale

For overall timeliness in

quantitative signal detection,

analysis can be performed at

the MedDRA� PT level

The PROTECT study found no

advantage in conducting signal

detection at levels of

MedDRA� above the PT level

and indeed observed a net loss

in timeliness of quantitative

signal detection from replacing

an analysis at the PT level with

one at a higher level of the

hierarchy [9]

Future research should evaluate

the false-positive burden for

signal detection at each level of

the terminology

The false-positive burden was out

of scope for the PROTECT

study [9]

Recommendation Rationale

Future research should evaluate

tighter custom-made groupings

of MedDRA� PTs for signal

detection

Neither PTs nor HLTs are

universally ideal for

quantitative signal detection.

Gains in time by aggregating

PTs were observed in the

PROTECT study when the

terms were very similar, in a

clinical sense [9]

Future research should evaluate

simultaneous analysis at

different levels of the

terminology

Parallel analyses at different

terminological levels could

improve timeliness but have

resource implications [9]

Future research should explore a

broader range of ADRs

The PROTECT study was

restricted to a selection of 13

ADR categories [9]
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The concordance between groupings derived with

knowledge engineering techniques and standardised event

groupings, or manually derived groupings were studied and

found fair concordance between the terms included in the

standard and proposed groupings [16, 17, 19], as well as

high concordance between the corresponding measures of

disproportionality with randomly selected drugs in the

FAERS3 database [16, 17].

2.3 Development of a Structured Database of SPC

§4.8 as Reference Dataset

The information available from the Summary of Product

Characteristics (SPC) is increasingly used by computer

applications. For a computer program to make use of this

information, it must be coded according to a well-defined

and exhaustive dictionary. Probably the most commonly

used dictionary for ADRs is MedDRA�. It is recommended

[20] that ADRs in the SPC be listed using exact (usually

preferred) terms from MedDRA� but this does not always

occur in practice. Sometimes this is because the ADR

could be described using multiple MedDRA� PTs and

would thus be difficult to communicate efficiently to clin-

ical staff in this format. Of course, no such problem arises

with a computer that can handle multiple terms efficiently.

Thus, it is worth investing the quite considerable effort

needed to convert the ADR information in the SPC for use

in computer applications. PROTECT took on the task of

creating a structured database of the ADR information in

section 4.8 of the SPC for all European centrally authorised

products using MedDRA� as the coding dictionary.

Recommendation Rationale

Knowledge engineering

techniques may be considered

as an adjunct to the creation of

custom groupings and SMQs

designed for the selection and

extraction of case reports in

pharmacovigilance databases

The PROTECT studies show it is

possible to propose relevant

novel groupings when no

predefined grouping is

available in MedDRA� for a

given safety topic (e.g.

anaphylactic shock or upper

gastric hemorrhages) [16, 17]

Additional research would be

necessary to validate if novel

groupings generated by

knowledge engineering

techniques can help in the

design of appropriate groupings

of MedDRA� PTs for use in

signal detection or evaluation

Given the current state of

research, the clinical accuracy

of groupings generated by

knowledge engineering is such

that manual clinical review is

still required and this still needs

to be validated against existing

signal detection methods

[16, 17, 19]

Recommendation Rationale

Consideration should be given

to piloting the use of

knowledge engineering in

developing groupings in other

ontologies for application to

other vocabularies and their

possible linkage

Given that it has been shown to be

possible to generate relevant

novel groupings in MedDRA�, it

is reasonable to expect that it

would also be possible in other

ontologies, e.g. ICD10,

SNOMED

3 The Food and Drug Administration Adverse Event Reporting

System (FAERS) is a database that contains information on adverse

event and medication error reports submitted to the US Food and

Drug Administration.
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The coding of the SPC was a three-stage process. First,

strings of text corresponding to discrete concepts were

extracted manually and an exact match to the MedDRA�

hierarchical dictionary at some level was sought using sim-

ple procedures in SAS. If this first matching failed, the EMA

sent the list of unmatched codes to the Uppsala Monitoring

Centre (UMC) where a fuzzy matching algorithm was run to

identify potential alternative matches to the strings [21]. The

final step was to subject remaining codes to expert evaluation

at the EMA and Bayer Pharmaceuticals.

An obvious application of machine-readable ADR

information arises in pharmacovigilance signal detection

systems. Such systems use ADR reports that are them-

selves coded in MedDRA� and hence it is easy to use the

ADR dataset to determine immediately if a new signal of

disproportionate reporting (SDR) [22, 23] corresponds to a

known ADR. This eliminates the need for manual inspec-

tion of the SPC where the focus of the monitoring is the

detection of new risks. This use has already been tested

successfully at the EMA and the UMC and implemented

into their corresponding signal detection process. Another

potential application would be to alert doctors to a possible

known ADR using the information on medications and

clinical events contained in electronic health records. A

further use is in research on ADRs, for example, it could be

used to identify products with similar ADR profiles or to

help construct reference datasets for evaluation of quanti-

tative signal detection algorithms [21, 24]. If similar

databases are constructed in other regulatory systems, they

could also be used to investigate the consistency of regu-

latory decisions across these systems.

A difficulty with mapping textual SPCs to MedDRA� is

that a given medical concept may map to several PTs.

When HLTs from MedDRA� are used in the SPC this is

handled easily but non-MedDRA� terms require consid-

erable thought. No systematic process exists to build up

groups of MedDRA� PTs corresponding to broader med-

ical concepts. It is currently an incremental process that

improves over time as non-standard terms are discovered

and the mappings refined through repeated scrutiny, and

this area needs additional work. It would also be desirable

to extend the database to products authorised through

national procedures.

Recommendation Rationale

The structured database of ADRs

for centrally authorised

products may be used as a

reference to enhance

pharmacovigilance for these

products. The database is

available here: http://www.

imi-protect.eu/adverseDrug

Reactions.shtml [25]

The PROTECT database has

been used to provide a

reference in evaluating signal

detection methods and also to

identify known ADRs emerging

from routine signal detection

activity, hence reducing

unnecessary investigation.

Other potential uses have been

identified but not yet tested

Structured databases of ADRs

and their synonyms mapped to

MedDRA� should be set up to

cover other products

The current database does not

address the majority of

products authorised under

mutual recognition or national

processes. Further work is

required if similar benefits are

to be realised in

pharmacovigilance systems

covering these products

A standard minimum structure

should be established for all

SPC ADR databases. The

PROTECT database provides a

useful template for this

structure

To maintain the utility of

databases and allow

combinations across databases,

a standardised core structure

will be essential although the

appropriate structure will

depend on the intended

functions of the database. Thus,

a coordinated approach with

wide consultation of intended

users would be needed. Co-

ordination of such an effort

could be undertaken by a large

regulatory agency or a cross-

industry organisation. For a

description of the database

structure see: http://www.imi-

protect.eu/documents/

Databasestructure.pdf [26]

To facilitate signal detection,

exact MedDRA� terms should

be used to identify ADRs in

SPC section 4.8 where feasible.

When an ADR involves very

large numbers of terms and

requires an ad hoc name,

mapping from this name to the

relevant MedDRA� terms

should be maintained

This is essential to facilitate the

construction of machine-

readable data sources that have

a number of potential uses

including the facilitation of

signal detection. See Eudralex

Vol. 2: http://ec.europa.eu/

health/documents/eudralex/vol-

2/index_en.htm [27]
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2.4 Comparison of Disproportionality Analysis

Methods Within and Across Spontaneous

Report Databases

Most pharmacovigilance departments maintain a system to

identify ADRs through analysis of spontaneous reports. The

majority of statistical methods used employ a dispropor-

tionality statistic calculated for each drug-event combination

in the dataset and a signal detection algorithm that consists of

a set of conditions that the disproportionality statistic and,

possibly, other statistics calculated for the drug-event com-

bination must satisfy for a SDR to be identified. The nature of

the spontaneous report databases in terms of size and drug

diversity varies between operators and it is unclear whether

any signal detection algorithm can be expected to provide

good performance in a wide range of environments. A

number of different disproportionality statistics are in use

[12, 29–31], but they are conceptually very similar [32–34].

