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Introduction

CCAAT/enhancer binding protein α (C/EBPα), the pro-
totypical basic region-leucine zipper transcription factor, 
plays a key role during hematopoiesis. Herein, I first review 
its molecular properties, protein interactions, protein modi-
fications and other levels of post-transcriptional control, 
and its ability to affect not only differentiation, but also 
cell proliferation and survival. The role C/EBPα plays dur-
ing normal myelopoiesis will then be described, including 
regulation of its expression and activity by other factors, 
and finally, the central role that reduced C/EBPα activity 
or expression plays during myeloid transformation will be 
delineated.

Dimerization, DNA‑binding, and trans‑activation

C/EBPα was initially purified from hepatocytes based on 
its ability to bind the CCAAT box in the herpes simplex 
virus thymidine kinase promoter and the enhancer core 
sequences of simian virus 40, polyomavirus, and murine 
sarcoma virus [1, 2], followed by isolation of its cDNA 
from the same source [3]. The C-terminus of C/EBPα was 
noted to lack helix-breaking glycine and proline residues 
and to contain leucines spaced every seven residues, pre-
dicting formation of an amphipathic α-helix with a hydro-
phobic surface capable of mediating dimerization. This 
domain was designated the leucine zipper (LZ) [4]. Muta-
genic analysis revealed that DNA-binding by C/EBPα 
requires dimerization via its 36-residue LZ followed by 
site-specific DNA contact by the adjacent 37-residue basic 

Abstract  CCAAT/enhancer binding protein α (C/EBPα) 
dimerizes via its leucine zipper (LZ) domain to bind DNA 
via its basic region and activate transcription via N-ter-
minal trans-activation domains. The activity of C/EBPα 
is modulated by several serine/threonine kinases and via 
sumoylation, its gene is activated by RUNX1 and addi-
tional transcription factors, its mRNA stability is modified 
by miRNAs, and its mRNA is subject to translation con-
trol that affects AUG selection. In addition to inducing dif-
ferentiation, C/EBPα inhibits cell cycle progression and 
apoptosis. Within hematopoiesis, C/EBPα levels increase 
as long-term stem cells progress to granulocyte–monocyte 
progenitors (GMP). Absence of C/EBPα prevents GMP 
formation, and higher levels are required for granulopoie-
sis compared to monopoiesis. C/EBPα interacts with AP-1 
proteins to bind hybrid DNA elements during monopoie-
sis, and induction of Gfi-1, C/EBPε, KLF5, and miR-223 
by C/EBPα enables granulopoiesis. The CEBPA ORF is 
mutated in approximately 10 % of acute myeloid leukemias 
(AML), leading to expression of N-terminally truncated C/
EBPαp30 and C-terminal, in-frame C/EBPαLZ variants, 
which inhibit C/EBPα activities but also play additional 
roles during myeloid transformation. RUNX1 mutation, 
CEBPA promoter methylation, Trib1 or Trib2-mediated C/
EBPαp42 degradation, and signaling pathways leading to 
C/EBPα serine 21 phosphorylation reduce C/EBPα expres-
sion or activity in additional AML cases.

Transcriptional control in myeloid cell  
development and related diseases

A. D. Friedman (*) 
Division of Pediatric Oncology, Johns Hopkins University, 
Cancer Research Building I, Room 253, 1650 Orleans Street, 
Baltimore, MD 21231, USA
e-mail: afriedm2@jhmi.edu



331C/EBPα in myelopoiesis and AML

1 3

region (BR), the combination also designated the bZIP 
domain [5, 6]. bZIP domain:DNA co-crystallization and 
structural analysis confirmed this model of DNA-binding, 
identifying specific contacts between the C/EBPα BR and 
the DNA major groove and phospho-ribose backbone [7, 
8]. The BR also contains the C/EBPα nuclear localization 
signal [9, 10].

