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Introduction

Current advances in the development of sequencing tech-
nology enable us to identify almost all the major driver 
mutations in myeloid neoplasms [1–4]. In myelodysplasia 
including myelodysplastic syndromes (MDS) and myelo-
dysplastic/myeloproliferative neoplasms (MDS/MPN), 
whole exome sequencing in about 200 cases completely 
revealed significant driver mutations whose frequencies 
were higher than 0.5% (Fig. 1) [4]. Along with these, mul-
tiple loss-of-function mutations [5–12], and recurrent acti-
vated/gain-of-function mutations [13–16] are likely to be 
the promising candidates for future development of novel 
therapy by inhibitory compounds (Fig. 2). In addition to 
functional significance, recent sequencing technology also 
uncovered clonal dynamics based on detailed information 
of mutated clone size. In particular, multiple samples tested 
at serial time points in each case can conclude acquisition 
timing of each mutation, clonal architecture, and intra-
tumor heterogeneity in myelodysplasia [4, 17–20].

Using these methodologies combined with mechanistic 
and clinical analyses, new somatic mutations of SET-bind-
ing protein 1 (SETBP1) were discovered in MDS/MPN and 
secondary acute myeloid leukemia (sAML) (Fig. 3). Many 
follow-up studies have been conducted by various groups 
to clarify and detail the pathogenesis associated with 
SETBP1 mutations. This review article comprehensively 
describes genetics, biological, and clinical implication of 
SETBP1 mutations, including most recent research possible 
owing to detailed new genetic methodology and following 
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functional investigation. Overall, of note is that recurrent 
SETBP1 mutations are frequently identified in distinct phe-
notype of myeloid neoplasms, resulting in its obvious acti-
vation of leukemogenesis.

Activation of wild‑type SETBP1 in myeloid 
neoplasms

In 2001, SETBP1 was reported as a new protein binding 
to SET which has an inhibitory activity for protein phos-
phatase 2A (PP2A) [21]. Then, SETBP1 was also found 

to be essential for granulocytic hematopoiesis together 
with EVI1 (MECOM) [22]. Before discovery of somatic 
mutations as below, activation of wild-type SETBP1 was 
already shown in various hematological neoplasms. For 
example, SETBP1 is a fusion partner gene in acute T cell 
lymphoblastic and myeloid leukemias and primary mye-
lofibrosis (PMF) [23–25]. It is also a downstream target 
gene associated with MECOM-mediated leukemia [26]. 
Clinically, in cases with AML, SETBP1 overexpression 
was a poor prognostic factor [24]. In addition, SETBP1 
locus (18q12.3) was amplified in blast phase of chronic 
myeloid leukemia [27]. From such multiple evidence, 
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SETBP1 was most likely to be a major oncogene in mye-
loid neoplasms.

Discovery of somatic SETBP1 mutations

In December 2012, three independent studies of somatic 
SETBP1 mutations were presented in annual meeting of 
American Society of Hematology. Piazza et al. reported 
somatic SETBP1 mutations were frequently identified 
in atypical chronic myeloid leukemia (aCML) by whole 
exome sequencing [28]. In this study, 24% of cases with 
aCML were positive for mutations of this gene. Another 
study group from Nagoya University Department of 
Pediatrics (Professor Kojima group) showed that the 
same recurrent mutations of SETBP1 were identified in 
juvenile myelomonocytic leukemia (JMML) [29]. Last 
of the independent studies carried out in 727 cases with 
various myeloid malignancies by international collabo-
ration between Cleveland Clinic and The University of 
Tokyo demonstrated that 7.2% of cases (n = 52) were 
positive for the recurrent SETBP1 mutations at Asp868, 
Ser869, Gly870, Ile871, and Asp880 (Fig. 3). In this 
large cohort, somatic SETBP1 mutations were most 

frequent in chronic myelomonocytic leukemia (CMML) 
and sAML [30]. According to no loss of heterozygosity 
detected at SETBP1 locus by single nucleotide polymor-
phism array analysis, these mutations were proved to be 
heterozygous. Allele-specific PCR of cDNA from mutant 
cases, the mRNA expression of mutated alleles was ele-
vated compared to intact ones [30]. Since SETBP1 was 
supposed to be an oncogene in myeloid neoplasms, it 
only seems plausible to hypothesize that these SETBP1 
mutations activate leukemogenic SETBP1 function. 
This hypothesis was proved by multiple functional stud-
ies performed using in vivo model as discussed below. 
Surprisingly, most of these recurrent somatic mutations 
are located at the same positions of germline muta-
tions already reported in Schinzel–Giedion syndrome 
(Fig. 3a) [31]. This congenital disease is characterized 
by severe mental retardation and short-term survival [32, 
33]. Since no inherited case was reported and, therefore, 
it is caused by de novo germline mutations [31, 34–37], 
this syndrome is not likely to be related to typical age-
related myeloid neoplasms such as MDS/MPN and 
sAML. No cases with somatic SETBP1 mutations har-
boring symptoms of Schinzel–Giedion syndrome have 
been reported till date.