The study of Candore et al. [35] compared the perfor-

mance of a number of commonly used signal detection

algorithms used across a range of spontaneous report

databases at national and international pharmacovigilance

organisations and individual pharmaceutical companies. A

set of 220 products was chosen and a reference set of

ADRs was compiled based on SPC and company core data

sheets. Among four companies, one national agency and

two international spontaneous report databases, 15 quan-

titative signal detection algorithms based on five dispro-

portionality statistics were tested using a subset of products

that fell within the pharmacovigilance responsibilities of

the respective database owners. Signals of disproportionate

reporting were identified at monthly intervals and classified

as true positives if they corresponded to an entry in the

reference set. To measure the (algorithm’s) performance,

these results were summarised as sensitivity and precision

(specifically, the positive predictive value) for each algo-

rithm in each database. Time to signalling was also

investigated, as early detection is an important contributory

factor to effective pharmacovigilance.

Different algorithms gave very different levels of signal

detection performance across all spontaneous report data-

bases tested. However, increases in sensitivity were gen-

erally associated with a decrease in precision and no

method clearly dominated all others. The performance is

strongly dependent on the thresholds and other rules based

on the disproportionality statistics that define a statistical

signal. However, the different disproportionality statistics

did not themselves influence the achievable performance:

the choice of signal detection algorithm was much more

important than the choice of disproportionality statistic.

Absolute performance of the same algorithm might be very

different between one spontaneous report database and

another but the relative performance of two algorithms was

generally similar in different databases. Over the lifetime

of a product, there is a reduction in precision of any

quantitative signal detection algorithm.

The changes in sensitivity and precision obtainable by

replacing one quantitative signal detection algorithm with

another are predictable. However, the absolute performance

of a method is specific to the spontaneous report database and

is best assessed directly on that database. The limits of per-

formance of the current disproportionality statistics are

similar and new methods, involving substantially different

approaches, may be required to gain appreciable improve-

ments using spontaneous reporting data.

Recommendation Rationale

Computerised text processing to

help in mapping non-standard

descriptions of ADRs to

MedDRA� codes should be

considered both for efficiency

and consistency of coding

practice

The approximate matching

system was used to find

appropriate MedDRA� terms

when non-standard terminology

was used in the SPC. This was

usually successful and also

much more efficient than

human intervention alone [28]

In setting up a database of ADRs,

a programme of maintenance

should be established to reflect

changes to the SPC from

emerging safety issues or

MedDRA� version changes

Around half the ADRs listed in

SPCs are added as a result of

post-authorisation activities and

hence the database will require

continuous attention to keep it

up to date

Consideration should be given to

establishing the value and

feasibility of having direct links

between databases of SPC data

and other product information

sources to prevent the need for

duplicate data sources, or avoid

repetition in the types of data

collected in the different

sources

Lists of product ADRs are

currently maintained by

regulators and by MAHs. These

may conflict either in detail or

in coding conventions. Even

when they agree, it is not

efficient to maintain

independent sources of

identical data

Recommendation Rationale

Choice of a disproportionality

statistic for signal detection

should be primarily based on

ease of implementation,

interpretation and optimisation

of resources

Several disproportionality

statistics are currently used in

data mining spontaneous report

databases. All these can achieve

similar overall performance by

choice of appropriate signal

detection algorithm. Thus,

choice should be based on

criteria other than signal

detection performance. Factors

that might be considered

include the computing

requirements to run the system,

the ease of maintaining and

adapting the system and

whether the operation of the

system can be easily

communicated to non-

statisticians [35]
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2.5 Use of Subgrouping and Stratification

in Disproportionality Analysis

Spontaneous report databases cover a range of products

aimed at diverse medical conditions and used across a

broad range of patient populations. This diversity is

important as, for example, vaccines are given to healthy

subjects, often children who are likely to have fewer

underlying medical conditions and consequently different

reported background adverse events than the main popu-

lation of patients that use other medicines. Many quanti-

tative signal detection algorithms disregard this diversity

and give equal weight to information from all products and

all patients when computing the expected number of

reports for a particular drug-event pair, which may result in

signals either being masked or false associations being

flagged as potential signals. Stratification and subgroup

analyses are generally used in epidemiology to reduce

confounding and highlight effect modification. Both of

these approaches may also have advantages in quantitative

signal detection.

Recommendation Rationale

Consideration should be given to

the choice of signal detection

algorithm used with

disproportionality statistics

because these can have

important effects on

quantitative signal detection

performance

In contrast to the choice of

disproportionality statistic, the

choice of signal detection

algorithm to define a SDR can

provide very different levels of

quantitative signal detection

performance in terms of

sensitivity, precision and time

to signal. Hence, these criteria

must be carefully selected on

the basis of empirical evidence

[35]

For moderate to large

spontaneous report databases,

the relative performance of a

quantitative signal detection

algorithm in one database can

be predicted from research in

other databases

In the PROTECT study, signal

detection algorithms with good

signaling properties (in terms of

sensitivity and positive

predictive value) compared to

other signal detection

algorithms in one spontaneous

report database also had

relatively good signaling

properties in other spontaneous

report databases. The databases

were both regulatory and

company based and ranged in

size from about 500,000 to

5,000,000 reports. Hence,

relative performance in

moderately large databases can

be reliably inferred from

evaluations in other settings

[35]

Absolute performance of the

selected quantitative signal

detection algorithm must be

validated in the target

spontaneous report database

Although the relative

performance of signal detection

algorithms is similar in

different spontaneous report

databases, the absolute

performance characteristics

may vary substantially. Hence,

it is advisable to test the chosen

disproportionality statistic with

a range of signal detection

algorithms within the target

database [35]

Consideration should be given to

the effect of reduced positive

predictive value with time on

the market

There appears to be a reduction

in precision with time and

hence it may be more

productive to put additional

effort into the evaluation of

signals from newer products.

This finding has been validated

excluding ADRs identified

prior to authorisation from the

reference database but further

work is ongoing to characterise

this effect [35]

Recommendation Rationale

Consideration should be given to

carrying out comparisons of

quantitative signal detection

methods across spontaneous

report databases matching at the

drug-event combination level

rather than averaging over all

drug-event combinations

It is possible that some ADRs

may be more easily found in

some databases. This was not

investigated in PROTECT

It would be useful to conduct

research to establish

empirically the best method for

quantitative signal detection in

combination products

Combination products and single

substances are often treated as

unrelated in signal detection

systems; a question remains

whether combining data from

these products will provide

more or less accurate detection

of signals

Consideration should be given to

establishing a framework for

selecting the best quantitative

signal detection algorithm to

suit the organisational goals and

resource available within a

pharmacovigilance group

Our research has shown a

predictable trade-off between

sensitivity and precision as far

as purely quantitative signal

detection algorithms are

concerned. However, the means

of striking the correct balance

between sensitivity and the

concomitant burden of false

positives for a given

organisation requires careful

consideration
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Other published studies have suggested some benefits of

stratified and subgroup analyses but often the analyses

included only a few key covariates or study products, and

were conducted in single databases [36–44]. It is not clear

how generalisable these results are to other spontaneous

report datasets of different sizes and characteristics.

Additionally, to our knowledge a head-to-head comparison

of stratified and subgroup analyses against a reference

standard has not been conducted.

The study of Seabroke et al. [45] investigated the impact

of stratification and subgrouping in signal detection algo-

rithms in spontaneous report databases of different sizes and

characteristics using a range of key covariates (age, gender,

calendar time period, country of origin, vaccines/non-vac-

cines, event seriousness, reporter type and report source).

Signal detection performance was measured against a ref-

erence standard. Disproportionality analyses were con-

ducted using either stratified or subgroup approaches and

compared with an unstratified crude analysis. Stratified and

subgroup analyses calculated disproportionality statistics

within each individual stratum separately. For the stratified

analyses, these were combined into a single value using a

Mantel–Haenszel approach, whereas for subgroup analyses,

a positive signal was counted if any of the individual strata

met the signal criteria. The results were presented as sensi-

tivity and precision (positive predictive value) for each

approach calculated using a reference set of ADRs compiled

from the SPC and company core data sheets as a proxy for

true positives. Additional analyses included investigating the

benefit of combined subgroup/stratified variables and also

investigating the impact of a permutation analysis that used

randomly split strata of equal size to a real variable of interest

and compared the results with those for the real variable.