C/EBPα was further found capable of transcriptional acti-
vation of the serum albumin promoter via a specific binding 
site, dependent upon integrity of an N-terminal and internal 
trans-activation domains (TADs) [9, 11, 12], as diagrammed 
(Fig. 1). Interactions of co-activators or co-repressors with C/
EBPα have not been extensively characterized, although the 
SWI/SNF complex was found to contact a central TAD to 
facilitate gene activation [13], the TIP60 histone acetyltrans-
ferase binds C/EBPα to increase trans-activation [14], and 
DEK, a protein that interacts with histone modifiers, medi-
ates phosphorylation-dependent activity of the N-terminal C/
EBPα TAD [15]. C/EBPα can also impact gene expression 
independent of DNA-binding; for example, interaction of 
the non-DNA contact surface of its BR with E2F1 reduces 
c-Myc transcription [16, 17], and C/EBPα displaces HDAC1 
or HDAC3 from chromatin-bound NF-κB p50 to activate 
Bcl2, Flip, or Nfkb1 gene transcription [18–20].

The bZIP family of TFs contains three major sub-fami-
lies, the C/EBP proteins that in addition to C/EBPα include 
C/EBPβ, C/EBPδ, C/EBPε, C/EBPγ, and CHOP, the AP-1 
proteins that include c-Fos, c-Jun and related proteins, and 
the CREB/ATF proteins. The C/EBPs readily homo- or het-
ero-dimerize via their LZ domains to bind to the DNA ele-
ment 5′-T(T/G)NNGNAA(T/G) with similar affinity [21, 
22], Jun and Fos proteins heterodimerize to bind the AP-1 
consensus site 5′-TGA(C/G)TCA, and CREB/ATF pro-
teins homo- or hetero-dimerize to bind the DNA element 
5′-TCAGCTGA. AP-1 proteins also heterodimerize with 
small Maf proteins to bind an extended site, 5′-TGA(C/G)
TCAGCA [23]. If one designates the repeating α-helical 
residues in the LZ as abcdefg, the leucines occupy position 
d, and other hydrophobic residues occupy position a, creat-
ing a hydrophobic surface that assists dimerization but with 
low affinity. Salt bridges between positively or negatively 
charged e and g residues strengthen the interaction and 

account for dimerization specificity [24]. C/EBP and AP-1 
but not Maf proteins also hetero-dimerize, with reduced 
affinity compared with C/EBPα homodimers, to bind 
hybrid DNA elements [25, 26], and C/EBP:ATF hetero-
dimerization also occurs [27], further extending the range 
of cis elements bound by C/EBP proteins.

Translational, protein modification, and miRNA control

In addition to translation of the dominant 42-kd C/EBPα 
isoform from a canonical N-terminal AUG, use of an inter-
nal AUG leads to expression of a 30-kd isoform lacking the 
N-terminal TAD [28, 29]. In addition, an extended-C/EBPα 
46-kd isoform initiating from a non-canonical upstream 
CUG/GUG contains a nucleolar-localization motif and 
interacts with nucleophosmin [30]. A conserved upstream 
open reading frame (uORF) located between this non-
canonical translation initiation site and that corresponding 
to the 42-kd isoform, but with a different reading frame, 
is thought to control the ratio of p42 vs. p30 translation, 
dependent upon mTOR activation of eIF-4E and PKR inhi-
bition of eIF-2α, with increased initiation from the uORF 
due to reduced PKR or increased mTOR activity leading 
to increased p30 translation [31, 32]. In addition, calreticu-
lin interacts with GCN nucleotide repeats in Cebpa RNA to 
inhibit its translation [33].

ERK binds an FXFP motif and phosphorylates C/EBPα 
on S21, near but upstream of the N-terminal TAD, to 
reduce C/EBPα trans-activation activity, consequent in part 
to reduced DEK interaction [15, 34]. GSK-3 phosphoryl-
ates T222 and T226, dependent on S230 phosphorylation 
to stimulate C/EBPα activity [35], phosphorylation of S248 
via Ras-dependent PKCδ activation increases C/EBPα 
trans-activation and is required for induction of 32Dcl3 
granulocytic differentiation [36], and PKCδ modifies addi-
tional residues, with S299 modification capable of attenuat-
ing C/EBPα DNA-binding [37].

