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Abstract The entire drug safety enterprise has a need to

search, retrieve, evaluate, and synthesize scientific evidence

more efficiently. This discovery and synthesis process would be

greatly accelerated through access to a common framework

that brings all relevant information sources together within a

standardized structure. This presents an opportunity to establish

an open-source community effort to develop a global knowl-

edge base, one that brings together and standardizes all avail-

able information for all drugs and all health outcomes of interest

(HOIs) from all electronic sources pertinent to drug safety. To

make this vision a reality, we have established a workgroup

within the Observational Health Data Sciences and Informatics

(OHDSI, http://ohdsi.org) collaborative. The workgroup’s

mission is to develop an open-source standardized knowledge

base for the effects of medical products and an efficient pro-

cedure for maintaining and expanding it. The knowledge base

will make it simpler for practitioners to access, retrieve, and

synthesize evidence so that they can reach a rigorous and

accurate assessment of causal relationships between a given

drug and HOI. Development of the knowledge base will pro-

ceed with the measureable goal of supporting an efficient and

thorough evidence-based assessment of the effects of 1,000

active ingredients across 100 HOIs. This non-trivial task will

result in a high-quality and generally applicable drug safety

knowledge base. It will also yield a reference standard of drug–

HOI pairs that will enable more advanced methodological

research that empirically evaluates the performance of drug

safety analysis methods.

Key Points

The individuals who possess the expertise to synthesize

evidence on a medication’s safety are hindered by

numerous disconnected ‘‘islands of information’’

A workgroup within the Observational Health Data

Sciences and Informatics (OHDSI, http://ohdsi.org)

collaborative is addressing this issue by establishing

an open-source community effort to develop a global

knowledge base that brings together and standardizes

all available information for all drugs and all health

outcomes of interest from all electronic sources

pertinent to drug safety

Striving toward the goal of a generally useful

knowledge base, though ambitious, is necessary for

advancing the science of drug safety because it will

make it simpler for practitioners to access, retrieve,

and synthesize evidence so that they can reach a

rigorous and accurate assessment of causal

relationships between a given drug and the health

outcome of interest

R. D. Boyce (&)

University of Pittsburgh, Pittsburgh, PA, USA

e-mail: rdb20@pitt.edu

P. B. Ryan � M. J. Schuemie � E. A. Voss

Janssen Research and Development, Titusville, NJ, USA

G. N. Norén

Uppsala Monitoring Centre, Uppsala, Sweden

C. Reich

AstraZeneca, Waltham, MA, USA

J. Duke

Regenstrief Institute, Indianapolis, IN, USA

N. P. Tatonetti

Columbia University, New York, NY, USA

G. Trifirò
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1 Introduction

‘‘The investigator is staggered by the findings and

conclusions of thousands of other workers—conclu-

sions which he cannot find time to grasp, much less to

remember, as they appear.’’—Bush 1945 [1]

When Dr. Vannevar Bush penned this lament 7 decades

ago, the then Director of the United States Office of Sci-

entific Research and Development was calling post-World

War II scientists to conduct research that would yield a

revolutionary approach to representing and retrieving

information. At the time, distributed document collections

and taxonomic indexing schemes were hindering the ability

of researchers to identify important connections that could

yield new scientific insights. The Internet, electronic doc-

ument collections, hypertext, advanced information retrie-

val systems, and digital social networks are some of the

many advances since Dr. Bush first articulated his vision.

Unfortunately, his lament still resonates with the contem-

porary drug safety practitioner. Today, an overwhelming

amount of drug safety-relevant information is being gen-

erated and stored in a wide array of disparate information

sources using differing terminologies at a faster pace than

ever before. Product manufacturers, regulatory agencies,

and prescribers have an obligation to the public to correctly

interpret and properly act on this information in a timely

manner. However, the individuals who possess the exper-

tise to synthesize evidence on a medication’s safety are

hindered by numerous disconnected ‘‘islands of

information.’’