Whilst the spontaneous report databases employed in

this study included large international, national and

industry datasets, the results may not be generalisable to all

spontaneous report databases, particularly those with a

small volume of reports. The results from this study

showed that subgroup analyses consistently performed

better than stratified analyses in all databases. Subgroup

analyses were also shown to provide clear benefits over

crude analyses for some databases whilst stratified analyses

were not found to increase either sensitivity or precision

beyond that associated with analytical artefacts of the

stratified analysis.

Recommendation Rationale

Subgroup analyses may be

beneficial in routine first-pass

signal detection and should be

considered. Stratified/adjusted

analyses are unlikely to provide

added value

In spontaneous report databases

with over 0.5 million reports

with broad diversity of

products, subgroup analyses

tended to perform better than

stratified/adjusted analyses in

all spontaneous report

databases. Stratified/adjusted

analyses were not found to

increase either sensitivity or

precision beyond random

variation [45]

Subgroup analyses can be

considered beneficial in large

international spontaneous

report databases with over 2

million reports. Smaller

datasets especially those with

reports from only one country

may need to consider a likely

tradeoff between increased

precision with some loss of

sensitivity if subgroup analysis

was to replace a crude or

adjusted analysis

Subgroup analyses within the

larger international datasets

consistently showed benefits in

both precision and sensitivity

over crude analyses for two

disproportionality methods/

thresholds with differing

performance characteristics.

For the smaller spontaneous

report databases, a gain in

precision tended to result in

some loss of sensitivity

particularly for the stricter

disproportionality method/

threshold and for the regulatory

dataset with reports from only

one country [45]

Subgrouping by seriousness of

ADR or routinely excluding

legal cases is unlikely to

provide benefits in signal

detection in terms of increased

sensitivity or precision

Subgrouping by seriousness of

the ADR defined using the IME

lista had little effect on

sensitivity or precision in any

spontaneous report database.

An analysis excluding cases

submitted by lawyers also had

little effect in all spontaneous

report databases apart from the

largest international database,

which showed an increase in

sensitivity and precision when

legal cases are excluded [45]

Subgrouping by gender, reporter

type and 5-yearly time points

may provide modest

improvement in precision in all,

and sensitivity in some,

spontaneous report databases

Subgrouping by gender, reporter

type and 5-yearly time points

showed a modest improvement

in precision for all spontaneous

report databases and improved

sensitivity for larger and

international databases.

Implementation of these

subgroup analyses into routine

signal detection may provide

some benefit [45]

476 A. F. Z. Wisniewski et al.



2.6 Influence of Masking on Disproportionality

Analysis

Disproportionality analysis uses the spontaneous report

database itself as the basis for computing an expected

number of reports on a particular drug and adverse event.

This is based on the assumption that true causal relation-

ships between drugs and events do not influence the overall

reporting rates and that the degree of under- (or over-)

reporting for a given event is approximately the same for

all drugs. In practice, this assumption may be invalid for

some drugs and events in a spontaneous reporting database.

For example, attention to a real or perceived safety issue in

the medical community or in public media may increase

the reporting rate for that drug-event pair to such an extent

that the overall reporting of that event is affected and

potentially masks alerts from other drugs [46–51].

The two studies that made up this PROTECT work

package [49, 50] looked at the impact of masking on dis-

proportionality analysis. An algorithm was used to generate

a masking ratio whereby the masking effect of one drug on

another can be estimated for a specific event and suggests a

simplified version valid under certain conditions. A simu-

lation study was performed that focussed specifically on

comparing differences between the simplified and exact

masking ratio [49]. The impact of different approaches to

treating the reports was also explored, including both the

suspected masking drug and the suspected masked drug as

concomitant medicines. In a follow-on study, the extent

and impact of masking was studied in two spontaneous

Recommendation Rationale

Subgrouping by age, country or

continent of origin, or a

combination of these variables,

may confer improved precision

in all and enhanced sensitivity

in some spontaneous report

databases

Subgrouping by age, country of

origin, continent of origin and a

combination of these variables

showed the highest

improvement of precision in all

spontaneous report databases

and sensitivity in the larger

databases. Implementation of

these subgroup analyses may be

beneficial in optimising

quantitative signal detection

[45]

Subgrouping by vaccines/non-

vaccines should not be

implemented without careful

consideration of the desired

effect

Subgrouping by vaccines/non-

vaccines resulted in a decrease

in both precision and sensitivity

in all spontaneous report

databases. This was almost

exclusively driven by the

vaccines subgroup. These

effects were owing to the

suppression of listed vaccine

ADRs as a result of comparing

vaccines to each other. This

may be desirable for certain

reactions e.g. injection-site

reactions but undesirable for

other more serious reactions

e.g. Guillian–Barre syndrome

[45]

Where subgrouping by variables

with considerable missing data

(e.g. age, gender) is undertaken,

consideration should be given

to including a stratum for

unknown rather than excluding

these cases

Including missing data in the

subgroup analyses for age and

gender increased sensitivity in

all spontaneous report

databases but tended to also

decrease precision. In

spontaneous report databases

with higher levels of missing

data (20? %) the increase in

sensitivity was greater than the

decrease in precision [45]

Subgrouping with a threshold

based on number of reports

may benefit from basing the

threshold on the entire drug-

event combination rather than

within each individual stratum

Results for subgroup analyses

that used an overall threshold of

n applied to the whole drug

event combination showed

large increases in sensitivity but

with loss of precision. Further

validation would be needed

within each organisation to

ascertain whether this approach

is sustainable in respect of

resources available to evaluate

an increased number of false

positives [45]

Recommendation Rationale

Future research should evaluate

the use of subgroup analysis in

parallel with crude and/or

adjusted analysis

Results for subgroup analyses that

used an overall threshold of

n applied to the whole drug event

combination showed large

increases in sensitivity but with

loss of precision. Further

validation would be needed

within each organisation to

ascertain whether this approach

is sustainable in respect of

resources available to evaluate

an increased number of false

positives [39]

a The EMA Important Medical Event Terms (IME) list (https://

eudravigilance.ema.europa.eu/human/textforIME.asp)
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reporting data sets: EudraVigilance and Pfizer’s sponta-

neous report database [50]. The latter evaluated the impact

of removing from the analysis for each ADR the drug with

the highest masking ratio. It was found that the drugs

inducing the highest masking effects tended to be those that

are known to cause the ADR in question. Under the con-

ditions of the study (assuming that each ADR is masked by

exactly one drug), it was rare that the unmasking analysis

affected whether a drug-event pair was considered to be

disproportionally reported or not. However, it is important

to note that the drug-event pairs affected in this way pri-

marily involved rarely reported ADRs.

2.7 Drug–Drug Interaction Detection

Adverse drug–drug interactions (DDIs) harm large num-

bers of patients every year. Not all DDIs are known when

new medicines are made available to the general public,

but individual case reports may enable post-marketing

detection. Earlier studies have indicated that statistical

measures for DDIs that use additive baseline models per-

form better than those that use multiplicative baseline

models [52, 53] but no broad evaluation has been reported

in the literature. A study was conducted to compare the

sensitivity and specificity of different statistical measures

for ADR detection against established and emerging

adverse DDIs, respectively.

Analyses were performed in VigiBase where four sta-

tistical measures for DDI detection were evaluated: one

based on regression with a multiplicative baseline model

[53], one based on regression with an additive baseline

model [53], one shrinkage disproportionality statistic with

a multiplicative baseline model [52] and one shrinkage

disproportionality statistic with an additive baseline model

[52]. The reference set for known interactions consisted of

74 established DDIs and 29 pairs of drugs with an ADR for

which there was no empirical support for a DDI. The ref-

erence set for emerging DDIs included 324 adverse drug

interactions added to Stockley’s Interaction Alerts between

2007 and 2009, and 324 9 20 combinations with two

drugs that were not listed together as known to interact in

the same reference, in 2009. The majority of the ADRs

were investigated at the Meddra PT level.

