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Abstract We study changes in crop cover under future

climate and socio-economicprojections.This study is not only

organised around the global and regional adaptation or

vulnerability to climate change but also includes the

influence of projected changes in socio-economic,

technological and biophysical drivers, especially regional

gross domestic product. The climatic data are obtained from

simulations of RCP4.5 and 8.5 by four global circulation

models/earth system models from 2000 to 2100. We use

Random Forest, an empirical statistical model, to project the

future crop cover. Our results show that, at the global scale,

increases and decreases in crop cover cancel each other out.

Crop cover in the Northern Hemisphere is projected to be

impacted more by future climate than the in Southern

Hemisphere because of the disparity in the warming rate

and precipitation patterns between the two Hemispheres. We

found that crop cover in temperate regions is projected to

decrease more than in tropical regions. We identified regions

of concern and opportunities for climate change adaptation

and investment.

Keywords Agro-ecological zones � Climate change �
Food systems � Governance � Land cover � Land use

INTRODUCTION

The demand for food products has increased in the past

50 years driven by an increasing population and changing

dietary choices (Miller 2008). Along with increasing

demand has come increasing food insecurity, concentrated

in the poorest countries. Food insecurity is the absence of

continuing, guaranteed access to adequate nutrition. As

defined by the FAO, it has several dimensions: availability,

access, utilisation and stability (FAO et al. 2015). A

shortfall in the actual amount of food available is referred

to as the nutrition gap while failure to get this food to

hungry mouths constitutes the distribution gap. Despite

continuing high levels of food insecurity, since the mid

1970s the rate of conversion of land for agriculture has

slowed (Alston et al. 2009). This could be linked, inter alia,

to broad adoption of improvements in agro-technologies,

which have led to higher yields (Munns et al. 2012; Hu and

Xiong 2014; Pallotta et al. 2014). However, recent pro-

jections estimate a median human population of 9.3 billion

by 2050 (UN 2012). As a result, actual food supplies must

increase by 70 % to meet the demands of population and

dietary changes (Bruinsma 2003). Even with significant

attention to the components of the distribution gap, existing

agricultural systems will be under pressure to meet this

demand, implying a need for either continuing increases in

yields or increased areas under agriculture, or more likely,

a combination of both. In this study we focus on changes in

the area under cultivation.

Existing evidence suggests that future climates may

have a negative impact on global food production

(Easterling and Apps 2005; Battisti and Naylor 2009). For

example, Lobell et al. (2008) evaluated changes in crop

yields and assessed agricultural vulnerability to climate

change, identifying regions that without adaptation will be

at risk by 2030, in as much as yields of major crops are

expected to decrease there. However, empirical models

based on gridded databases such as those used by Lobell

et al. (2008), although good at assessing general trends in

production, do a poor job of simulating the yield potential

of major crops (see for example Lobell et al. 2011; van
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Wart et al. 2013; Cai et al. 2015a). More specific models

parameterised based on the plant physiology, like global

gridded crop models (GGCMs) (Rosenzweig et al. 2014)

are better tools for determining yield potentials. Current

crop growth simulation models [see for example models

used by Rötter et al. (2012)] are highly parameterized and

some rely on remotely sensed vegetation indices that are

used as surrogates for crop yields or cropping area (Prasad

et al. 2006; Mussatto et al. 2010; Hu and Xiong 2014).

Therefore, forecasting crop cover areas at the global scale

is an important step in the modelling process.

Given a certain level of demand, climate and the bio-

physical attributes of the land are important determinants

of crop cover pattern. There is substantial evidence that

climate change will impact agricultural systems by

changing productivity patterns, with effects ranging from

reduced yields in low latitudes to increased productivity at

high latitudes but with substantial regional variation (Liang

et al. 2011; van Wart et al. 2013; Rosenzweig et al. 2014;

Cai et al. 2015a). However, socio-economic drivers are

important too. These are generally linked to technology

and infrastructure, and to policy and institutional settings.