Like a photo mosaic, a clear and understandable image

of a potential drug safety issue can emerge when the rel-

evant sources of evidence are brought together. The written

protocol for a pre-marketing drug trial can help determine

if an adverse event mentioned in a spontaneous report is

causally related to the drug exposure or the condition being

treated. A well-designed observational study using elec-

tronic health records data can suggest what categories of

patients would be most at risk for developing an adverse

drug reaction listed in product labeling. A published case

report can add credence to a potential drug–adverse event

association identified by mining spontaneous reporting data

or longitudinal observational health databases. A system-

atic review of clinical trials testing a drug’s efficacy for an

off-label indication can provide data on adverse events that

can occur in populations not mentioned in drug product

labeling. A knowledge base (KB) of drug pharmacological

properties and molecular targets can yield information

useful for inferring the biological plausibility of a sus-

pected drug-related adverse event.

Unfortunately, the information from these and many

other potentially useful sources is stored in different sys-

tems with distinct information formats, employing non-

interoperable terminology schemes, and requiring unique

skills to navigate and explore (Table 1). This situation

makes it extremely time consuming and resource intensive

to retrieve the necessary information when conducting a

comprehensive assessment of a potential safety signal. The

investigation of drug safety concerns tends to be manual,

highly iterative, with a steep learning curve, and perpetu-

ally at risk for errors of omission due to the complexities

involved in searching across multiple domains for related

information.

The entire drug safety enterprise has a need to search,

retrieve, evaluate, and synthesize scientific evidence more

efficiently. This presents a tremendous opportunity to

establish an open-source community effort to develop a

global KB, one that brings together and standardizes all

available information for all drugs and all health outcomes

of interest (HOIs) from all electronic sources pertinent to

drug safety. The community needs to go beyond simply

enabling cross-resource queries to establish an empirical

evidence base about the reliability of information sources

used in the drug safety assessment process.

The quote by Dr. Vannevar Bush at the beginning of this

paper is taken from a paper in which he invited post-war

scientists to use emerging technologies such as photocells,

cathode ray tubes, and ‘‘arithmetical machines’’ (very early

computers) to make the ever growing scientific record

much more natural to synthesize. Were he alive today, he

might suggest relatively recent technologies such as bio-

medical ontologies [2], Semantic Web Linked Data [3],

natural language processing, and machine learning.
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Biomedical ontologies and Semantic Web Linked Data

would be recommended for their potential to enable all

sources to be integrated in a way that allows for both

summative queries (e.g., ‘‘How many data sources suggest

that drug X is associated with HOI Y?’’) and the ability to

‘‘drill down’’ into specific data sources (e.g., ‘‘When did

source A first suggest that drug X is associated with HOI

Y?’’); natural language processing would be recommended

for its potential to enable the addition of knowledge men-

tioned within the text documents (e.g., adverse drug reac-

tions recorded in tables and sections of drug product

labeling); and machine learning would be recommended

for its potential to automate much of the process for

identifying positive and negative drug–HOI associations.

Moreover, innovative sources of drug safety evidence, such

as inferences derived from predictive methods emerging

from the nascent field of network medicine [4] and weblogs

[5], should be considered as potentially valuable additional

forms of evidence.

To make this vision a reality, we have established a

workgroup within the Observational Health Data Sciences

and Informatics (OHDSI, http://ohdsi.org) collaborative.

The workgroup’s mission is to establish an open-source

standardized KB for the effects of medical products and an

efficient semi-automated procedure for maintaining and

expanding it.