C/EBPα contains a conserved motif IKQEP, with K159 
modification by SUMO-1 reducing C/EBPα activity via 
increased HDAC3 interaction [8–41]. Known sites of C/
EBPα protein modification, along with its protein:protein 
interactions, are diagrammed (Fig. 1).

Fig. 1   Diagram of C/EBPα, 
showing the location of its 
trans-activation domains, basic 
region, leucine zipper, initiating 
AUG residues, protein modifi-
cations, and protein interactions
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MicroRNA-690 directly targets Cebpa RNA to reduce 
its expression in a myeloid-derived suppressor cell sub-
set [42], and the Trib1 or Trib2 adaptor proteins facilitate 
COP1 E3 ubiquitin ligase-mediated C/EBPα degradation, 
preferentially of the 42 kd isoform [43–45].

Regulation of cell proliferation, survival, and quiescence

The finding that mature hepatocytes express higher levels 
of C/EBPα than hepatoma cells provided the first indica-
tion that C/EBPα might negatively control cell proliferation 
[11]. This author’s finding that wild-type C/EBPα but not 
variants incapable of DNA-binding suppress 3T3-L1 pread-
ipocyte colony formation prompted further experiments 
with estradiol-regulated C/EBPα-ER that revealed direct 
inhibition of 3T3-L1 cell cycle progression [46]. C/EBPα 
inhibits proliferation via induction of p21, via interaction 
of residues 175–187 with CDK2 and CDK4, and via inter-
action of the outer surface of its BR with E2F proteins, the 
latter mechanism most active in myeloid cells [16, 47–49]. 
In hepatocytes, PI3K/AKT mediated S193 dephosphoryla-
tion reduces Cdk2/Cdk4 interaction [50]. Of note, mice 
lacking C/EBPα residues 180–194 have no abnormali-
ties and their fetal liver cells display normal proliferative 
parameters [51]. C/EBPα also induces miR-34a, which tar-
gets E2F3 to limit myeloid cell proliferation [52].

C/EBPα slows apoptosis of the Ba/F3, 32Dcl3, and 
HF-1 hematopoietic cell lines upon cytokine withdrawal, 
correlated with increased Bcl-2 and FLIP expression, 
and C/EBPα or an LZ mutant incapable of DNA-binding 
directly interacts with NF-κB p50 to bind chromatin and 
induce Bcl-2 expression and promoter activity, whereas 
a BR mutant does not bind p50 or induce Bcl-2 [18, 19]. 
C/EBPα or C/EBPβ have much higher affinity for NF-κB 
p50 than they do for NF-κB p65, allowing these C/EBPs to 
displace HDAC1 or HDAC3 from chromatin-bound p50 to 
induce NF-κB target genes even in the absence of canonical 
NF-κB activation [20, 53].

Finally, indicating a role for C/EBPα in maintaining 
stem cell quiescence, Mx1-Cre-mediated Cebpa ORF dele-
tion in adult mice draws long-term hematopoietic stem 
cells (LT-HSC) into cell cycle, induces apoptosis, and 
leads to stem cell exhaustion in competitive transplantation 
assays [54, 55].

Regulation of normal myelopoiesis

Expression

C/EBPα is abundant in several cell lineages, including adi-
pocytes, hepatocytes, and type II pneumocytes [56, 57]. 
Within hematopoiesis, C/EBPα is preferentially expressed 
in the granulocyte, monocyte, and eosinophil as compared 

to the lymphoid or megakaryocyte/erythroid lineages [58, 
59]. Amongst marrow stem/progenitor cells, low level 
Cebpa RNA expression is detected in Lin−Sca-1+c-Kit+ 
(LSK) cells, increases twofold as these progress to the 
common myeloid progenitor (CMP) and tenfold further as 
CMP develop into GMP [60]. Cebpa is detectable as well 
in LT-HSC defined by the LSK/SLAM surface markers 
[54].