Despite this, current approaches to modelling climate

change impacts on agriculture, usually by using statistical

approaches (Lobell et al. 2011; van Wart et al. 2013; Cai

et al. 2015a), do not account for the impacts of technology

or infrastructure. Our default assumption in the modelling

described below is that regions with stronger economies

are more likely to invest in agro-technologies to enhance

agricultural systems or to ameliorate climate change

impacts. For example, regions with robust economies are

already expanding irrigation schemes in order to minimise

risks (ABARES 2010; Mehta et al. 2013; Kidd et al. 2014).

It follows that introducing socio-economic drivers into

empirical models that already account for climatic and

biophysical variables should provide better projections of

future crop cover patterns.

We develop an empirical statistical global model based

on the present climate, socio-economic, technological and

biophysical drivers to identify areas where the existing

patterns of crop cover suggest a high sensitivity to climate.

This model is then used to project crop cover under future

climates based on four global circulation models (GCMs)

and two representative concentration pathways of radiative

forcing by greenhouse gases (RCP) (Vuuren et al. 2011). A

novelty of this study is that we combine agronomic and

climatic factors into a compound variable known as agro-

ecological zones (AEZ) (Ramankutty and Foley 1999) and

use this as an independent variable in the model. We also

assume that the geographic locations of the AEZs will be

affected by the future climate, so we used projected AEZs

based on the GCMs. In short, changing climate will affect

the geographic distribution of AEZs and this will have an

impact on crop cover.

The ultimate purpose of this exercise is to address the

following questions: Will the future climate have a neutral,

negative or positive (no change/decrease/increase) impact

on crop cover? What will be the pattern of change? How

well do the projections of crop cover based on the different

GCMs agree? And, is it possible to identify regions of

concern and opportunities for climate change adaptation?

The output from this model is an essential input to our

global integrated assessment models (GIAM) (Newth

2011; Scealy et al. 2012), which combines economic and

biophysical descriptions of global development.

MATERIALS AND METHODS

Random forest in regression analysis

We have developed our empirical model using the Random

Forest (RF) methodology (Breiman 2001). RF is a statis-

tical approach based on the generation of an ensemble of

decision trees and can be used for classification or

regression analysis. The RF regression analysis is charac-

terised by four steps. First we subset 2/3 of the data by

selecting a bootstrap sample. Second for each data boot-

strap sample, the variables are also bootstrapped (i.e., only

a subset of the variables is considered at each potential

split, so a set of potential trees are built). Third, we run an

evaluation of the model using a test set data, i.e., the 1/3 of

the data that were not selected in the bootstrap sample (step

1), these are called out-of-bag (OOB) observations. Fourth,

we build a large number of trees that are averaged (in

regression analysis) in order to get a model prediction.

Steps of the procedure:

(1) Obtain a bootstrap sample from the dataset.

(2) Train a decision tree and constructs a binary tree

minimising the error in each tree.

(3) Measure OOB errors.

(4) As a result of this procedure, we have a large number

of trees that are relatively independent that are used to

classify a data point by majority of vote among them

(in classification analysis) or averaged in order to

obtain a data prediction (in regression analysis).

Bagging and out-of-bag estimation

A way to reduce variance and increase accuracy in statis-

tical learning methods is to take many training sets from

the population, to build separate prediction models, and to

average the results (James et al. 2013). For example, we

can get f̂ 1 xð Þ; f̂ 2 xð Þ; . . .; f̂ B xð Þ using B separate training sets
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and averaging them to obtain a low-variance statistical

model given by

f̂avg xð Þ ¼ 1

B

XB

b¼1

f̂ bðxÞ:

However, most commonly, we do not have access to

multiple training sets, so an alternative is to bootstrap the

original data. Bagging or bootstrapped data sample can be

done to reduce the variance of a statistical learning method

(Breiman 1996; Liang et al. 2011). In the RF approach, we

generate B different bootstrapped training data sets that are

then averaged to obtain a single low-variance model

prediction (James et al. 2013). We then train our model on

the bth bootstrapped training set in order to get f̂ �bðxÞ, and
finally average all the predictions, to obtain a regression

(bagged) tree:

f̂bag xð Þ ¼ 1

B

XB

b¼1

f̂ �bðxÞ:

Each regression tree uses 2/3’s of the observations to

train the model, the remaining one-third of the observations

(i.e., not used to fit a given bagged tree) are called OOB

observations. The OOB observations are used to estimate

model accuracy and also provide a measure of strength,

correlation between trees and variable importance.