2 A Focal Point for the Integration of Information

Sources Relevant to Drug Safety

We believe that development of the proposed KB should

proceed with the measureable goal of supporting an effi-

cient and thorough evidence-based assessment of the

effects of 1,000 active ingredients across 100 HOIs. This

non-trivial task will result in a high-quality and generally

applicable drug safety KB, providing a focal point to guide

design decisions. These include what information sources

to include, what terminologies to employ, how to handle

data that comes with uncertainty (e.g., associations mined

from spontaneous reports, risks identified in pharmacoep-

idemiological studies, or the output of processing the sci-

entific literature using natural language processing

algorithms), and how to accommodate conflicting evi-

dence. The large-scale evidence assessment task will also

be a major contribution to the global drug safety research

community because it will yield a reference standard of

drug–HOI pairs that will enable more advanced methodo-

logical research that empirically evaluates the performance

of drug safety analysis methods.

The target of 1,000 drugs is motivated by the fact that

this number represents a significant proportion of the drugs

used in practice. At the time of this writing, we estimate

that it would represent 64 % of the 1,565 unique active

ingredients listed in the drugs@FDA database as currently

marketed for prescription or over-the-counter use in the

USA (though the choice of drugs will not be limited to a

single country’s market). The choice of 100 HOIs is

motivated by the fact that the number is sufficiently greater

than previous efforts so as to spur innovative approaches to

making the drug–HOI assessments more efficient. The

specific list of drugs and HOIs will include those already

examined in previous references standards and those con-

sidered to be high priority by our pharmacovigilance col-

laborators. We will further extend the drug list to ensure a

representative sample, taking into account such attributes

as marketing duration, pharmacological class, and preva-

lence of exposure. Similarly, we will choose additional

HOIs so as to ensure an accurate representation of severity,

system/organ class, and likelihood of mention in various

sources.

2.1 The Broad Utility of a Drug Safety KB

Considering a given HOI, one of a drug safety practi-

tioner’s main tasks is to search for all relevant evidence for

a positive or negative association between any drug and the

HOI and synthesize that evidence to make a final judgment

on the veracity of the association. Practitioners routinely

need to review disparate information from scientific liter-

ature, product labeling, spontaneous adverse reports,

observational health data, and other sources. This discov-

ery and synthesis process would be greatly accelerated

through access to a common framework that brings all of

these information sources together within a standardized

structure.

It is also quite possible that the KB will have value

beyond drug safety; product manufacturers may use the

information to assess areas of unmet medical need or

identify targets for drug re-purposing, providers may use

this information to support clinical decisions, and patients

may benefit from access to a standard, easy-to-use interface

that provides consistent information about their treatments

and their potential effects. Moreover the OHDSI KB will

directly impact methodological research and empirical

evaluation of drug safety methods by enabling the devel-

opment of a globally acceptable drug–HOI reference set.

2.2 The Need for a Globally Acceptable Drug–HOI

Reference Standard

Over the past decade, a number of experiments have been

performed to estimate the ability of drug safety analysis

methods to discriminate between drugs causally related

with specific HOIs (drug–HOI ‘‘positive controls’’) and

drugs that have no causal relation (drug–HOI ‘‘negative
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controls’’), measure the expected time to detection, and

quantify the magnitude of error that should be anticipated

from any effect estimate [6–20]. The primary means for

conducting these methodological experiments is to perform

a retrospective evaluation that compares the results from

the drug safety analysis process with some pre-defined

reference standard. Ideally, a reference standard would

represent a large collection of drug–HOI combinations, be

based on complete and certain information about the

strength of association, and provide the provenance (e.g.,

source and date of creation) of evidence items used to

develop the standard. In practice, the task of establishing a

reference standard involves resource-intensive information

gathering and decision-making under uncertainty.

To illustrate the varying approaches to creating a ref-

erence set, Table 2 highlights the evidence sources and

sampling frame from five recent methodological experi-

ments where drug–HOI reference sets were developed.

The reference standards developed by Hochberg et al. [19]

and Alvarez et al. [17] were initially used to support

evaluation of spontaneous adverse event reporting analy-

ses, whereas the Observational Medical Outcomes Part-

nership (OMOP) [8, 21] and Exploring and Understanding

Adverse Drug Reactions by Integrative Mining of Clinical

Records and Biomedical Knowledge (EU-ADR) [22]

reference sets were designed to facilitate research in

observational health databases. What is most striking in

this summary is that the different approaches employed

to select and evaluate drug–HOI cases resulted in

heterogeneous reference standards with different degrees

of confidence in the final output.

