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Steady state hematopoiesis

Millions of blood cells are continuously being born and 
are dying every day throughout the lifetime of an indi-
vidual [1]. High throughput cell production and robust 
regenerative capacity of hematopoiesis is sustained by a 
rare population of hematopoietic stem cells (HSCs) which 
are preserved in bone marrow (BM). HSCs can give rise 
to themselves, i.e., self-renew, and at the same time, dif-
ferentiate to multipotent progenitors (MPPs) with limited 
self-renewal, but high proliferative capacity, [2–5]. Sub-
sequently, MPPs generate lineage committed downstream 
progenitors, such as common myeloid (CMP) or common 
lymphoid progenitors (CLP) that are specified to myeloid 
and lymphoid lineage, respectively. The stepwise hemat-
opoietic lineage commitment is tightly regulated by both 
cell-intrinsic (transcription, epigenetics, metabolism, etc.) 
[6] and cell-extrinsic mechanisms (fluid factors, cell–cell 
interaction, etc.). A recent single cell analysis study has 
identified intermediate myeloid progenitor populations 
that show hierarchical, metastable genomic and regulatory 
states [7], although another study did not find such a cell 
population with mixed transcriptional priming [8]. In con-
trast, it has been shown that cell-extrinsic signals, e.g., 
cytokines and chemokines, can instruct cell lineage speci-
fication, as demonstrated by the case of myeloid supporting 
cytokines [9], and could activate lineage specific factors, 
e.g., PU.1 or GATA1, that execute and reinforce differen-
tiation [10].

Since steady-state hematopoiesis occurs dominantly 
in adult mammalian BM, it had been a long-standing 
hypothesis that BM microenvironment contains special-
ized cells that provide HSC and progenitors (HSPCs) 
with factors necessary and essential for their mainte-
nance, survival and differentiation [11]. Along with 
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development of advanced microscopy-based imaging, 
and temporally and spatially controlled genetic modifica-
tion of animals, the cellular and molecular components of 
BM environment, the so-called “niche”, has been uncov-
ered for the last decades (reviewed in [12, 13]): there are 
major regions of BM that have been shown to have niche 
functions to support HSC homeostasis, the so-called 
endosteal and perivascular niche. The endosteal niche is 
where HSCs are in close contact with bone-lining oste-
oblastic cells. Despite of the fact that osteoblastic cells 
have been first demonstrated as the key HSC niche com-
ponent [14, 15], several evidences subsequently raised 
concerns that the HSC function might not be regulated 
directly by osteoblastic niche but rather indirectly via 
fluid factors produced by the adjacent osteoblasts. On the 
other hand, the perivascular niche is composed of mesen-
chymal stromal cells (MSCs) and endothelial cells (ECs) 
that secrete HSC maintenance factors, such as stem cell 
factor (SCF) [16] and CXCL12 [17]. Although MSCs 
are likely a heterogeneous population, consisting of one 
surrounding the vessels and another forming a reticular 
network throughout BM, it is clear that they play criti-
cal roles for HSC homeostasis. However, the cellular 
heterogeneity and hierarchy within MSCs and ECs, and 
the functional relationship between distinct populations 
remains to be better defined.

Inflammation‑induced activation of early 
hematopoiesis in bone marrow

In steady state, most HSCs are kept in quiescence, i.e., 
in G0 of cell cycle, and are activated only infrequently 
to divide about once every months [12, 18], which is in 
stark contrast to actively proliferating progenitors. Recent 
studies have demonstrated that HSCs rarely contribute to 
hematopoiesis [19, 20], while other studies have claimed 
that they are continuously engaged in blood formation [21]. 
However, when the pool of short-lived mature hematopoi-
etic cells is consumed, and therefore, needs to be replen-
ished, e.g., in the case of naturally occurring hematopoietic 
stresses such as life-threatening blood loss, infection or 
other inflammation, many HSCs can be activated to divide 
and generate mature lineage cells that are lost. HSC activa-
tion is mediated by sensing the demand of hematopoietic 
cell production through extracellularly expressed surface 
receptors such as cytokine receptors, chemokine receptors, 
or pattern recognition receptors (PRRs), and the activation 
of respective receptors and their subsequent intracellular 
signaling lead to migration, proliferation and/or differen-
tiation. Understanding how hematopoiesis is altered upon 
hematopoietic stress has become a major focus of research 

in the field, and has been addressed using different animal 
models challenged with hematopoietic stresses, such as 
infection or chronic inflammation (Fig. 1).