Training the model: Experimental methodology

The RF methodology avoids the common problem of

overfitting that can occur with decision tree approaches to

regression. In addition, RF is statistically robust with

respect to noise (Breiman 2001). It performs better than

most approaches where the relationship between the ‘re-

sponse’ and ‘explanatory’ variables is strongly nonlinear

(Williamson et al. 2014). To ensure computational effi-

ciency, our model ran 1000 trees (models) each run using a

random subset of 20 000 grid cells, comprising around

30 % of the global land surface. The 20 000 grid cells used

in the RF iterations were randomly selected. Each RF

iteration (n/1000) used 70 % of the data to train the model,

and 30 % to test it. We ran the models in the R package

‘randomForest’ (Liaw and Wiener 2002, 2008), using R

Statistical Software (R Development Core Team 2011).

We trained the RF model on the global data set of

observed crop cover pattern for the period 1969–1999

provided by Ramankutty and Foley (1999). Ramankutty

and Foley used remotely sensed data to derive geographi-

cally explicit changes in crop cover. The RF model

response variable was the average (from 1969 to 1999)

fraction of a pixel covered by crop cover. We used 8

explanatory variables that represented socio-economic as

well as biophysical and climatic drivers of crop cover

(Table 1). Maps of each explanatory variable are shown in

Fig. S1 in the supplementary material. The datasets used in

the model were disaggregated and resampled to match the

resolution and extent of the global cropland cover data,

0.5� 9 0.5� grid cell using the ‘Raster’ package in R (Hi-

jmans and van Etten 2010).

Data

In the following sections, we discuss each of these

explanatory variables. Climate and biophysical variables

constrain areas where crops can be successfully grown.

This is because temperature and precipitation impose

physiological thresholds on plant growth. Biophysical

variables, such as soil type, provide different opportunities

for the cultivation of a variety of crops through, for

example, different nutrient contents or soil texture. Ele-

vation is another biophysical variable that relates with

temperature gradients, rain regime and edaphic character-

istics (Leifeld et al. 2005). The combination of these

uncorrelated climatic and biophysical variables provides a

good overall picture of the current suitability of land for

agriculture. The AEZs data, although they may be strongly

dependent on temperature and precipitation, combine these

climatic data with other inputs to provide a compound

variable that specifically reflects agronomic factors, like

growing degree days and the length of the growing period.

A detail explanation of AEZ and the parameters used to

calculate the projected AEZ (hereafter PAEZs) is given in

the supplementary material. Finally, the socio-economic

and technological variables, gross domestic product (GDP)

and fertiliser application respectively, add another impor-

tant dimension to the analysis that represents a region’s

capacity to achieve good agricultural outcomes.

RESULTS

Simulation of baseline conditions

We compared the RF model output for the baseline period

1969–1999 to the observations of Ramankutty and Foley

(1999). The Random Forest projection for the baseline

period explained 92 % of the variance with an average

mean squared error of 0.0025 (units = proportion of a grid

cell covered by crop (%)). The cross-validation for the

realisation of crop cover for the baseline periods, using in

each RF iteration 30 % of the observations (i.e., data that

were randomly excluded from the model training and only

used for testing the results), showed good agreement

R2 = 0.96 (P\0.0001). There was also good spatial

agreement between the Random Forest model realisation

and Ramankutty’s and Foley’s (1999) data, although the
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model tended to exaggerate increases in cover around

regions with small fractions of crop cover (Fig. 1).

Our baseline results reconstruct the major global agri-

cultural patterns observed by Ramankutty and Foley

(1999). Agricultural regions in the central and north-east

USA, Australia, Europe, India, China and the Argentinean

Pampas have been reproduced within accuracy (±10 %). In

general, our model overestimates crop cover in central

Europe, east India and China by about 20 %. By contrast,

the model underestimates crop cover in Nigeria by almost

40 %, and this is the largest discrepancy between our

model and the observed data. To a lesser degree, the model

underestimates crop cover in smaller patches scattered in

Africa, Europe and the rest of the world by less than 20 %.