A shared experience across these efforts was that care-

fully and thoughtfully specifying the criteria for estab-

lishing a positive or negative drug–HOI association is a

tremendous amount of work. There was a sense of dissat-

isfaction that each reference set was neither large enough to

allow for the breadth of analyses desired, nor sufficiently

impervious to post hoc criticism. Each reference set was an

important contribution to their respective efforts, while at

the same time insufficient to meet the broad needs of the

drug safety research community. We believe that the

thorough evidence-based assessment of the effects of 1,000

active ingredients across 100 HOIs while developing the

OHDSI KB will lead to a more globally useful reference

standard because the task will bring together medication

safety practitioners and domain experts with informatics

experts who possess the technical skills necessary to

implement a standardized, reproducible process for struc-

tured evidence synthesis.

3 Early Progress on the KB

3.1 The Information Sources

Figure 1 outlines the information sources proposed for the

OHDSI KB and the necessary mappings to standardize the

content across the sources. As a starting point, we have

Table 2 Reference sets established to support methodological research in drug safety

Positive

controls

Negative

controls

Labeling Literature Spontaneous

data

Observational

data

Mechanism

of action

Sampling frame

Alvarez

et al.

[17]

532 x 267 centrally authorized drugs in

EU with at least 1 year of safety

information submitted by

manufacturer, time-stamped with

when the safety issue was first

brought up for discussion within

the EMA Signal Management

Team

Hochberg

et al.

[19]

6,207 x x 35 drugs approved in 2000, 2002,

and 2004

OMOP v1

[8]

9 44 x x x Chose ten drug-outcome positive

controls, looked for negative

controls within matrix of ten

drugs and ten outcomes

OMOP v2

[21]

165 234 x x Four outcomes, goal to find all

positives/negatives meeting

criteria

EU-ADR

[22]

44 50 x x x x Ten outcomes, goal to find five

positives/five negatives

EMA European Medicines Agency, EU European Union, OMOP Observational Medical Outcomes Partnership, EU-ADR Exploring and

Understanding Adverse Drug Reactions by Integrative Mining of Clinical Records and Biomedical Knowledge
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chosen RxNorm [23] as the standard terminology for drugs,

and Systematized Nomenclature of Medicine-Clinical

Terms (SNOMED-CT) [24] as the standard terminology for

conditions. This decision is motivated by prior work by

OHDSI collaborators who lead the development of the

OMOP common data model [25] and standard vocabulary

[26]. The vocabulary provides mappings from RxNorm to

various drug classification systems such as the Enhanced

Therapeutic Classification maintained by First Databank

(FDBTM), the World Health Organization (WHO) Ana-

tomical Therapeutic Chemical Classification System (ATC),

and the Veteran’s Administration National Drug File-Ref-

erence Terminology (NDF-RT) [26]. That vocabulary also

contains mappings from various sources of diagnosis ter-

minologies, such as the International Classification of Dis-

eases, Revision 9 (ICD-9) and Revision 10 (ICD-10), into

SNOMED-CT and from SNOMED-CT conditions to Med-

ical Dictionary for Regulatory Activities (MedDRA�). We

will build on previous work to extend the vocabulary to link

RxNorm to DrugBank [27]. This will allow for ‘‘snowball’’

integration of mappings from RxNorm to chemicals and

protein targets (ChEMBL and PubChem), genes (UniProt),

gene–disease associations in other National Center for

Biotechnology Information databases, and back to

SNOMED-CT via Disease Ontology [28].