One of the hematopoietic stresses that are highly con-
served in evolution and relevant to clinics is infection. 
In response to viral or bacterial infection, professional 
immune cells in the front line of defense becomes rap-
idly activated for terminal differentiation and functional 
maturation, and exert their specialized immune function to 
fight against invading pathogens. Since immune cells are 
short-lived and eventually eliminated after fulfilling their 
function, early hematopoiesis needs to detect the danger 
signals from the site of infection, via respective recep-
tors, and translate them to direct hematopoietic output to 
rebuild and sustain the immune system for future hemat-
opoietic challenges. Recent studies have proposed three 
possible, not mutually exclusive mechanisms (Fig. 2) [22]: 
(a) a cytokine-dependent mechanism, in which immune 
cells produce an array of pro-inflammatory cytokines/
chemokines including type I Interferons (IFNs) at the local 
site of infection and/or in the BM, and act on respective 
receptors to activate the downstream signaling and induce 
proliferation/differentiation in HSPCs (Fig. 2➀, ➁) [23–
27]; (b) a pathogen sensing receptor-dependent mechanism, 
where pathogen-associated molecular patterns (PAMPs) 
are recognized by HSPCs themselves via the respective 
pattern recognition receptors (PRRs), such as Toll-like 
receptors (TLRs), Nod-like receptor (NLRs), and enhance 
their proliferation, differentiation and migration (Fig. 2➂) 
[28–32]; (c) a mechanism that combines both of the above. 
Direct TLR activation in HSPCs results in production of 
pro-inflammatory cytokines such as IL-6, which cell intrin-
sically, either in a paracrine or autocrine manner, enhance 
proliferation and myeloid differentiation under neutropenic 
conditions in vivo (Fig. 2➃) [33].

These findings demonstrate HSPC response to infec-
tion by which non-immune HSPCs are able to sense 
systemically spreading infection via indirect or direct 
mechanism and adapt hematopoiesis during a course 
of infection. However, if inflammation does not cease 
timely and is sustained for longer times, it might ulti-
mately cause detrimental effects, such as continuous 
tissue damage/repair, chronic diseases, and cancer. It 
has been recently shown that sustained IFN-α/γ activa-
tion during chronic infection impairs HSC function, and 
can ultimately lead to BM failure [34, 35]. IL-1 directly 
activates proliferation and differentiates HSCs, result-
ing in their reduced self-renewal potential [36]. Chronic 
TNF-α signaling is associated with myelodysplastic 
syndrome and bone marrow failure [37]. Therefore, it is 
critical that inflammatory responses stop when no longer 
needed.
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Inflammation‑induced activation of the 
hematopoietic niche

Many lines of evidences have revealed that BM niche 
cells including MSCs and ECs express an array of 
cytokine/chemokine receptors and PRRs, and recognize 
an inflammatory milieu that is generated locally or sys-
temically upon hematopoietic challenges. The activation 
of inflammation-sensing receptors in MSCs and ECs 
modulates their cellular functions, and triggers produc-
tion of a second wave of other inflammatory factors that 
influence hematopoiesis: pro-inflammatory cytokines 
regulate cytokine/chemokine expression profile in MSCs. 
IFNγ alone or in combination with tumor necrosis fac-
tor (TNF) or IL-1 induces the production of nitric-oxide 
synthase (NOS) or prostaglandin E (PGE)-2 in MSCs, 
thereby inhibiting T cell or NK cell activation, respec-
tively (Fig. 2➄) [38]. IL-6 secreted by MSCs polar-
ize macrophages into anti-inflammatory phenotype that 
contribute to insulin resistance in type 2 diabetes [39]. 
Granulocyte colony-stimulating factor (G-CSF), a mye-
loid-supporting cytokine, up-regulated upon infection, 
directs MSC to enhance myelopoiesis by suppressing B 
lymphopoiesis (Fig. 2➅) [40]. G-CSF also suppresses 

production of CXCL12 from MSCs in BM and mobi-
lizes HSC into circulating blood [41]. Ligation of TLRs 
expressed on MSCs leads to modulation of their differ-
entiation, proliferation, migration, immunomodulation 
and bone regenerating potential [42–44]. Simultaneously, 
upon TLR stimulation, MSCs induce monocyte egress 
from BM by expressing monocyte recruiting chemokine, 
CCL2 (MCP1) (Fig. 2➆) [45, 46].