These discrepancies can be linked in large part to the

influence of regionally aggregated explanatory variables.

The two most important variables in the model are domi-

nant soils, followed by regional GDP (Table 2). These two

variables are aggregated by region and our results highlight

some trade-offs of using regionalised data. For example,

Nigeria is the country with highest GDP in the north-west

Africa region, so the aggregated GDP for that region will

disadvantage Nigeria by combining it with neighbouring

countries with smaller GDP. We tested our model by using

non-aggregated GDP as a variable, but the results were less

accurate overall because of other disparities such as those

between the GDP of countries like Monaco with large GDP

but zero crop cover. So by using regionalised variables, we

trade-off some detailed information about the magnitude of

crop cover to gain a more accurate global spatial pattern

that reflects the baseline conditions better.

Simulations under future climates

We calculated the difference between the projected and the

baseline crop cover for all GCMs and RCPs. We present

this information in two ways: (1) the direction of change:

does the future crop cover increase or decrease relative to

the baseline; and (2) the magnitude of change: are the

projections, for example, 5, 30 or 50 % higher or lower

than the crop cover of the baseline period. In presenting the

direction of change, the projections from the four GCMs

were compared to obtain maps of total or partial agreement

for the two RCPs. In the following section, we show

agreement maps that rank from 0, meaning areas projected

to be unsuitable for agriculture in all model projections, to

4, where the RF projections based on the four GCMs all

agree about the direction of change, that is, an increase or

Table 1 Type, list, and description of the variables used in Random Forest

Type of

variable

Variable name Description Reference

Response Global cropland cover Global cropland data, the fraction of a 0.5 9 0.5 grid cell pixel (*5 km)

covered by crops, for the period 1969–1999 was averaged and used as

response variable

Ramankutty and

Foley (1999)

Climate* Mean annual temperature and

mean annual precipitation

Long-term annual means for temperature and precipitation were calculated for

the baseline period (1969–1999), data were obtained from the Climatic

Research Unit (CRU). Units: Celsius degrees. Future climate projections

for temperature and precipitation were obtained from four Global Climate

Models for the periods 2020, 2050 and 2080. These results were sampled

onto a 0.5 9 0.5 degree grid according by simple lat-lon position (i.e., no

interpolation).Units: mm year-1

Jones and Harris

(2008)

Harman et al.

(unpublished)

Agro-ecological zones The map of global agro-ecological-zones provides a standardised framework

for the characterization of climate and terrain conditions relevant to

agricultural production

Harman et al.

(unpublished)

Socio–

economic

Regional gross domestic

product

We calibrated regional GDP based on labour and population for 18 regions for

the world. Normalized GDP is used here as a proxy for technology and

infrastructure at the regional level. Unit–less

Cai et al. (2015b)

Technology Nitrogen and phosphorus

Fertiliser Application

Global fertilizer and manure dataset v1 for the period 1994–1999 obtained

from the Socioeconomic Data and Applications Center (SEDAC). Units:

Kg/ha

Potter and

Ramankutty

(2010)

Biophysical Dominant soils Harmonized world soil database v1.2 obtained from the International Institute

for applied systems analysis (IIASA)

Fischer and

Nachtergaele

(2008)

Elevation Elevation layer. Units: metres Leemans and

Cramer (1991)

* The GCMs used in this study are: ACCESS1.3 (ECS = 3.54 K, TCR = 1.64 K) (Dix et al. 2013), CanESM2 (ECS = 3.69 K, TCR = 2.4 K),

IPSL_CM5A_LR (ECS = 4.13 K, TCR = 2.0 K) and MIROC5 (ECS = 2.72 K, TCR = 1.5 K) (Forster et al. 2013)
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Fig. 1 a Map of current crop cover and b random forest realisation of crop cover for the baseline period, used for cross-validation and c the

absolute difference between b and a
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decrease in crop cover. The magnitude of change for each

GCM/RCP projections is presented independently.