Other sources shown in Fig. 1 include spontaneous

adverse event reporting data from the US Food and Drug

Administration (FDA) Adverse Event Reporting System

(FAERS) and WHO VigiBase�, which allows for dispro-

portionality analysis. Additional information on adverse

events will come from the ClinicalTrials.gov clinical trials

registry [29], which now links adverse events reported

during clinical trials to important intervention and study

design information. A subset of PubMed will be filtered as

described above, and the KB will provide links from

Medical Subject Headings (MeSH) concepts to RxNorm

drugs and SNOMED-CT conditions. US Structured Prod-

uct Labeling (SPL) contains tagged entities for drug active

ingredients that the KB will link to RxNorm drugs. Also,

we will use a text mining tool called SPLICER to extract

adverse event information present in the boxed warnings,

warning/precaution, and adverse reaction sections of SPLs,

and link the extracted information to RxNorm drugs and

SNOMED-CT conditions [30, 31]. The KB will also

include drug–HOI association data derived from observa-

tional healthcare datasets, using methods developed during

the OMOP and EU-ADR efforts [6–16].

3.2 Iterative Development of the Reference Standard,

Incremental Extensions to the KB

To be successful, the KB has to make it simpler for prac-

titioners to access, retrieve, and synthesize evidence so that

they can reach a rigorous and accurate assessment of causal

relationships between a given drug and HOI. Given a

potential causal relationship, there might be a need to

assess causality at the individual case level or at the

‘‘global’’ level that considers the overall body evidence. In

individual cases, a number of structured decision processes

have been proposed since the 1970s [32], ranging from

simple psychometrically weighted questionnaires [33–36]

to probabilistic algorithms that calculate the probability in

favor of a drug–HOI association on the basis of epidemi-

ological and patient case information [37, 38]. Our task is

not to judge between these processes, but to help practi-

tioners more efficiently gather together information that

would help them use the process they deem most appro-

priate for a given task (e.g., prior reports and the preva-

lence of events in exposed and non-exposed patients).

Practitioners assessing the total body of evidence for a

drug–HOI association would benefit from the KB’s com-

prehensive inclusion of evidence sources and its ability to

query across all of the sources, using a small set of stan-

dardized vocabularies.

Figure 2 shows the iterative process we plan to use to

accomplish these goals. The OHDSI team will select an initial

set of data sources and integrate them into a common format.

All content in this initial version of the KB will be time-

stamped for when it was generated (e.g., the date when rele-

vant case reports, observational studies and randomized

controlled trials were published in scientific journals, when

disproportionality analysis met signaling thresholds in spon-

taneous reporting systems, and when adverse events were

added to product labeling). It is also important to note that the

KB will include evidence items that report no finding of a

causal association between a drug and HOI so that experts will

be able to gather information from all relevant sources.

An important goal of this project is to develop a more

automated process for establishing positive and negative

control drug–HOI associations. Toward that end, a panel of

drug safety experts will use the first version of the KB to

review existing reference sets (Table 2) and establish an

initial ‘‘silver’’ standard of drug–HOI associations that the

panel finds credible with a high level of inter-rater agree-

ment. This ‘‘silver’’ standard will serve as the basis for

training a classification model, which will take as inputs

features (‘‘covariates’’) derived from the KB and output

predicted positive and negative drug–HOI associations. We

will also see if the model is able to predict any associations

identified by regulatory bodies or published case reports

that the panel reviews after initial construction of the KB.

Iterative versions of the model will be developed as the

expert panel proceeds to evaluate drug–HOI combinations

from the 1,000 9 100 matrix.

The process described above, and shown in Fig. 2, will

also help identify changes that will enhance the usability of
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the KB for future users. At the same time, an error analysis

of the prediction algorithm will help us to identify neces-

sary modifications to the information sources or integration

methods that might improve prediction accuracy. This

entire procedure will be repeated, iteratively expanding the

‘‘silver’’ standard and improving the KB, until the expert

panel accomplishes the evidence assessment goal. The

result will be a reference standard covering the

1,000 9 100 matrix and a predictive model (or family of

models) that accurately classifies whether a given drug is

related to an HOI, on the basis of the available evidence

from all sources (Fig. 3). High-performance models might

ultimately provide a probabilistic evidence-based assess-

ment for all drug–HOI pairs.

