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Abstract
Purpose Hypertoxigenic Streptococcus pyogenes emm1 lineage  M1UK has recently been associated with upsurges of invasive 
infections and scarlet fever in several countries, but whole-genome sequencing surveillance data of lineages circulating in 
Germany is lacking. In this study, we investigated recent iGAS isolates from our laboratory at a German tertiary care center 
for the presence of the  M1UK lineage.
Methods Whole-genome sequencing was employed to characterize a collection of 47 consecutive non-copy isolates recovered 
from blood cultures (21) and tissue samples (26) in our laboratory between October 2022 and April 2023.
Results M protein gene (emm) typing distinguished 14 different emm types, with emm1 (17) being the dominant type. 
Single-nucleotide polymorphism (SNP) analysis confirmed the presence of all 27 SNPs characteristic for the  M1UK lineage 
in 14 of 17 emm1 isolates.
Conclusion This study has shown for the first time that  M1UK is present in Germany and might constitute a driving force in 
the observed surge of GAS infections. This observation mirrors developments in the UK and other countries and underscores 
the importance of WGS surveillance to understand the epidemiology of GAS.
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Introduction

Streptococcus pyogenes, also referred to as Group A Strepto-
coccus (GAS), is an important human pathogen that causes 
non-invasive infections such as scarlet fever, pharyngitis and 
impetigo, and also life-threatening invasive infections (iGAS) 
such as necrotising fasciitis, pneumonia, meningitis and puer-
peral sepsis [1]. In 2022 and 2023, several European coun-
tries (including Denmark, Ireland, France, the Netherlands, 
Sweden, Spain, and the UK) have reported a marked increase 
in scarlet fever and iGAS [2–6]. The observed increase fol-
lowed a period of low incidence during the COVID-19 pan-
demic, but has now exceeded pre-pandemic levels [5, 6]. This 

phenomenon is likely attributable to reduced exposure at the 
population level and an associated so-called immunity gap 
[7], which may have led to widespread dissemination in the 
population after the lifting of COVID-19-related restrictions. 
In addition, the current high activity of viral respiratory infec-
tions might have contributed to an increase in iGAS cases with 
a respiratory focus [6, 8]. On the other hand, an increase of 
scarlet fever and iGAS had been observed in the UK some 
years before the pandemic and was associated with the emer-
gence and spread of a new lineage of S. pyogenes designated 
 M1UK [9]. The  M1UK lineage is a variant of the highly suc-
cessful, contemporary epidemic  M1global strain [10].  M1UK is 
differentiated from  M1global by 27 chromosomal single nucleo-
tide polymorphisms (SNPs) and exhibits enhanced expression 
of the superantigenic scarlet fever toxin SpeA (streptococcal 
pyrogenic exotoxin A) in vitro [9, 11]. The  M1UK lineage has 
subsequently been identified in several other countries (Aus-
tralia, Belgium, Canada, Netherlands, Portugal, Scotland, 
USA) [3, 8, 11–15], where in some cases (Australia, Belgium, 
Netherlands, Portugal) it has also expanded and displaced 
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the  M1global lineage [11, 12, 16, 17]. Recently, the emergence 
and spread of two more new clones designated  M1DK (emm1) 
and  M4NL22 (emm4) were reported in Denmark and the Neth-
erlands, respectively [4, 18]. In Germany, the Robert Koch 
Institute (RKI) also reported a strong increase in iGAS infec-
tions for the fourth quarter of 2022 [19]. RKI surveillance data 
also show a marked increase in the number of reported scarlet 
fever cases from two federated German states with manda-
tory scarlet fever reporting (https:// survs tat. rki. de/; accessed 
2023/08/25). This trend was reflected in the number of GAS/
iGAS isolates recovered from clinical samples at our labora-
tory (Fig. 1). Currently, whole-genome surveillance data of 
circulating S. pyogenes strains from Germany is not yet avail-
able. To explore the GAS population and to elucidate whether 
any of the epidemic clones recently described in neighbouring 
countries might have contributed to the reported increase in 
iGAS infections, we analysed a collection of 47 S. pyogenes 
isolates recovered from blood and tissue samples from October 
2022 to April 2023 by whole-genome sequencing.

Results and discussion

The S. pyogenes  M1UK lineage has emerged and rapidly 
spread in several countries worldwide. Owing to the lack 
of nationwide whole-genome surveillance data for S. pyo-
genes, information on the presence of the  M1UK lineage in 
Germany is not yet available. This prompted us to character-
ize the population structure of contemporary S. pyogenes 
isolated during routine diagnostic workup of blood cultures 
and tissue samples at the microbiology laboratory of the 

University Medical Center Hamburg-Eppendorf, a 1600-bed 
tertiary care center. Between October 2022 and April 2023, 
a total of 53 non-copy S. pyogenes isolates were recovered 
from eligible specimens. Of those, 47 (21 blood culture iso-
lates and 26 isolates from tissue specimens) were available 
for whole-genome sequencing and subsequent delineation of 
the recently described new  M1UK,  M1DK and  M4NL22 line-
ages (supplemental file 1). M protein gene (emm) typing 
distinguished 14 different emm types, with emm1 [17] being 
the dominant type, followed by emm89 [7] (Table 1). Sin-
gle-nucleotide polymorphism (SNP) analysis confirmed the 
presence of all 27 SNPs characteristic for the  M1UK lineage 