The study was limited to statistical interaction measures,

whereas recent research has suggested that predictive

models accounting for multiple aspects of strength of evi-

dence may perform even better [54]. The algebra of the

Recommendation Rationale

Quantification of the masking

effect of drugs on adverse

reactions or adverse reactions

on drugs could be used as a

diagnostic tool of the extent of

masking at two levels:

For determining, based on the

general characteristics of a

spontaneous report database, if

the application of an unmasking

algorithm would be worthwhile

At the product-event pair level,

if a specific concern is raised

about a potential masking effect

driven by another product or

another group of products

Results indicate that many drugs

and adverse reactions are not

affected by masking. Avoid

complicating the analysis of data

by adding an unmasking

procedure when masking is not

an issue. Formulas for assessing

the effect of masking can be

found in papers by Maignen et al.

[49, 50]. As the characteristics of

the spontaneous report database

change over time, it is still

interesting to monitor the extent

of masking periodically. During

signal evaluation, some

evaluation of the masking effect

could be performed at the level of

the product-event pair [49, 50]

If the masking effect of drugs on

adverse reactions or adverse

reactions on drugs is

substantial, applying an

unmasking algorithm should be

considered

Reducing the effect of masking

can increase the sensitivity of

quantitative signal detection

and, in principle, result in

earlier identification of new

drug-event associations [49, 50]

If false negatives are a major

concern, unmasking of drugs

and/or adverse reactions can be

used in parallel with standard

disproportionality analysis to

improve sensitivity and

timeliness but this benefit must

be balanced against the cost in

increased evaluation of false

positives

If unmasking and standard

disproportionality analyses are

used in parallel, sensitivity will

be equal to or higher than that

of standard disproportionality

analysis alone, but parallel

analyses of the data also

increase the false-positive rate,

from spurious associations

[49, 50]

Future research should explore

the effectiveness of unmasking

in terms of true/false positives

revealed by an algorithm

In the absence of public health

evidence from prospective

studies on the benefits of

removing the masking (or

situations in which unmasking

could be beneficial), the use of

a particular algorithm should be

directed by the rate of true

signals/false positives revealed

by the removal of the

unmasking effect [49, 50]

continued

Recommendation Rationale

Future research should compare

disproportionality-based

approaches for unmasking to

other statistical approaches

(e.g. logistic regression models)

that could also be used to

account for masking effects

This was outside of the scope of

the PROTECT studies and

there appears to be no

published research on this topic

The use of simple unmasking

algorithms as a means of

reducing computation

complexity and improving

transparency should be

explored in a future study

Results indicate that the

performance of the simplified

methods is comparable to that

of more complex methods

while the computational

complexity is reduced and

transparency improved, but

further research is needed to

fully explore this on datasets

with different properties

[49, 50]
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statistical interaction measures is such that additive models

impart superior sensitivity regarding the detection of DDIs

compared with multiplicative measures, at any given value

for the threshold. However, the additive models used in this

study also demonstrated better specificity compared with

the multiplicative models. Thus, statistical interaction

measures with additive baseline models outperformed

those with multiplicative baseline models for both estab-

lished and emerging adverse DDIs. However, given the

small number of cases attributed to the interacting drugs

together, both models gave low sensitivity (\20 %) for

emerging adverse DDIs, at conventional signalling criteria.

Recommendation Rationale

Statistical interaction measures

with additive baseline models

should be preferred over those

with multiplicative baseline

models for detecting signals of

DDIs in spontaneous report

databases

Statistical interaction measures

with additive baseline models

provided better sensitivity and

equal or better specificity for

both established and emerging

DDIs [55]

Future research should explore

how statistical interaction

measures with additive baseline

models can best be

incorporated in broader

predictive models of adverse

drug interactions, and in routine

signal detection

This was out of scope for the

PROTECT study, but recent

research has found that

predictive models accounting

for multiple aspects of strength

of evidence perform better than

statistical measure of

interaction alone [54]

2.8 Duplicate Detection

Individual case reports of suspected harm from medicines

are fundamental for signal detection in post-marketing

surveillance. Their effective analysis requires reliable data

and one challenge is report duplication. These occur when

multiple unlinked records are recorded describing the same

suspected ADR in a particular patient. Report duplication is

known to occur for a diverse range of reasons, including

reporting of an ADR from multiple primary sources,

requirements for marketing authorisation holder reporting

of literature cases (and subsequent retransmission), and

technical or administrative issues [56]. De-duplication of

data is also widely understood to be a time-consuming

process; however, little research had been undertaken prior

to PROTECT on the efficiency of different de-duplication

methodologies. Duplicate ICSRs are known to distort sta-

tistical screening [56] both increasing the numbers of false-

positive and false-negative signals. The net effect of

duplicates (and de-duplication techniques) is unknown, and

may not be consistent across all products in the database;

however, where there is a significant impact there is

potential for the cases to mislead clinical assessment.

Many organisations rely on rule-based duplicate detec-

tion methods, which rely on exact matching of a number of

elements within individual case safety reports and dis-

playing the putative duplicate cases for review. Rule-based

approaches can vary significantly in their complexity and

based on the fields used, and may consider patient, reporter,

drug or reaction details, or a combination of them. The

study compared methods [57] used in the UK, Denmark

and Spain. The UMC had previously published a proba-

bilistic record matching algorithm that indicates the like-

lihood of cases being duplicates (vigiMatch [58]) as an

alternative to rule-based approaches. The PROTECT study

attempted to quantify the benefits (or disbenefits) of the

different approaches used by PROTECT consortium

members.

A first phase of the study aimed to evaluate probabilistic

record matching for duplicate detection compared with

rule-based approaches. Studies considered positive pre-

dictive value and numbers of false positives of different

approaches, and in addition attempted to characterise the

main causes of duplication. Initial research was undertaken

using the WHO Global Individual Case Safety Reports

Database, VigiBase, for reports submitted between 2000

and 2010. Suspected duplicates for the UK, Denmark, and

Spain were reviewed and classified by the respective

national centre. This included evaluation to determine

whether confirmed duplicates had already been identified

by in-house rule-based screening. A second phase of the

study directly compared results from the MHRA’s rule

based approach to the UMC’s probabilistic record match-

ing approach using data received in the MHRA’s Sentinel

database during 2013.

Probabilistic record matching performed positively

when compared with rule-based approaches. Specifically,

probabilistic record matching demonstrated a high predic-

tive value above that of rule-based methods and is expected

to improve efficiency and accuracy of duplicate manage-

ment. The study showed very few false positives suggest-

ing it may be possible to increase sensitivity while ensuring

false-positive rates are kept at a reasonable level. The study

[57] highlighted that case management system changes or

upgrades can occasionally result in large numbers of

duplicates, either in the source system, or those external to

the organisation. It was also noted that proliferation of

duplicated cases within databases occurred as a result of

rapid submission and re-transmission of cases to multiple

stakeholders made possible by electronic systems. This

emphasises the need for swift and robust duplicate detec-

tion procedures at each organisation. Data privacy

requirements were noted as a barrier to the most effective
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duplicate detection and it was considered that approaches

to deidentifying data (for example, scrambling dates and

patient initials) in a way that permits duplicate detection

should be pursued to allow for effective duplicate detection

in databases that pool reports from different sources.

Although beyond the scope of the PROTECT study,

further evaluation should be undertaken to understand the

feasibility and impact of automatic exclusion of potential

duplicates from quantitative signal detection algorithms.

Such an approach may help ensure independence of

reports, which is a fundamental assumption underlying the

computation of confidence intervals for all disproportion-

ality statistics; however, it equally may remove clusters of

reports from the same reporter that may be important for

patient safety. A better understanding of the reasons for

related cases that are not considered duplicates, and their

scientific implications for signal detection will help deter-

mine if this is a viable approach.

2.9 Relationship Between Disproportionality

Measures (i.e. PRR) and Risk Estimates

Spontaneous reports are only submitted when a patient

exposed to a medicine experiences a suspected ADR and

the reporter decides to report the case. It is difficult to

determine the extent to which the numbers of these

reports may help to reflect a measure of association of

adverse outcomes in the drug-exposed population. Thus,

the quantitative data in spontaneous reporting systems,

while being useful in detecting new signals of drug-

event associations, are not easily interpretable in terms

of clinical impact. Nevertheless, quantitative signal

detection systems consider threshold levels for dispro-

portionality measures and therefore higher values of

disproportionality statistics are one of the factors that

influence the decision to investigate particular drug-

event combinations. Hence, it makes sense to ask whe-

ther there is a direct relationship between the magnitude

of disproportionality statistics and the magnitude of the

association between a product and an adverse effect

from pharmacoepidemiological studies.