As the KB matures, we will explore the value of

including innovative sources of drug safety evidence, such

as inferences derived from biomedical ontologies and

predictive methods emerging from the nascent field of

network medicine [4]. A number of new methods are worth

considering, including Duke et al.’s [39] template-based

approach to inferring drug-interaction predictions using

metabolic pathways extracted from the scientific literature,

models that infer adverse events from graphical models of

drug and conditions [40–42], and methods that use inno-

vative approaches to overcome known limitations of drug

safety sources such as spontaneous adverse event reports

[18] and electronic healthcare databases [43]. As each

information source is brought into the KB, we will

empirically assess its added value in classifying drug–

outcome pairs. By tying the quality and coverage of the KB

to explicit performance characteristics, we will know if an

addition to the KB moves us toward or away from a more

systematically informed scientific process.

4 A Hypothetical Example of Using the OHDSI KB

Here, we provide a hypothetical example of how the KB

might be used to reconcile of disparate sources of evidence

relevant to assessing a drug–HOI association. Imagine that

Fig. 1 Information sources proposed for the initial version of the OHDSI knowledge base. ATC Anatomical Therapeutic Chemical Classification

System, EHR electronic health record, FAERS Federal Drug Administration Adverse Event Reporting System, FDBTM First DataBank, GAD

Genetic Association Database, GPI Generic Product Identifier, GWAS Genome-wide association study, HOI health outcome of interest, ICD-10

International Classification of Diseases, Tenth Revision, ICD-9-CM International Classification of Diseases, Ninth Revision, Clinical

Modification, MeSH Medical Subject Headings, NDC National Drug Code Directory, NDF-RT National Drug File-Reference Terminology,

OHDSI Observational Health Data Sciences and Informatics, OMIM Online Mendelian Inheritance in Man, SmPC EU Summary of Product

Characteristics, SNOMED Systematized Nomenclature of Medicine, SPL Structured Produce Labeling
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an expert is investigating the possible association of some

active ingredient (Drug X) with kidney injury. The expert

would query the KB using the RxNorm identifier for Drug

X and the SNOMED term Renal failure syndrome (disor-

der). Results from this hypothetical query are shown in

Table 3. The first columns show some basic information,

including that there is no known contraindication between

the drug and HOI. The remaining columns show the

sources of evidence available in the KB with additional

information including:

• whether the HOI is mentioned as an adverse drug

reaction in product labeling and when it first appeared

in each source,

• the number of studies indexed in the scientific litera-

tures in which drug and HOI terms co-occur,

• whether pharmacovigilance signals have been identified

from spontaneous reporting, which datasets, and when,

• whether pharmacovigilance signals have been identified

in electronic health records data, which datasets, and when

After reviewing this initial summary of the evidence

available in the KB, the expert can ‘‘drill down’’ to

examine relevant details. Underlined text in Table 3

indicates hyperlinks that will take the expert directly to

more detailed information. Figure 3 shows that the specific

information that the KB will provide is driven by expert

users as we develop the KB.

Fig. 2 A systems view of

OHDSI knowledge base

development. HOI health

outcome of interest, OHDSI

Observational Health Data

Sciences and Informatics

Table 3 Hypothetical output of the knowledge base when queried for evidence of an association between drug X and renal failure. Bold text

indicates hypothetical hyperlinks that will take the expert directly to more detailed information

Drug ATC HOI Contra-

indicated

US SPL EU SmPC Scientific

literature

FDA

FAERS

VigiBase� EHR/Claims

data

X Beta

blocker

Renal failure

syndrome

(disorder)

False 1 Renal

failure

(1998)

1 Renal failure

acute (2001)