Direction and magnitudes of change

The RF model projects that crop cover will increase in over

75 % of grid cells by the period 2070–2100 (Table 3).

However, in the majority of these grid cells the magnitudes

of change are small and they are located in regions that

have currently very little crop cover. For example, a pixel

with 1 % crop cover that is projected to increase to 1.002 %

in the future will be registered as a positive change. If we

concentrate only on cells where crop cover is projected to

change by, for example, more than 5 % then the projected

changes are substantially more conservative.

There are areas where the projections indicate a transi-

tion from zero to non-zero crop cover in the future (see Fig

S3 in the supplementary material). We refer to these areas

as ‘novel’. Most of the novel crop cover is found in arid

and/or boreal regions currently marginal for traditional

agriculture. For example, in central Australia, and tropical

regions in Africa and Latin America the models project an

increase in crop cover of about 20 % (see Fig. S4 in the

supplementary material). In the case of central Australia,

the biggest limitations for traditional agriculture are

imposed by soil quality and climate conditions. In central

Africa and Latin America, in addition to some potential

biophysical limitations imposed by soil quality, there are

political and/or institutional drivers that prevent the

establishment of cropping systems. Although GDP is a

good socio-economic descriptor, some social and institu-

tional realities cannot be well described by this indicator

and are therefore not captured by our modelling system.

Consequently, these novel regions should be treated with

caution.

An intercomparison between the two RCP projections,

across the four GCMs, shows a higher level of agreement

between individual model projections for RCP 8.5 than

RCP 4.5. In the context of this analysis, temperature is a

key variable for calculating the AEZs and PAEZs because

this variable has a direct impact on the temperature

threshold above which crops can grow. Although we do not

use temperature thresholds as explanatory variables in the

RF model, they are indirectly considered by using the AEZ

and PAEZs. The GCMs we selected cover a wide cross

section of equilibrium climate sensitivities (ECS), which

are a large contributor to differences between models (Dix

et al. 2013; Forster et al. 2013). That is, for a given

radiative forcing, represented by the RCP scenarios, the

different GCMs will reach a given level of global warming

more or less rapidly. The good level of agreement we see

between the RCP 8.5 model projections relates to the fact

that all four GCMs reach about ?2 �C of global warming

by 2050 (Knutti and Sedláček 2012). For example, the

transient climate response (TCR) in ACCESS 1.3 is 1.64 K.

An analysis of 23 CMIP5 models found a similar range of

1.1–2.5 K with median 1.8 K (Forster et al. 2013).

Table 2 Ranking of explanatory variables according to their impor-

tance as measured by random forest. The importance measures show

how much MSE increases when a variable is randomly permuted. The

greater the effect of the variable to reduce MSE, the higher the

variable is ranked

Variable %IncMSE

Dominant soils 127.3

Regional gross domestic product 102.7

Altitude 98.5

Nitrogen fertiliser application 88.0

GAEZ 80.0

Mean annual temperature 72.7

Mean annual precipitation 70.7

Phosphorus fertiliser application 69.3

Table 3 Direction of change in crop cover relative to the total number of grid cells with crop cover values greater than zero in the baseline

period. Grid cells with NoData values were not taken into account to calculate the proportion of change (see Fig S3)

GCM RCP Proportion of grid

cells with higher crop

cover than baseline

Proportion of grid cells

with smaller crop cover

than baseline

Proportion of

grid cells that do

not change

ACCESS1.3 4.5 0.784 0.193 0.023

CanESM2 4.5 0.782 0.195 0.022

IPSL_CM5A_LR 4.5 0.782 0.195 0.024

MIROC5 4.5 0.778 0.200 0.023

ACCESS1.3 8.5 0.789 0.191 0.020

CanESM2 8.5 0.791 0.189 0.020

IPSL_CM5A_LR 8.5 0.789 0.189 0.022

MIROC5 8.5 0.785 0.195 0.020
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Our results suggest that large areas of agricultural