A study was conducted to determine the proportional

reporting ratios (PRRs) for a set of known ADRs and

compare them with estimates of association from formal

epidemiological studies [59]. A set of 15 confirmed

ADRs were selected from the initially identified dataset

of pharmacovigilance driven European Union regulatory

actions and for which relative risk estimates from formal

studies were available and were considered to provide

Recommendation Rationale

Probabilistic record matching

should be considered as an

alternative to rule-based

methods for duplicate detection

in pharmacovigilance

Probabilistic record matching

demonstrated a high predictive

value above that of rule-based

methods in our study, and is

expected to improve efficiency

and accuracy of duplicate

management [57]

Care should be taken to avoid

case duplication during system

changes/upgrades, considering

both internal aspects and case

transmission to external

organisations

Our study showed that such

changes on occasion resulted in

very large numbers of

duplicates [57]

Rapid electronic re-transmission

of spontaneous adverse drug

reaction reports between

databases can increase the

number of duplicates to the

extent that disproportionality

statistics are are significantly

affected, emphasising the need

for swift and robust duplicate

detection and management

processes in databases that

employ electronic data

exchange

There are a large number of

duplicates in spontaneous

reporting databases, which are

shown to affect quantitative

signal detection scores. Rapid

transmission of cases by

electronic systems exacerbates

this issue, meaning that

accurate (and ideally, non-

burdensome) duplicate

detection processes are required

to mitigate this unwanted

impact on disproportionality

statistics [57]

Further work should be

undertaken to explore lowering

the threshold for the tested

probabilistic record matching

method and methods in general

to evaluate the balance of false

positives and negatives

Our study showed very few false

positives, so it should be

possible to increase sensitivity

while ensuring false positive

rates are kept at a reasonable

level [57]

Recommendation Rationale

Further evaluation should be

done to understand the impact

of automatic exclusion of

potential duplicates from

quantitative signal detection

algorithms

This was beyond the scope of the

PROTECT study. If this

approach proved successful

manual duplicate detection

activities could be eliminated

resulting in time/resource

savings [57]

Approaches to deidentifiying data

(for example, scrambling dates

and patient initials) in a way

that permits duplicate detection

should be pursued to allow for

effective duplicate detection in

databases that pool reports from

different sources

This will reduce the negative

impact of data privacy laws, for

duplicate detection in

international databases [57]
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well-established evidence supporting the respective reg-

ulatory actions. Prior to any calculation of PRR, the

studies were collated and a best estimate of the risk ratio

selected on the basis of pre-specified rules. When

available, this estimate was that determined during the

European Union regulatory assessment. At the same

time, an estimate was made of the date at which each

ADR was first publicly recognised.

Only after the risk ratio was decided upon was the

PRR calculated by reconstruction of the spontaneous

reporting data system at the predetermined date of first

recognition in the medical community of the ADR. The

primary analysis used the EudraVigilance spontaneous

report database and an additional analysis was carried

out in FEDRA, the Spanish national spontaneous report

database. Case definitions for the ADR of interest were

developed for PRR calculations for each drug-event pair,

aiming to reproduce the case definition as used in the

epidemiological studies providing relative risks. An ini-

tial dataset of 78 drug-event pairs was obtained follow-

ing the initial inclusion criteria. Following the exclusion

criteria, 15 drug-event pairs were finally selected. The

pairs include 13 different ADRs and 14 different drug-

s/classes. Four of the ADRs represented class effects.

Four topics were related to outcomes of safety referrals

concluding in a CHMP Opinion and 11 were recom-

mendations from the Pharmacovigilance Working Party

to CHMP or to National Competent Authorities. Eleven

of 15 drugs were non-centrally authorised medicines and

four were centrally authorised in the EU.

An orthogonal regression model showed a significant

association between relative risks and PRRs. This sug-

gests that, in some cases, there is a relationship between

the PRR calculated immediately prior to first awareness

of the safety topic and estimates of relative risk taken

from published epidemiological studies, where the signal

turned out to be confirmed. It is noted that no validation

of the model has been performed and that despite the

good correlation shown between RRs and PRRs in this

exercise, it is emphasised that PRR cannot replace RR.

Thus, calculation of PRRs from spontaneous reporting

databases should not replace nor delay the performance

of formal epidemiological studies but could however be

an indicator of the likely clinical importance of the

adverse reaction, should the signal be confirmed subse-

quently [60].

Recommendation Rationale

It may be possible to use the PRR

at the early phase of the

analysis of a new safety signal

as an indicator of the likely

strength of the association,

should the signal be confirmed

The PRR observed before general

awareness of an ADR shows a

good correlation with the

strength of the association in

terms of relative risk or odds

ratios later established by

controlled studies. However,

the PRR is not a direct

estimator of the risk ratio and

should be considered only in

the absence of any more

reliable evidence. The caveat

‘should the signal turn out to be

confirmed’ must be observed.

The study analysis does not

compare the distribution of

PRR values for ‘true’ and

‘false’ signals of

disproportionate reporting and

no inference can be made about

whether the initial magnitude of

PRR gives information about

the nature of the association

(causal or otherwise) [59]

Following the initial detection of

a signal of a specific drug-event

association, PRR values based

on clinical definitions of the

adverse event may serve to

provide an estimate of the

likely size of clinical effect and

be included among the criteria

for initial prioritisation of its

assessment

This study shows that, at least in

this selected set of study cases,

the underlying relative risk

seemed to influence both the

direction and magnitude of the

PRR calculated with a similar

case definition of the adverse

event. Because the study

sample comprises drug-event

associations confirmed

following assessments of

diverse data sources and signal

detection systems, the results

may be applicable to PRRs

calculated following both

quantitative and traditional

signal detection approaches

[59, 60]

Consideration should be given to

repeating these analyses in

other ADR datasets to see

whether they can be replicated

and, if they can be, to establish

the relevant scale factor

PRR values generated in different

ADR datasets are unlikely to be

the same. Other IMI PROTECT

research has focussed on the

performance of

disproportionally statistics and

of different signalling

algorithms in different ADR

datasets. However, to date no

attention has been paid to

describe and explain

differences in the calculated

PRR values in different datasets
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2.10 Signal Detection in Longitudinal Observational

Data

Post-marketing surveillance aims to identify and charac-

terise risks of medicines. At present, signal detection is

predominantly based on individual case reports, but the use

of electronic health records and insurance claims to detect

ADRs is an area of active research [61–64]. While some

work has focussed on traditional sequential approaches and

looking to use them for signal detection, new methods have

also been adapted or proposed [65–68]. Other publications

have highlighted the challenges and limitations of using

longitudinal observational data for signal detection [69, 70].

The objectives of the three studies that made up this

PROTECT work package were (1) to better characterise the

opportunities and challenges for prospective signal detection

in longitudinal electronic health data, including the devel-

opment and evaluation of a process for the structured

assessment of potential safety signals from electronic health

records; (2) a comparison between exploratory and confir-

matory analyses of longitudinal electronic health data and;

(3) a performance evaluation of quantitative signal detection

in longitudinal electronic health data and individual case

reports, respectively, for emerging safety signals. All anal-

yses were performed in The Health Improvement Network

(THIN4) database of longitudinal electronic health records

from general practices in the UK.

The comparison between exploratory and confirmatory

analysis was based on 13 published studies of possible ADRs

in THIN [71]. The selected studies listed a total of 56 drug-

event pairs that were included in the analysis. For each pair,

the analysis results of the study (positive or negative) were

compared with those that would result from analysis with

standard design choices for a calibrated self-controlled

cohort analysis in THIN. Observed differences were closely

scrutinised to identify areas of possible improvement for the

standard implementation of the design, for exploratory

analysis. In our comparison to published epidemiological

studies, a common discrepancy was that the epidemiological

study performed analysis for all drugs in a class together and/

or for a number of related medical events together, which

improves power. However, our detailed review often found

substantial and important differences among different drugs

in the same class or among different medical events in the

same category. Clearly, more research is needed to minimise

terminological obstacles for exploratory analysis of longi-

tudinal data, as well as across the different data streams [70].