Fig. 2  Ideogram of major driver mutations validated by genetic and functional studies. So far, at least mutations of 54 genes were reported to be 
pathogenic in myelodysplasia
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Disease phenotype with SETBP1 mutations

After these initial reports, many follow-up confirma-
tory studies of SETBP1 mutations were published in 
whole myeloid neoplasms. In aCML, SETBP1 muta-
tions are most frequently identified (25–33%) [38], and 
in the other MDS/MPN, including JMML (8%) [29] and 
CMML (up to 15%) [30, 39, 40] mutations of this gene 
are also predominantly positive. In addition, SETBP1 
mutations were also significantly more prevalent in the 
cases with sAML (17%) (P < 0.001) (Fig. 4a). Similarly, 
somatic SETBP1 mutations were secondary events fol-
lowing somatic or germline RAS-pathway mutations in 
JMML of a Japanese cohort [29], as well as in an Ital-
ian JMML cohort [41]. This also indicates that SETBP1 
mutations do play a significant role rather in secondary 
leukemic evolution than in initial disease presentation 
of JMML. In analogy, secondary aCML evolution from 
acute myelomonocytic leukemia resulted from acquisi-
tion of SETBP1 mutation [42]. In 2 out of 25 cases with 

blast phase of CML, SETBP1 mutations were identi-
fied as secondary events [30]. By targeted sequencing 
in case series of therapy-related MDS, SETBP1 muta-
tion was also identified [43, 44]. These findings suggest 
that SETBP1 mutations play a main role in secondary 
leukemogenesis as later subclonal events, presumably 
required for antecedent disease initiation by other pri-
mary genetic defects [45]. Sanger sequencing could not 
sufficiently detect SETBP1 mutations in CMML [39, 46] 
or therapy-related myeloid neoplasms [43], hence is not 
likely to be recommended to detect typical small clones 
with the mutation. In cases with another MDS/MPN 
subtype, refractory anemia with ring sideroblasts and 
thrombocytosis (RARS-T), SETBP1 mutation was also 
frequently observed (13%) [47].

While classical myeloproliferative neoplasms (MPN), 
including polycythemia vera (PV), essential thrombo-
cythemia (ET), and PMF are relatively less associated 
with SETBP1 mutations [48]. Another MPN subtype, 
chronic neutrophilic leukemia (CNL), which is closely 

a

b

Fig. 3  Somatic and germline mutations of SETBP1. a Somatic muta-
tions of SETBP1 were discovered in cases with myelodysplasia. 
Location of the somatic mutations was identical to germline muta-

tions of SETBP1 (asterisk), causing congenital Schinzel–Giedion 
syndrome (SGS). b Targeted-deep sequencing confirmed somatic sta-
tus of the mutations in myeloid neoplasms
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related to CSF3R mutations [49], is also frequently 
affected by SETBP1 mutations (14–56%) [50–52]. 
SETBP1 mutations in CNL cases are usually subclonal 
events following initial CSF3R mutations with a reported 
exceptional case [53]. Interestingly, SETBP1 mutations 
are more prevalent in cases with CSF3R mutations than 
in those with wild-type CSF3R [50]. In fact, simultane-
ous decrease of allele frequencies for both CSF3R and 
SETBP1 mutations was found after treatment for a CNL 
case with Ruxolitinib [54].

Contrary to MDS/MPN or sAML, cases with de novo 
AML were less affected by SETBP1 mutations (fre-
quency of mutations was <1%) (P < 0.001) (Fig. 4b). 
Similarly, SETBP1 mutation was not identified in child-
hood AML cohort [55, 56]. Overall, SETBP1 mutations 
are tissue-specific events acquired by myeloid lineages, 
and most likely to provide the cells with myeloprolifera-
tive potential.