production in the Northern Hemisphere may become

vulnerable to climate change, with a marked decrease in

crop cover. The maps shown in Fig. 2 only reflect the

direction of change (increase/decrease) and do not reveal

the magnitude of change. As noted above, the direction

of change in the projected crop cover provides some

insight of the impact from climate and socio-economic

change but this information alone is incomplete. The

magnitude of change is shown in Fig. 3 and reveals that

the steppes region in Eastern Europe will display the

greatest decrease in crop cover, reducing by around

30–40 %. This is mostly due to a shift in the AEZs

geographic pattern. West India, the Argentinean Pampas

and north-west USA may decrease their crop cover also

by around 10–20 %. Nigeria is projected to decrease its

0

0

0

0

0

0
(a)

(b)

Fig. 2 Maps of total or partial agreement on the direction of change (increase or decline) in the crop cover by 2080. a shows the model

agreement between the 4 GCMs for the RCP 4.5; b shows model agreement between the 4 GCMs for the RCP 8.5. Values of 0 = no agreement,

1–4 = one to four models agree that the direction of change will be positive; from -4 to -1 = where one to four models agree the direction of

change will be negative
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crop cover by around 10 %. A large increase in crop

cover is projected for East Asia, and Europe, and a

smaller increase in Australia. The crop area increase in

Australia is both large and novel, so it may have a

relatively large impact in terms of quantity of output.

South America, USA, South and Central Africa and

boreal regions in general all show increases of about

10 % (Fig. 3). It is also important to note that model

errors averaged at 0.0025 % of crops cover, which is a

small so gives the model high levels of certainty.

DISCUSSION

Averaged over the global land mass, increases and

decreases in crop cover as a result of climate change tend

(a)

(b)

Fig. 3 Magnitudes of change in the projected crop cover relative to the baseline period. Positive values (blue) indicate a projected expansion in

crop cover; negative values (red) a projected contraction in crop cover. Magnitudes of change are presented as a proportion of existing crop

cover. The magnitudes presented in these maps are ensembles of the 4 GCMs. The magnitudes of change for each model can be found in Figs. S5

and S6 in the supplementary material

272 Ambio 2017, 46:265–276

123
� The Author(s) 2016. This article is published with open access at Springerlink.com

www.kva.se/en

http://dx.doi.org/10.1007/s13280-016-0818-1
http://dx.doi.org/10.1007/s13280-016-0818-1


to cancel each other out. The proportion of land where crop

cover is projected to increase is greater than the proportion

that is projected to decrease. However, this statement comes

with qualifications. First, the magnitude of change is very

small in a large number of grid cells, that is the aggregate

decrease or increase could be small. Second, we found sub-

stantial agreement between projections based on output from

the different GCMs and RCPs about the direction and mag-

nitude of change in areas where crop cover would decrease,

for example in Eastern Europe. This is of particular concern

given that food supplies are needed to increase by 70 % to

meet population demands by the mid–end of this century

(Bruinsma 2003). The area where crop could potentially

grow was not projected to increase significantly. Therefore,

the option to meet the 70 % increase in food supplies would

depend on agricultural intensification.

Some regions in the Northern Hemisphere will become

vulnerable, receiving a marked decrease in crop cover. All

GCMs for the two RCPs agreed on the direction of change.

This relates to a shift in the geographic pattern of the

PAEZ, which is linked to an expansion of the tropical zone,

one of the three climate zones (tropical, temperate and

boreal) that define the AEZs. The tropical zone, based on

the AEZ methodology by Ramankutty and Foley (1999), is

defined by the minimum temperature and the growing

degree days. Tropical regions are projected to expand, and

the minimum temperatures are projected to exceed the

threshold that defines this climatic region. However, the

magnitude of change varied between the RCPs by up to

20 %. Most discrepancies were found in boreal regions,

areas with high elevation and in central Australia, a region

characterised by desert, shrub land, temperate grasslands

and savannas. We identified regions of concern and

opportunities. Regions that may see a moderate increase in

crop cover, such as East Africa, Asia and Latin America,

where all models agreed on the direction and magnitude of

change, should be a priority target for adaptation (Lobell

2014) and investments. This, however, can be constrained

by sustainable development goals and policy settings. Our

regions of concern align with those of Lobell et al. (2008)

who forecast that South Asia and North-West Africa would

be vulnerable under future climate. But in addition, we

highlight that non-food-insecure regions with a stronger

socio-economic structure, like Europe, the Argentinean

Pampas, and central USA, may also see a decrease in crop

cover in future climates. These regions may invest in new

low carbon emission technologies to ameliorate the

impacts of climate change on crop cover.