None of the false positives were considered to represent a

chance association: all were considered to be the result of

systematic variability.

For prospective identification of potential signals in

electronic health records [72], a questionnaire for struc-

tured assessment was designed and iteratively refined

through pilot testing. It covered aspects such as the nature

of the temporal pattern, the presence of co-medications

associated with the medical event, the likelihood of con-

founding by underlying disease, and other alternative

explanations for observed temporal associations. In real-

world use, its purpose would be to provide analysis and

decision support for potential signals identified through

prospective and open-ended screening of longitudinal

electronic health data. For the purpose of the study, drug-

event pairs temporally associated according to a calibrated

self-controlled cohort analysis in THIN were randomly

selected for review. Six assessors trained in pharmacovig-

ilance and/or epidemiology participated in the main study

and each evaluated up to 20 temporally associated medical

events per drug, for seven randomly selected drugs [72].

Our analysis highlighted a number of potential safety sig-

nals in electronic health records that merit further review.

These range from life threatening to those that are less

serious, but important for patients and for adherence.

However, three out of four temporal associations identified

in the initial screen could be dismissed from further eval-

uation after the initial review. In other words: without a

review, the majority of the highlighted associations would

have been false positives. A minority of the dismissed

associations were considered to be owing to random vari-

ability; most were the result of biases and other systematic

effects [72].

Recommendation Rationale

Consideration should be given to

further exploring whether PRRs

adjusted by subgroup variables

improves the correlation with

measures of association from

studies

The findings from an IMI

PROTECT study on sub-

grouping and stratification [45]

suggest that subgrouping may

be a useful strategy to try to

improve the correlation

between the PRR and the

estimates of risk from studies

Consideration should be given to

exploring whether PRRs

calculated for single

MedDRA� PTs as is in

EudraVigilance monitoring

behave in the same way as the

clinically defined case

definitions in terms of

correlation with measures of

association from studies

The medical concepts used in the

studies to derive the estimates

of relative risk often described

broader medical concepts than

the MedDRA� PT level used in

EudraVigilance for the PRR

screening analysis (see also

Recommendations in relation to

Timeliness of Quantitative

Signal Detection using

MedDRA� Terms and

Groupings)

4 THIN is an electronic medical record data resource including over

12 million individual patients from the UK, with over 3.8 million

currently active patients. The electronic medical records are collected

from general practices in primary care (http://www.ncbi.nlm.nih.gov/

pubmed/22828580).

.
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The performance evaluation of quantitative signal

detection in longitudinal electronic health data and sponta-

neous reports was based on a reference set of 264 historical

safety signals derived from a previously published study

[11], and 5280 negative controls. The literature is very sparse

on such comparisons. One example is from Trifirò et al. [73],

who as part of the EU-ADR (European Commission spon-

sored project ‘Exploring and Understanding Adverse Drug

Reactions by integrative mining of clinical records and

biomedical knowledge’), looked at the number of drug-event

combinations that were highlighted as disproportional in

each of the data sources. Analyses were performed in THIN

and VigiBase, each backdated to the end of 2004, to match

approximately the time of the historical signals. The analysis

in VigiBase was repeated with a restriction to reports origi-

nating only from the UK. The retrospective evaluation

against historical safety signals for European centrally

authorised products showed that none of them could be

detected in THIN with the method we used, prior to the initial

signal at the EMA. In many cases, this was because of the

drug not being available on the UK market at the time, or the

drug or medical event not being reliably captured in primary

care. In contrast, some of the positive controls could be

detected in VigiBase, even when we restricted the analysis to

individual case reports originating from the UK.

Recommendation Rationale

Longitudinal observational data

should be further explored as a

complement to signal detection

using individual case reports

but cannot currently replace

individual case reports for this

purpose

Individual case reports of

suspected harm from medicines

have a proven value for safety

signal detection. However, they

are not optimal for detecting

increased rates of multifactorial

adverse drug reactions with high

background incidence.

Longitudinal observational data

provide the basis for

epidemiological evaluation of

such associations and should in

principle enable their initial

identification. However, we lack

evidence to suggest that signal

detection in longitudinal

observational data can match

the performance of signal

detection in individual case

reports for all drugs and medical

events. In our evaluation of

historical safety signals from the

EMA, none of the positive

controls could be detected in the

THIN database at an early stage,

whereas this was possible in

VigiBase for some of the

signals, even when we

considered only the subset of

the UK individual case reports

[72]

Recommendation Rationale

Safety signal detection in

longitudinal observational data

should include clinical,

pharmacological and

epidemiological review of

identified temporal associations

Clinical review of statistical

signals is fundamental in

evaluating signals arising from

spontaneous report databases.

In our study of structured

assessment for prospective

identification on safety signals

in electronic health records,

three out of four temporal

associations identified in the

initial screen could be

dismissed from further

evaluation after initial review.

Without review, the majority of

the highlighted associations

would have been false positives

[72]

To the extent possible, temporal

associations detected in

longitudinal observational data

should be further explored with

statistical graphical methods

In our prospective identification

study, in-depth review of the

chronograph temporal patterns

proved a valuable component

of the expert review. Univariate

measures of temporal

association may over-simplify

or obscure the underlying

patterns in such rich, complex

and often long records [72]

Safety signal detection in

longitudinal observational data

should account for limitations

of the underlying data and take

measures to ensure appropriate

interpretation. In selecting the

data set for analysis, one should

account for both its size and

scope (which drugs and

diagnoses it captures) and for

the fact that effective review of

identified temporal associations

requires expert knowledge of

the underlying data, which is

particularly relevant for large

heterogeneous data sets

Our retrospective evaluation

against historical safety signals

for European centrally

authorised products showed

that none of them could be

detected in THIN with the

method we used, prior to the

initial signal at the EMA. In

many cases (to be further

specified once we have the

data), this was because of the

drug not being available on the

UK market at the time, or the

drug or medical event not being

reliably captured in primary

care

Future research should explore

the relative merits of

performing safety signal

detection in longitudinal

observational data for groups of

medicinal products and medical

events, instead of or in parallel

with that of individual products

and events

In our comparison to published

epidemiological studies, a

common discrepancy was that

they performed analysis for all

drugs in a class together and/or

for a number of related medical

events together, which

improves power. However, our

detailed review often found

substantial and important

differences among different

drugs in the same class or

among different medical events

in the same category.
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2.11 Signal Detection in Clinical Study Data

In the pre-approval phase of a drug, systematically col-

lected adverse event data from randomised clinical trials

are the principal data source and therefore the cornerstone

of safety analysis. Specifically, clinical trial data allow the

estimation of exposure, which is one of the limitations of

spontaneous reporting datasets [7]. In addition, randomi-

sation itself is a powerful feature of randomised controlled

trials that addresses the issue of confounding, which

otherwise complicates attempts to identify imbalances in

the incidence of adverse events between the treated and

untreated subjects in data from non-randomised sources.

Because of this, clinical trial data form a natural source for

signal detection, especially in the early phase of a drug’s

lifecycle.

Two different types of analyses performed in company

clinical trial databases are presented: in the first, the use of

extreme value modelling for the prediction of potential

drug toxicity was evaluated; in the second, different

approaches for dealing with multiplicity issues for adverse

event-based signal detection were compared.

It is often the case that potential drug toxicity is sug-

gested by the occurrence of extreme values of clinical

variables, rather than changes in the location of the dis-

tribution of these variables. For example, large values of

serum creatinine and blood urea nitrogen are used in the

diagnosis of acute renal failure, large values of the QT

interval are suggestive of cardiotoxicity and large values of

alanine aminotransferase suggest hepatotoxicity. Many

other examples of abnormally large (or small) values of

laboratory variables being indicative of safety issues can be

found in the Common Terminology Criteria guidelines,5

and, in general, any laboratory values that fall above the

upper limit of normal or beneath the lower limit of normal

may be indicative of a potential safety issue. Often,

extreme values are poorly predicted by an analysis that

focuses on the central features of the distribution. There-

fore, analyses of means or medians tend to be uninforma-

tive. Extreme value modelling might therefore provide a

novel approach to the prediction of drug toxicity early on

during drug development.