Coordination with additional genetic events

For coordinating leukemogenesis, several genetic events 
were reported to be frequently detected in SETBP1-
mutated cases. As described above, SETBP1 mutations 
are frequently mutated in CMML, aCML, and JMML, 
where mutations of ASXL1, SRSF2, and CBL are also 
prevalent (Fig. 5a). Therefore, mutations in ASXL1, 
SRSF2, CBL, and SETBP1 are frequently correlated with 
each other to present the MDS/MPN phenotypes [28, 30, 
48, 57–59]. Among these, a synergistic effect of con-
comitant SETBP1 and ASXL1 mutations was function-
ally confirmed by the experiments using in vivo model, 
which revealed that ASXL1 defects initiate differentia-
tion block and that SETBP1 activation adds proliferative 
potential [60]. In another context, SETBP1 mutations are 
also acquired by the cells which already harbor the con-
dition of clonal expansion due to initial genetic events, 
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for example MDS (Fig. 5b, c) [45]. Consequently, typi-
cal primary genetic events of MDS including U2AF1, 
and RUNX1 were also associated with SETBP1 mutations 
[28, 30]. However, common primary mutations of TET2 
and secondary SETBP1 mutations tended to be mutually 
exclusive [58].

In addition to these somatic mutations, particular 
chromosomal alterations are associated with SETBP1 
mutations. -7/del(7q) are remarkably coincident with 
SETBP1 mutations, which is confirmed by multiple 
independent studies (Fig. 4c) [30, 45, 57, 61]. Isochro-
mosome 17q (i(17q)) is also associated with SETBP1 
mutations (54%) [45, 48, 57, 62]. Especially, TP53 and 
SETBP1 mutations were completely exclusive in cases 
with i(17q), suggesting that these two major prognostic 
events are independently involved in poor outcome in 
myeloid neoplasms [63]. Such concomitant poor prog-
nostic chromosomal lesions are compatible with worse 
prognosis in cases with SETBP1 mutations as men-
tioned below.

Clinical implications and prognostic impacts

Clinically, SETBP1 mutations have remarkable impacts 
on patients’ characteristics and outcome. In a large adult 
cohort, SETBP1 mutations were significantly more fre-
quent in older cases (>60 years old) (P = 0.01), cases with 
-7/del(7q) (P = 0.01), sAML (P < 0.001), and CMML 
(P = 0.002), most of which are well-known poor prog-
nostic factors. Clustering analysis of gene-expression pro-
files revealed that cases with SETBP1 mutations and those 
with high expression of wild-type SETBP1 belonged to 
the closely clustered groups characterized by high expres-
sion of putatively oncogenic MECOM, TCF4, BCL11B, and 
DNTT genes [30], suggesting poor outcome in mutant cases. 
MECOM overexpression is recapitulated in a CNL case with 
SETBP1 mutation [64]. In fact, SETBP1 mutation is really 
a poor prognostic factor. In whole cohort of adult cases, 
overall survival is significantly shorter in cases with the 
mutations (HR = 2.3, 95% CI = 1.6–3.2, P < 0.001), and 
this tendency is more evident in younger cases (HR = 4.9, 
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95% CI = 2.3–5.4, P < 0.001) (Fig. 4d) [30]. These find-
ings were reproduced in many other studies [28, 45, 57, 58, 
65, 66]. By multivariable analysis including clinical factors 
and other genetic events as variables, SETBP1 mutation was 
an independent factor for overall survival (HR = 2.9, 95% 
CI = 1.7–4.8, P < 0.001) as well as male sex, higher age 
(>60 years old), and ASXL1, CBL, and DNMT3A mutations. 
While it was a significant worse prognostic factor by uni-
variate analysis, -7/del(7q) abnormality was qualified after 
multivariable analysis because of confounding SETBP1 
mutation. By following subgroup multivariable analysis 
in the cohort of MDS and CMML (with white blood cell 
count less than 12,000/μl) to which international prognostic 
scoring system (IPSS) score is applicable, SETBP1 muta-
tion was an independent prognostic factor (HR = 1.8, 95% 
CI = 1.0–3.1, P = 0.04) as well as higher IPSS score. To 
further clarify a clinical effect of concomitant mutations, 
most significant genetic combination of CBL and SETBP1 
mutations was assessed. Cases with both mutations showed 
significantly shorter OS than those without either of muta-
tions [30]. Finally, in cases with JMML, secondary SETBP1 
mutation was also significantly associated with poor prog-
nosis (shorter transplantation-free survival) [29, 67]. Collec-
tively, SETBP1 mutations are significantly associated with 
poor prognosis in any disease subset.