13 publications

(1998–)

Out of which:

3 case report

(2001–)

2 RCTs (1998–)

8 observational

studies (2003–)

0 systematic

reviews

110
reports

PRR:

4.5

Renal

failure

(April 1

2014)

148
reports

PRR: 3.3

Renal

failure

(April 1

2014)

Associations:

Medicare

OR: 3.3

Medicaid

OR: 2.2

ATC Anatomical Therapeutic Chemical Classification System, EHR electronic health record, EU European Union, FAERS FDA Adverse Event

Reporting System, FDA US Food and Drug Administration, HOI health outcome of interest, OR odds ratio, PRR proportional reporting ratio,

RCT randomized controlled trial, SmPC Summary of Product Characteristics, SPL Structured Product Labeling
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5 Summary and Conclusions

We believe that striving toward the goal of a generally

useful KB, though ambitious, is necessary for advancing

the science of drug safety. Individually, each data source is

insufficient to provide the evidence required for a reliable

inference in the general case and a reference set in our

specific case. Spontaneous adverse event reporting data

remains a foundational component of drug safety, but well-

acknowledged limitations of underreporting and lack of an

available denominator make analysis of these data subject

to various sources of bias [2, 3, 26, 29, 44, 45]. Product

labeling serves as a primary source of information col-

lected during the clinical development program, but pri-

marily originates from clinical trials that are often

underpowered for detecting rare adverse events, have

insufficient follow-up for long-term adverse events, and

comprise patient populations who may not be representa-

tive of the patients exposed to the drug in the real world.

The level of confidence that adverse event information is

credible versus ‘‘overwarning’’ can vary on the basis of

whether it is mentioned in the boxed warning, precautions,

or adverse reactions sections. Moreover, it is often the case

that only limited supporting data are available to quantify

the risk of a mentioned adverse event, and products can

have multiple labels with inconsistent safety information

[30, 46]. Observational databases often offer the largest

source for patient-level data with real-world experience,

but epidemiological studies are often challenged by con-

founding and other sources of bias that threaten the validity

of results. While each contributing data source has sub-

stantial limitations, we believe that these can be substan-

tially mitigated by the KB development approach that we

propose.

In addition to generating the KB, we also plan to work

toward an efficient automated process for regular mainte-

nance and revision. Currency of information is of consider-

able interest in drug safety, as product manufacturers and

regulatory agencies strive to identify drug-related adverse

events as soon as possible during the lifecycle of the product,

Fig. 3 Expert users will drive both the content of the knowledge base and provide feedback that will help improve the drug–HOI prediction

algorithm. In this hypothetical example, the experts are able to ‘‘drill down’’ to review important information on various evidence items present

in the KB that support an association between drug X and renal failure. ATC Anatomical Therapeutic Chemical Classification System, EHR

electronic health record, HOI health outcome of interest, KB knowledge base, OHDSI Observational Health Data Sciences and Informatics
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and providers and patients expect that their medical decision-

making can be informed by the most reliable and timely

evidence available. The systematic upkeep of the KB will not

only preserve relative consistency between the original

sources and the composite summary as knowledge evolves

over time, but might also facilitate more efficient evidence

dissemination across all interested stakeholders.

To be sustainable, the KB requires an open-source,

community-led effort that complements the other existing

business models to offer the entire community a more

complete solution to the problem. By bringing together

pharmacovigilance and informatics experts into an open

collaboration, we expect feedback from stakeholders that

will help identify missing information, sources that should

be added to the KB, and corrections or modifications to the

sources represented in the KB. Persons interested in

become collaborators can contact us directly or through the

OHDSI project management site (http://goo.gl/TRSUoH)

or the OHDSI code development sites (https://github.com/

OHDSI/KnowledgeBase).

In conclusion, we are excited to help jumpstart this

community effort, as we fully expect a drug safety KB will

become an invaluable tool for methodological research and

pharmacovigilance practice alike.
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