In addition to ECs in the peripheral organs often 
exposed to infection, BM-resident ECs express multiple 
PRRs, and contribute to regulation of various immune 
responses against systemic infection [26]. Several stud-
ies have shown that G-CSF is predominantly produced 
from ECs in BM in response to TLR4 activation, and 
drives emergency granulopoiesis, represented by rapid 
neutrophil production in BM [47, 48], and neutrophil 
recruitment to the site of infection [49]. This is in part 
in line with the previous finding that upon stimulation 
with IL-1β and TNF-α, BM-derived ECs produce granu-
locyte macrophage colony-stimulating factor (GM-CSF) 
which recruits neutrophils and expands HPCs in the BM 
(Fig. 2➇) [50, 51]. Pro-inflammatory cytokines regulate 
hematopoiesis not only via cytokine secreted from ECs in 
BM but also via cell–cell adhesion molecule expressed on 

Fig. 1  Hematopoietic lineage commitment from hematopoietic stem 
cells to mature cells. Hematopoietic stem cells (HSCs) at the apex 
of hematopoietic hierarchy self-renew (circle arrow) and give rise 
to multipotent progenitors (MPP) with limited self-renewal poten-
tial (dashed circle arrow). MPP produce myeloid and lymphoid pro-

genitor cells that further differentiate to myeloid and lymphoid cells, 
respectively. This lineage commitment process is regulated by both 
cell-extrinsic factors, e.g., fluid factors, adhesion molecules, and cell-
intrinsic factors, e.g., transcription factors, epigenetic modification, 
metabolism
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ECs. In vivo administration of TNF-α and LPS expands 
the HPC population through augmentation of Notch 
signals between HPC and ECs in the BM [52]. Besides 
MSC- or EC-dependent hematopoietic modulation, it is 
of note that through MSC–EC interaction, MSCs up-reg-
ulates IL-6 production and modulates the responsiveness 
of ECs to inflammatory cytokines [53].

Altogether, these studies suggest that inflammation 
directly affects cellular functions of both MSCs and ECs, 
and regulates hematopoiesis mainly through modulation 
of their cytokine profiles.

Inflammation and hematopoietic malignancies

Inflammation has been long considered as one of the risk 
factors for cancer development in many tissues, espe-
cially in solid organs [54]. However, there has not been 
any strong evidence supporting a potential role of inflam-
mation as a driving force for development of hemato-
logic malignancies. Recent development of high resolu-
tion sequencing has shown that malignant clones in some 
hematologic malignancies accumulate somatic muta-
tions in inflammatory genes including NFκB, myeloid 

Fig. 2  Direct and indirect infection-induced hematopoietic activation 
in BM. Viral infection is primarily recognized by immune cells such 
as cytotoxic T lymphocytes (CTL), macrophages that upon activation 
secrete interferons (IFNs) or granulocyte colony-stimulating factor 
(G-CSF) (➀). IFNs activate HSPCs to proliferation and reduce their 
self-renewal (➁). Pathogen-associated molecule patterns (PAMPs) 
derived from bacterial infection directly act on pattern recognition 
receptors (PRRs) expressed on hematopoietic stem and progenitor 
cells (HSPCs) and direct their differentiation to myelopoiesis (➂). 
At the same time, HSPCs are induced to secrete pro-inflammatory 
cytokines such as interleukin-6 (IL-6) that activate themselves in a 