A retrospective analysis of phase II data using extreme

value modelling was conducted for ximelagatran [74], a

compound that was denied marketing approval in the USA

and was withdrawn from those markets in which it had

been approved because of concerns over potential liver

toxicity. The analysis showed that the phase II data were

predictive of the phase III results and, had the methods

been available at the time, such analyses would have

provided valuable information relating to the decision to

proceed with further development of the compound.

One important characteristic of signal detection in

clinical trials as well as in other databases is a focus on the

evaluation of a large number of endpoints. Analyses of

adverse event data typically generates multiple risk mea-

surement estimates associated with events across several

body systems. Selection of outcomes for further evaluation

by conventional hypothesis testing of between-group dif-

ferences for each endpoint can be problematic. Ignoring the

fact that the data determine the hypotheses that are tested,

by using a process that involves a large number of com-

parisons across multiple analysis time points multiplicity

becomes an issue. Acknowledging P-values as a useful

flagging device, ICH E9 recommends statistical adjust-

ments for multiplicity when applying hypothesis tests to a

large number of safety variables in clinical trial data.

However, probably owing to the concern of missing true

safety signals (i.e. false-negative signals), multiplicity

adjustment has also been described as counterproductive

and again probably because of these and similar reserva-

tions, adjustments are often avoided, despite the fact that

ignoring multiplicity may easily result in an excessive rate

of false-positive signals. The EudraVigilance Expert

Working Group notes that thresholds commonly used to

detect signals in spontaneous data are a trade-off between

two conflicting goals: ‘‘either generating too many false

positive signals if the threshold is too low or missing true

signals if this threshold is too high’’. Given this trade-off, it

is important to identify and calibrate methods to strike a

reasonable balance between these two parameters.

The objective of this study [75] was to investigate dif-

ferent approaches to address multiplicity for the use of

signal detection methods to select ADR candidates in

clinical trial data. The aim was to identify the best per-

forming method that maximises the proportion of correct

signals (i.e. the positive predictive value) as compared with

the CDS as the gold standard. In addition, the use of dif-

ferent MedDRA� levels for signal detection reflects the

importance of considering the MedDRA� hierarchy for

signal generation (see above, ‘Timeliness of Quantitative

Signal Detection using MedDRA� Terms and Groupings’).

In addition to basing the analyses on the PT as the smallest

unit of analysis, the use of available company-specific

grouping of PTs developed specifically for the purpose of

labelling so-called medical labelling groupings was

evaluated.

As expected, the ability for ADR detection was highly

influenced by ADR frequency. In general, all model types

that took multiplicity into consideration proved appropriate

for the detection of signals. The Bayesian hierarchical

model that can make use of the hierarchy, thereby bor-

rowing strength, performed best among the quantitative

5 Common Terminology Criteria for Adverse Events, US National

Cancer Institute (http://ctep.cancer.gov/).
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signal detection methods, especially with regard to time to

signal. In our analysis, the use of medical labelling

groupings did slightly improve the performance of quan-

titative signal detection algorithms.

In summary, taking multiplicity into consideration

resulted in lower rates of false-positive signals. The hier-

archical Bayes and double-FDR, which also account for the

hierarchical structure of the underlying medical terminol-

ogy dictionary, demonstrated the best performance in the

investigated setting. Considering the good positive pre-

dictive value while providing similar sensitivity, these

methods can provide an alternative to the often-used

unadjusted analysis for identifying or flagging potential

imbalances between treatment arms and as such could be

used in the detection of ADR candidates. However,

selection of the most appropriate methods must consider

the size of the clinical trial database and computational

requirements.

3 Discussion

These recommendations are presented to highlight the

outcomes of the research conducted under the auspices of

IMI PROTECT Work Package 3 and in such a way that

pharmacovigilance professionals, particularly those with an

interest in research and methods development can readily

adopt appropriate potential improvements in their quanti-

tative signal detection practices. They should not be con-

sidered a comprehensive treatise on the subject of

quantitative signal detection but should be considered by

Recommendation Rationale

If prior knowledge suggests data

from a particular organ system

should be monitored, consider

extreme value modelling on

data arising from each trial for

the compound of interest. For

example, if preclinical data

suggested a potential liver

issue, prepare to model ALT; if

another compound in the class

showed kidney signals, prepare

to model creatinine

Extreme-value modelling has

been demonstrated, in various

examples, to provide useful

predictions of drug toxicities

from early-phase data. If it is

possible to pre-specify the

modelling and prediction

exercise, the results have

greater credibility than if they

are data driven, and resources

can be allocated up front to

ensure the work is done to

appropriate deadlines [74, 76]

Some analyses will be data

driven, suggested by observed

extremes in the data. These

could also be subjected to

extreme value modelling and

the statistical evidence thus

acquired interpreted in context

Not all potential safety issues are

known in advance, so some

analyses are necessarily data

driven. It is inappropriate to

consider such analysis

illegitimate or to yield

unreliable results provided they

are interpreted in context.

Statistical inference is only one

part of the larger process of

scientific inference [74]

Extreme value modelling can

commence as early as phase I;

however, in most cases, phase

II data need to be available for

reliable inferences to be made

Experience suggests that phase I

data may be sufficient for

extreme value modelling to

identify toxicity, but that

sometimes the sample sizes are

too small. Modelling and

prediction have the most value

to add when the volume of

available data is low, so such

exercises should be

commenced as soon as possible

[74]

Recommendation Rationale

Properly trained, Independent

Data Monitoring Committees

or Safety Review Boards are

likely to benefit from extreme

value modelling of unblinded

data

When an IDMC exists, there are

sometimes reasons for

additional monitoring. It

follows that applying proven

methodology to emerging data

will provide the best chance of

identifying and characterising

the safety issue as soon as

possible [74]

When extreme value modelling

does not find evidence of a

safety signal in studies of short

duration, extrapolation beyond

observed durations of exposure

is discouraged

It is reasonable to expect that

some toxic effects of drugs will

not manifest themselves until

several weeks or months of

exposure have occurred. If

extreme values are not

observed at relevant doses in

short trials, proceed with

caution, acknowledging that

they could occur after longer

durations of exposure

Multiplicity adjustment provides

a useful tool to improve the

positive predictive value in

signal detection in clinical trial

data. The use of multiplicity

adjustment needs to be

evaluated against the size of the

available clinical trial database

The ability for ADR detection is

highly influenced by ADR

frequency in the source dataset.

Thus, database size and event

reporting frequency must be

taken into consideration when

the use of multiplicity

adjustments for ADR candidate

selection is considered [75]

The use of Bayesian Hierarchical

Models can improve the

efficiency of signal detection

through borrowing of strength

from other relevant events in

the clinical trial dataset. This

must be weighed against the

more complex computational

requirements of Bayesian

modelling

Bayesian Hierarchical Models

provided the best performance

with regard to positive

predictive value, specificity,

sensitivity and negative

predictive value, mainly owing

to their ability to ‘‘borrow

strength’’ across similar terms

[75]

The use of more specific

MedDRA� groupings can

further improve signal

detection in clinical trial data

The use of narrow-term

groupings for analysis provided

slightly better results for signal

detection compared with the

analysis based on MedDRA�

PTs alone [75]
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readers within the context of the entire body of signal

detection research and guidance documents that exist on

good signal detection practice [7, 77] outside of IMI

PROTECT. For example, PROTECT’s focus on quantita-

tive signal detection methods means that recommendations

relating to the relative merits of quantitative vs. qualitative

signal detection methods cannot be made and pharma-

covigilance organisations are likely to have to continue

with both approaches to maintain an optimal signal

detection capability. Although a broad cross-section of

databases [78] and data sources were employed in the work

package, the generalisability of recommendations to other

databases and data sources should be considered carefully

before implementing them, particularly in databases of

adverse event reports smaller than those used in this

project.