Consequence of reduced expression

Cebpa-/- mice are neonatal lethal due to hepatic dys-
function, but display impaired myelopoiesis [61, 62]. 
Cebpa(-/-) fetal liver or marrow from Cebpa(f/f);Mx1-
Cre adult mice exposed to pIpC to induce Cre expres-
sion and biallelic deletion of the Cebpa ORF have mark-
edly reduced GMP and myeloid colony-forming units 
(CFU), with increased CMP, LSK, and megakaryocyte/
erythroid progenitors (MEP), and their peripheral blood 
has markedly reduced neutrophils and monocytes and 
absence of eosinophils, with twofold elevated platelets 
and mild lymphocytosis [60, 63]. Beyond the GMP, 
threefold Cebpa knockdown prevents granulopoiesis 
but not monopoiesis, while sixfold knockdown prevents 
commitment to either lineage and increases erythropoie-
sis [64].

Contribution to monopoiesis

Reduced levels of C/EBPα may contribute to monopoiesis 
by hetero-dimerizing with AP-1 proteins such as c-Jun and 
c-Fos via their respective LZ domains followed by binding 
to hybrid C/EBP:AP-1 DNA sites, 5′-TGA(C/T)GCAA, 
commonly found in regulatory elements of genes expressed 
specifically in monocyte/macrophages and in the FosB gene 
promoter. These hybrid elements often co-localize with 
PU.1-binding sites; in contrast, PU.1 sites in B cell-specific 
genes are not found near C/EBP:AP-1 hybrid sites [26, 
65]. Use of artificial acidic and basic LZs to direct specific 
hetero-dimer formation revealed that C/EBPα:c-Fos or C/
EBPα:c-Jun but not C/EBPα:C/EBPα or c-Jun:c-Fos com-
plexes direct monocytic commitment of murine myeloid 
progenitors [25]. Induction of monopoiesis by exogenous 
C/EBPα may reflect its interaction with endogenous AP-1 
proteins, as a variant harboring the GCN4 LZ was inac-
tive [66–68]. Consistent with fewer but still evident e/g LZ 
salt bridges, C/EBP:AP-1 affinity is approximately twofold 
weaker than C/EBP:C/EBP affinity, and semi-quantitative 
Western blot analysis of C/EBP and AP-1 proteins in mye-
loid cell lines indicates that hetero-dimers could readily 
form, as was detected by oligonucleotide pull-down, and 
may be favored by AP-1 protein induction during monopo-
iesis [26].
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Regulation of granulopoiesis

Formation of active C/EBPα homo-dimers may be a pre-
requisite for granulopoiesis. C/EBPα induces transcrip-
tion of several regulatory proteins required for subsequent 
lineage maturation, including the transcription factors C/
EBPε, Gfi-1, and KLF5 [64, 69–72]. Absence of C/EBPε 
leads to secondary granule deficiency [73], Gfi-1(-/-) mice 
develop severe neutropenia [74, 75], and KLF5 contrib-
utes to 32Dcl3 granulopoiesis [76]. In addition, C/EBPα 
induces miR-223, leading to degradation of NFI-A mRNA 
to enhance granulopoiesis [77], and C/EBPα induces miR-
30c, which down-regulates Notch1 expression to again 
favor neutrophilic lineage specification [78]. In addition, C/
EBPα cooperates with PU.1, c-Myb, and RUNX1 to acti-
vate genes such as myeloperoxidase, neutrophil elastase, 
lysozyme, lactoferrin, G-CSF receptor (GCSFR), M-CSF 
receptor (MCSFR), and GM-CSF receptor in immature or 
mature granulocytic or immature monocytic cells, as previ-
ously reviewed [79, 80].

Regulation of Cebpa gene expression during myelopoiesis

By sorting Lin−Sca-1−c-Kit+ marrow cells into 
GCSFR+MCSFR− vs. GCSFR−MCSFR+ subsets we 
enriched for CFU-G vs. CFU-M, demonstrating 2.5-fold 
increased Cebpa RNA in CFU-G [64]. In addition, Runx1 
was enriched 1.5-fold, Gfi1 fivefold, Cebpe 14-fold, and 
Klf5 eightfold in CFU-G, whereas Irf8 was enriched four-
fold and Klf4 twofold in CFU-M, and PU.1 levels were 
similar in both. Thus, induction of Cebpa transcription 
to favor C/EBPα homodimer over C/EBPα:AP-1 heter-
odimer formation may contribute to granulocyte lineage 
specification.