Fig. 1  Monthly cases of GAS infections identified by our laboratory 
between 7/2017 and 6/2023. Total number of cases and cases of inva-
sive infections (iGAS) are represented by light and dark grey bars, 

respectively. Numbers above the light grey bars indicate the number 
of all GAS detections in the respective period, and numbers above the 
dark grey bars indicate the number of iGAS

Table 1  Distribution of emm 
types

emm type Number [n]

1 17 (14  M1UK)
12 6
89 6
27 3
49 3
53 2
66 2
87 2
4 1
11 1
77 1
102 1
106 1
218 1
Total 47

https://survstat.rki.de/
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[9] in 14 of 17 emm1 isolates. The remaining three emm1 
isolates lacked any of the  M1UK-defining SNPs. SNP-based 
phylogenetic analysis grouped our  M1UK isolates together 
with representative  M1UK isolates recovered from iGAS in 
the UK, Australia, Canada and the USA and separated them 
from the  M1global and  M1inter lineages.  M1inter lineages carry 
subsets of the SNPs that define  M1UK, but failed to spread 
as successful as  M1UK [9, 11] (Fig. 2). Analysis of viru-
lence and resistance gene content of our 14  M1UK isolates 
revealed no striking differences as compared to other  M1UK 
or local  M1global strains (supplemental file 1) [9]. The emm1 
clone  M1DK, reported to be highly prevalent in Denmark [4], 
was not found, and only one isolate of emm4, a prevalent 
genotype in invasive infections in the Netherlands [18], was 
identified in our collection.

In conclusion, this study has shown for the first time that 
 M1UK is present in Germany and might constitute a driving 
force in the observed surge of GAS infections. We concede 
that our study is only a snapshot of a regional S. pyogenes 
population, which may not be representative of the German 
S. pyogenes population. In addition, due to the lack of patient 
travel information, acquisition of  M1UK GAS outside of Ger-
many cannot be excluded in all cases. Our study popula-
tion also did not encompass commensal isolates or isolates 
from cases of uncomplicated pharyngitis and might thus 
not reflect the overall composition of our local S. pyogenes 
population. Nevertheless, our preliminary data underscore 
the need for further studies of larger strain collections to 
reconstruct the spread of  M1UK in Germany and elucidate 
its role in the current surge of GAS infections [19].

Fig. 2  Maximum likelihood phylogenetic tree from core SNPs 
(excluding prophage regions). Isolates are labelled with acces-
sion numbers; isolates sequenced for the present study are shown in 
orange boldface print. M1 lineage is indicated by shading of the inner 

doughnut plot. Region of strain origin is indicated by coloured rec-
tangles. Nodes with bootstrap support values lower than 70% have 
been collapsed, and bootstrap support values between 70 and 99% are 
marked with circles
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Methods

S.  pyogenes study isolates (n = 47) were thawed from 
a − 80  °C cryo-collection of contemporary isolates 
and underwent WGS. In brief, DNA was extracted 
using QiaSymphony mericon extraction kits (Qiagen) 
on a QiaSymphony SP instrument according to the 
manufacturer’s instructions. Libraries for paired end 
sequencing were prepared using the NEB NextUltra II 
DNA library Prep Kit for Illumina (NEB) and sequenced 
with 2 × 150 cycles on an Illumina MiSeq instrument. 
Reads or nucleotide sequences from additional isolates 
were obtained from the National Center for Biotechnology 
Information (NCBI) sequence read archive, the NCBI 
reference sequence database and the European Nucleotide 
Archive (ENA). Reads were assembled with shovill 1.1 
employing spades 3.15.5 [20], annotated with bakta 1.8.1 
[21] and subjected to pan genome analysis with roary 3.13.0 
[21]. Emm types were assigned from bakta assemblies using 
the Centers for Disease Control Streptococcus Laboratory 
GAS bioinformatic pipeline (https:// github. com/ BenJa 
mesMe tcalf/ GAS_ Scrip ts_ Refer ence). Resistance genes 
where detected using AMRFinderPlus 3.11.14 with the 
NCBI reference gene database version 2023–08-08.2 [22]. 
Known virulence markers were identified with abricate 1.0.1 
(https:// github. com/ tseem ann/ abric ate) and the virulence 
factor database version 2022–08-26 [23]. Additional allelic 
profiling was performed with chewBBACA 3.3.0 [24] and a 
S. pyogenes wgMLST schema from Chewie-NS [25]. Core 
SNPs were identified with snippy 4.6.0 (https:// github. com/ 
tseem ann/ snippy) using S. pyogenes MGAS5005 (GenBank 
accession NC_007297.2) as a reference. Maximum 
likelihood phylogenies from concatenated core SNPs were 
constructed using gubbins 3.3.0 [26] with IQTree [27] and 
visualized with TreeViewer 2.1.0 (https:// github. com/ arklu 
mpus/ TreeV iewer/ tree/ v2.1.0).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s15010- 023- 02137-1.
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