An important strength of PROTECT’s signal detection

research was the execution of standardised analysis pro-

tocols across multiple spontaneous reporting datasets [35,

45]. Several of these studies compared the databases of

pharmaceutical companies, national regulatory authorities,

and international organisations, such as the EMAgency and

the WHO.

PROTECT found no overall benefit in conducting signal

detection using MedDRA� HLTs or SMQs compared with

using individual PTs [9]. Some relatively minor gain in

time to signalling was seen when closely related (in a

clinical sense) ADR terms were grouped together, an area

for potential future research. This is compatible with an

earlier study of the US FDA Adverse Event Reporting

System, which found that analysis at the level of HLTs or

SMQs decreased sensitivity but increased specificity. Its

reference dataset were drug-event combinations with some

degree of support in the literature that were not on the

original drug label, but it did not consider timeliness [8].

PROTECT showed that knowledge engineering techniques

can be used to derive novel groupings of adverse event

terms dynamically based on the relevant semantic dimen-

sions for a specific topic of interest, although no net

improvement in signal detection performance was seen in

these studies [16, 17]. It is interesting to speculate whether

it may be possible to go beyond this restricted example and

generate alternatives to the standard groupings available in

existing adverse event terminologies, such as MedDRA�

HLTs or SMQs.

One of the tangible outcomes of PROTECT work

package 3 is the structured database of MedDRA� coded

ADR information taken from section 4.8 of the SPC for all

products authorised in Europe through the centrally

authorised procedure [25]. This database is publically

available on the EMA website and is maintained. It reduces

the need for manual inspection of SPCs when the focus of

safety monitoring is detection of new risks. Its use has

already been tested and implemented into signal detection

processes at the EMA and the UMC.

In a broad study across spontaneous report databases,

PROTECT showed that the choice of signal detection

algorithm (e.g. threshold on the number of reports, the

threshold on the disproportionality statistic, and/or statis-

tical significance) was much more important than the

choice of disproportionality statistic itself [35]. Perfor-

mance of any single algorithm might be very different

between one spontaneous report database and another but

the relative performance of two algorithms was generally

similar across different databases. In a related study

across almost the same range of databases, the use of

stratification and subgroup analysis in disproportionality

analysis was explored [45]. An earlier study by Caster

et al. [37] showed that the use of subgroup analyses and

stratification both out-performed crude disproportionality

analysis although the relative contributions of each

approach were not determined. In the PROTECT study, it

was shown that subgroup analyses tended to be more

beneficial over stratified analyses across all datasets

studied. Subgroup analyses also provided clear benefits

over crude analyses in some datasets whereas stratified

analyses did not increase sensitivity or precision beyond

random variation. This unexpected finding that has not

been reported elsewhere has important implications

because a number of organisations routinely use stratifi-

cation in their analyses, but very few routinely employ

subgrouping. Other previous studies [36, 38] have

observed modest improvements for stratified analyses

consistent with the results from the stratified analyses in

the PROTECT study and therefore these findings from the

other studies may also be artefacts from the stratification

process rather than a true effect.

PROTECT explored the impact of masking on statistical

signal detection in spontaneous report databases [49, 50].

Under the conditions of the study, it was rare for masking

to affect whether a drug-event pair was considered to be

disproportionally reported or not; however, the drug-event

pairs that were affected in this way primarily involved

rarely reported ADRs. Furthermore, the study only con-

sidered removal of single masking drugs from the calcu-

lation and in some cases, multiple masking drugs may be

present [51].

For the detection of adverse DDIs, PROTECT showed

that statistical interaction measures with additive baseline

models outperform those with multiplicative baseline

models [55], typically available in standard statistical

software. This finding was true for both established and

emerging DDIs. Notably, for emerging adverse DDIs, the

statistical interaction measures with multiplicative baseline

models that might be the easiest to implement performed

worse than would expected by chance.
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Many organisations rely on rule-based methods for the

detection of duplicate individual case safety reports; how-

ever, PROTECT showed that probabilistic record matching

performed better than rule-based screening [57] and should

be considered as a viable alternative. Specifically, proba-

bilistic record matching demonstrated a high predictive

value above that of rule-based screening, and is expected to

improve efficiency and accuracy of duplicate management.

This has important resource and quality implications for

organisations where large volumes of case reports are

exchanged on a routine basis.

A comparison between estimates of association from

formal epidemiological studies and proportional reporting

ratios in spontaneous reporting data for a set of known

ADRs found a correlation, at a point in time before the

ADR was first publicly recognised [59]. This study sug-

gests that it may be possible to use the proportional

reporting ratio at the early phase of the analysis of a new

safety signal as an indicator of the likely strength of the

association, should the signal be confirmed. Acknowledged

limitations exist in the current evidence base for this

association and have been discussed in an earlier publica-

tion [60].

At present, signal detection is predominantly based on

spontaneous reports, but the use of longitudinal electronic

health data in pharmacovigilance is an area of active

research. Most studies to date have focussed on the sta-

tistical evaluation of well-established ADRs [79, 80] but

not sought to define processes for effective identification of

emerging safety signals in longitudinal health data. Simi-

larly, comparisons between individual case reports and

longitudinal health data for signal detection have focussed

on established and not emerging ADRs. Broad studies such

as those performed by observational medical outcomes

partnership and EU-ADR have explored the merits of dif-

ferent epidemiological designs when applied automatically

across broad ranges of drugs and outcomes [80–83] but

such studies have been primarily retrospective in nature,

and there is also a lack of studies to determine the relative

merits of exploratory screening vs. customised confirma-

tory analyses of longitudinal health data. Some research

has proposed signalling showing outputs requiring high-

lighting in both spontaneous reports and observational data

[84] but without attempting to assess the relative value of

the two data sources.

PROTECT performed research on statistical signal

detection in the THIN database of longitudinal electronic

health records from general practices in the UK. A process

for structured clinical and epidemiological assessment of

temporally associated prescriptions and events in electronic

health records was developed and evaluated. It showed that

important potential safety signals can be identified in these

data, whereas clinical and epidemiological review of

highlighted statistical associations is crucial to attain an

acceptable false-positive rate [72]. Conversely, a retro-

spective evaluation did not detect any of about 500 his-

torical safety signals in THIN, prior to the initial signal at

the EMA. In many cases, this was because of the drug not

being reliably captured in primary care data, and on a few

occasions to the drugs not having yet been marketed in the

UK. In contrast, some of the ADRs could be detected in

VigiBase, even when the analysis was restricted to spon-

taneous reports from the UK. This shows that compre-

hensive surveillance for early safety signals requires broad

population coverage as well as effective ascertainment of a

wide spectrum of newly marketed drugs and adverse

events. Concurrent research has found that even networks

of longitudinal observational databases can be under-

powered for rare adverse reactions, whereas common

adverse reactions should be possible to detect for com-

monly used drugs [85]. There is an increasing number of

observational databases available throughout the world for

potential pharmacoepidemiology and signal detection work

with each having widely varying characteristics, data

structure and data quality concerns. It would be necessary

to repeat the PROTECT analyses in these databases to

determine to what extent these findings are generalisable.

Before approval of a drug, information on adverse

events from clinical trials constitutes the primary basis for

safety analysis and signal detection. PROTECT explored

two statistical approaches to enhancing signal detection in

clinical trials. One study explored the utility of extreme

value modelling in early clinical studies as the basis for

predicting drug toxicity in the subsequent phases of clinical

development and evaluation [74]. A retrospective analysis

showed that extreme value analysis of phase II data would

have highlighted the risk for liver toxicity for a compound

eventually withdrawn from the market on account of this

risk. A second study evaluating different approaches to

adjust for multiplicity found that Bayesian Hierarchical

Models can improve signal detection performance through

borrowing strength from related adverse events in the

clinical trial dataset [75].

4 Conclusions

Over a period of 5 years, IMI PROTECT has addressed

key research questions relevant to the science of safety

signal detection. The resultant recommendations point to

pragmatic steps that those working in the pharmacovigi-

lance community can take to improve signal detection

practices, whether in a national or international agency or a

pharmaceutical company setting. PROTECT has also

pointed to areas of potentially fruitful future research and

some areas where further effort is likely to yield less.
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