A region’s vulnerability to climate change is a response

to a combination of climatic, biophysical, technological

and socio-economic drivers. From the climate perspective,

some important conclusions can be drawn from these

projections. First, changes in crop cover in temperate

regions are expected to be larger than in tropical regions

and so are affecting regions that currently are food secure,

such as some areas in the USA, South America and Europe.

This finding reflects climatic findings of Battisti and Naylor

(2009): that temperate regions will experience larger year-

to-year variations in temperature and precipitation than

tropical regions. Second, we found that the Northern

Hemisphere is more vulnerable to climate change than the

Southern as it sees larger and more severe losses in crop

cover. This could be due to a disparity between the

warming rates and precipitation patterns in the hemi-

spheres, where the Northern Hemisphere has a faster

warming rate and projected decrease in rainfall (Friedman

et al. 2013; Li et al. 2013) than the Southern. The disparity

in warming rates relates to land mass proportions and

global ocean currents that contribute to the warming in the

Northern Hemisphere. The results for the 2070–2100 per-

iod for RCP 4.5 and RCP 8.5 showed similar spatial pat-

terns but different magnitudes of change, although we

found better agreement between models under RCP 8.5

(due to the GCM’s climate sensitivities as explain in

‘‘Direction and magnitudes of change’’ section), as well as

a larger number of grid cells projected to change. Third,

from the food-security perspective, local studies at finer

geographic resolutions are still needed to identify concerns

or opportunities within the regions, at landscape and farm

scales. Regional studies should be undertaken with, for

example, physically driven dynamically downscaled cli-

mate data (White et al. 2013) instead of interpolated data.

The socio-economic and technological variables used in

this analysis are associated with some caveats. We

acknowledge that physiology driven models may yield

more accurate outputs, but our objective was to obtain a

crop cover projection at a large scale, the global scale, for a

long time period. The computational requirement and

model-parameterization needed to run specific physiologi-

cal models was out of the scope of this study. We have

already mentioned that aggregated data may be useful to

predict the big picture about crop cover, but at the cost of

losing detailed information for specific regions. This is the

case for Nigeria, which has the highest GDP in its region

but, because of the aggregation, the regional GDP is lower

than the Nigeria’s, so its crop cover is slightly underesti-

mated. One caveat of the technological indicators we

used—areas where fertiliser were applied—is that: (1) they

are static over time and (2) the spatial patter clearly denotes

political limits, which in some cases could be realistic as

different countries or states, as in the case of Australia, may

have different fertilisation managements. About the first

caveat, fertiliser application being static over time, we

acknowledge this limitation in our analysis; however, we

emphasise that projecting future fertiliser application at the

global scale is a major task (Scott et al. 2002) that was out
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of the scope of this study. In addition, any modelled map

showing future fertiliser application will be subject to

uncertainties that will add to those already existing in our

model, therefore making our projection difficult to

interpret.

CONCLUSIONS

Under the current climatic circumstances and CO2 emission

trajectories, a shift in crop cover patterns towards the end of

the century is likely to occur. Therefore, the option to meet

the 70 % increase in food supplies would depend on agri-

cultural intensification and investment in new low and/or

negative CO2 emission technologies. In the context of this

study crops were allowed to expand and grow in places

where the socio-economic, climatic and biophysical condi-

tions were optimal. Sowe assumed that crops are completely

mobile. However, our results indicated that crop cover did

not expand significantly outside its existing bounds, or at

least the novel agricultural systems projected in our models

are in marginal land, and the magnitude of change in crop

cover in the novel systems is small, no greater than 10 %.
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