Molecular biology

Discovery of somatic SETBP1 mutations in myeloid neo-
plasms prompted multiple groups to clarify leukemo-
genic mechanisms induced by mutated SETBP1 (Fig. 6). 
As described above, mutant alleles are highly expressed 
compared to wild-type alleles [30]. In addition, protein 
degradation is attenuated through the mutations located 
at SETBP1 SKI homology region resulting in increase 
of protein stability [28, 30]. Therefore, at least, higher 
amount of mutant SETBP1 protein in cases with SETBP1 
mutations are supposed to be a major consequence simi-
lar to overexpression of wild-type protein as a dose effect 
(Fig. 4b) [30]. Moreover, by comparison between the 
same amount of wild-type and mutant SETBP1 proteins, 
more proliferative potential was observed in the mutant 
experiments [30]. Mutated proteins also bind more effi-
ciently to DNA at promotor sites of target genes [68, 69]. 
Altogether, SETBP1 mutations were supposed to have 
both quantitatively and qualitatively activating effects on 
SETBP1 functions.

SETBP1 protein is involved in various other leukemo-
genic functions which were previously confirmed by vari-
ous study groups. Out of these, its activated function as 
a transcription factor induces overexpression of HOXA9 
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Fig. 7  SETBP1 activation 
causes HOXA9/10 induction. a 
Setbp1 binds to Hoxa10 pro-
moter (ChIP assay). b Hoxa10 
knockdown suppresses colony 
formation of cells immortal-
ized by Setbp1 transduction. 
c HOXA9 and HOXA10 are 
overexpressed in SETBP1 
mutants. d HOXA9 and SETBP1 
expressions correlate in patients 
with myeloid neoplasms
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and HOXA10, resulting in upregulation of self-renewal 
potential in myeloid neoplasms (Fig. 7) [30, 70]. Another 
SETBP1-mediated oncogenic potential is induced by 
down-regulation of tumor suppressor RUNX1, whose 
expression is attenuated through activation of SETBP1 
binding more efficiently to promotor sites of RUNX1 
(Fig. 8) [68]. An additional target of activated SETBP1 is 
a well-known oncogene MYB. Mutant forms of SETBP1 
bind to MYB promotor sites and cause overexpression of 
this gene [69]. For these HOXA9/10, RUNX1, and MYB 
studies, transplantation experiments in mouse models 
were performed to confirm biological significance of 
mutated SETBP1 in myeloid leukemogenesis.

SET-PP2A pathway is in the downstream of classi-
cal SETBP1 activation. In hematopoietic progenitor cells 
immortalized by forced expression of mutant SETBP1, 
phosphorylation of PP2A was accelerated (Fig. 6) [28, 
30]. Mouse transplantation model of mutated SETBP1 
also showed PP2A inhibition and HOXA9/10 activation 
[60]. These findings suggest that phosphorylated (loss-
of-function) PP2A could be a therapeutic target of PP2A 
activators.

A most recent study has proposed very surprising but 
interesting concepts by comparing somatic and germline 
SETBP1 mutations [71]. They described that consequence 
of SETBP1 mutations are different among substitutions in 
SETBP1 residues. Mutations at I871 resulted in a weak 
increase in protein levels and are significantly more fre-
quent in Schinzel–Giedion syndrome (germline) than in 
myeloid neoplasms (somatic). On the other hand, substitu-
tions in residue D868 led to the largest increase in protein 
levels. Cases with germline mutations affecting D868 have 
enhanced cell proliferation in vitro and higher incidence of 
cancer compared to patients with other germline SETBP1 
mutations [71]. While these updated functional studies are 
helpful to understand biological mechanisms of leukemo-
genesis, therapeutic strategy to this distinct molecular tar-
get, SETBP1 mutation, is not established yet and requires 
further investigation.

Summary

Approximately 13 years after cloning SETBP1, this gene 
is now commonly recognized as a driver oncogene almost 
exclusively in myeloid neoplasms. Somatic mutations in 
myeloid neoplasms are identical to germline mutations in 
Schinzel–Giedion syndrome. Activating SETBP1 mutations 
is a poor prognostic factor and frequently acquired as sec-
ondary event. Functionally, these mutations are involved 
in various leukemogenic mechanisms through phosphoryl-
ated PP2A, HOXA clusters, RUNX1, MYB, other associated 

mutations, and chromosomal abnormalities. Activation of 
SETBP1 results in a distinct disease entity and inhibition 
of this protein as a molecular target should be an attractive 
therapeutic strategy.
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