paracrine or autocrine manner (➃). IFNs produced by immune cells 
upon infection also triggers production of IL-6 and nitric-oxide syn-
thase (NOS) from mesenchymal stromal cells (MSCs) that modulate 
immune cell differentiation and function (➄), while G-CSF secreted 
by immune cells suppresses CXCL12 and IL-6 secretion in MSCs 
resulting in the reduction of B lymphopoiesis (➅). PRR activation on 
MSCs leads to the production of CCL2 that induces monocyte traf-
ficking (➆). Lastly, G-CSF or granulocyte macrophage colony-stimu-
lating factor (GM-CSF) are produced by endothelial cells in response 
to PRR activation and enhance myeloid differentiate of HSPCs (➇)
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differentiation primary response gene 88, TLR4, and TNF 
receptor-associated factors, and thereby, are hyper-pro-
liferative or resistant to apoptosis [55]. Other evidence to 
support inflammation-driven leukemogenesis are shown 
by the population-based epidemiological studies in the 
Swedish cancer registry which analyzed the database of 
patients with hematologic malignancies arising from HSC 
or myeloid progenitors, and showed significantly strong 
association between history of infection or autoimmunity, 
and the high risk of incidence of hematologic malignan-
cies [56, 57]. It has been recently shown that dysfunction 
of BM niche also affects blood homeostasis, and in some 
cases although rare events, contribute towards initiation of 
hematologic malignancies, suggesting a leukemic niche 
[58]. Specific genetic deletion of Shwachman–Diamond 
Syndrome (SDS) in MSCs results in myelodysplasia in 
mice, some of which develop secondary leukemia [59]. 
Furthermore, MSC induces genotoxic stress in HSC via 
danger-associated molecule patterns via a TLR4 signaling 
axis, and the same mechanism was found in human SDS 
patients, suggesting mesenchymal inflammatory cues that 
induce genetic ablation in HSC and predicts disease out-
come in human SDS [60].

Taken together, these findings have suggested that 
inflammation fosters accumulation of genetic alterations, 
possibly by preventing pre-malignant HSPC clones from 
apoptosis and enhancing more mutations, and drive malig-
nant transformation to initiation and progression of mye-
loid malignancies [61]. However, mechanistic insight on 
how chronically sustained inflammatory stimuli promote 
acquisition of genetic events in pre-leukemic clones, and 
contribute to clonal evolution in the development of hema-
tologic malignancies, and to what extend cell-intrinsic and 
-extrinsic inflammation is relevant, remains to be deter-
mined at the cellular and molecular level.

Future direction

Recent studies have advanced our understanding of how 
early hematopoiesis respond to inflammation, and direct 
hematopoiesis via indirect (inflammatory mediators) or 
direct mechanisms (pathogen/danger sensors) to cope 
with exogenous and endogenous hematopoietic chal-
lenges. Depending on the degree or type of inflammation, 
the hematopoietic hierarchy might be organized differently 
from the one in steady state, as indicated by a recent study 
that identified a new cell population, emerging only upon 
inflammation: stem cell-like megakaryocyte-committed 
progenitors exist in a dormant status and thereby contrib-
ute little to megakaryopoiesis in the steady state. However, 
in response to acute inflammation, they become metaboli-
cally active and rapidly produce platelets for replenishment 

[62]. Since inflammation alters the immune-phenotype of 
hematopoietic cells, it is difficult to identify each cell popu-
lation at different hematopoietic hierarchy simply by phe-
notype. Thus, although challenging, it would be important 
to determine how hematopoiesis is affected by inflamma-
tion and what are the commonalities and differences in var-
ious inflammatory situations at the cellular and molecular 
level, and how hematopoietic cell-intrinsic and -extrinsic 
signals contribute to inflammation-adapted hematopoiesis, 
respectively. Furthermore, there might be common biologi-
cal changes in hematopoiesis in inflammation and aging, 
proposing inflamm-aging [63]. Given that low grade of 
inflammation accelerates aging and possibly contribute to 
aging-associated leukemogenesis, eliminating unwanted 
inflammatory responses will be a potential approach to pre-
serve the beneficial role of inflammation in regulation of 
hematopoiesis and immunity while preventing a functional 
decline in hematopoiesis and the emergence of malignant 
clones.
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