C/EBPα auto-activates its own promoter, and RUNX1 
activates the Cebpa promoter modestly, via two conserved 
non-consensus binding sites, and strongly activates an evo-
lutionarily conserved, 450 bp +37 kb Cebpa enhancer, via 
four consensus RUNX1 cis elements [81, 82]. ChIP-Seq 
data demonstrates that the Cebpa enhancer binds RUNX1 
as well as SCL, GATA2, LMO2, LYL1, PU.1, Erg, Fli-1, 
HoxA9, Meis1, Gfi-1b, and C/EBPα [83–85], and notably 
RUNX1 binding was not evident elsewhere in the Cebpa 
locus [85]. The enhancer also binds p300 and contains the 
enhancer-specific H3K4me1 histone modification [82]. In 
transgenic mice in which the +37 kb Cebpa enhancer and 
845  bp promoter directs expression of a cytoplasmically 
truncated hCD4 reporter, surface marker analysis and CFU 
assays demonstrate that the Cebpa enhancer/promoter reg-
ulatory elements are preferentially active in myeloid com-
pared to lymphoid or erythroid progenitors. In addition, 
competitive transplantation and FACS analyses demon-
strate reporter activity in phenotypic and the large majority 

of functional LT-HSC [86]. And consistent with these find-
ings, sorting of CMP or LSK/SLAM LT-HSC into hCD4+ 
and hCD4− subsets revealed that endogenous Cebpa 
mRNA is highly enriched in hCD4+ CMP [86] or LT-HSC 
(unpublished). Related results were obtained with another 
mouse model in which a cDNA encoding Cre recombinase 
was inserted into the Cebpa locus, followed by breeding to 
a strain that expresses YFP only in the presence of Cre [87].

LEF-1, reduced in cases of severe congenital neutro-
penia, activates Cebpa gene expression via a binding 
site located in its promoter region [88], whereas HIF-1α 
represses Cebpa transcription via an additional promoter 
site [89], although HIF-1α may also augment myeloid 
differentiation via direct interaction with C/EBPα [90]. 
Finally, a 4.5  kb nuclear, polyA(-), coding-strand RNA 
encompassing the 2.6  kb Cebpa mRNA interacts with 
DNMT1 via stem–loop RNA structures to limit Cebpa pro-
moter methylation and increase gene expression [91].

Regulation of C/EBPα activity during myelopoiesis

G-CSF or M-CSF signals direct lineage choice of single, 
sorted GMP [92]. Stimulation of Lin− marrow myeloid 
progenitors with G-CSF preferentially activates STAT3 
and SHP2, whereas M-CSF more potently activates PLCγ, 
PKC, and ERK [93]. As noted, ERK phosphorylates C/
EBPα S21 to reduce its activity [34], and M-CSF but not 
G-CSF increases phospho-S21-CEBPα in Lin− marrow 
cells, dependent on ERK activation [93]. A homo-dimer 
of unmodified C/EBPα, expressed at increased levels due 
to Cebpa gene induction by RUNX1 and additional fac-
tors, might be required to mediate granulopoiesis, while 
a phospho-S21-C/EBPα:AP-1 hetero-dimer might still 
be capable of activating monocyte/macrophage-specific 
genes in cooperation with PU.1 (Fig.  2). ERK stabilizes 
c-Fos and induces AP-1 gene induction via Ets:SRF:SRF 
terniary complex activation to potentially further facilitate 

Fig. 2   Diagram of a C/EBPα:C/EBPα homodimer and a C/
EBPα:AP-1 heterodimer bound to consensus cis elements, with coop-
erating transcription factors and gene induction events that enable 
their contribution to granulopoiesis versus monopoiesis
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monopoiesis while impeding granulocyte lineage develop-
ment [94]. The p38 MAP kinase can also modify CEBPα 
S21 to impede neutrophil development [95], and an 
MKK6-p38MAPK pathway induces C/EBPα proteasomal 
degradation to facilitate trans-differentiation of inflamma-
tory neutrophils to monocytes [96].

The SHP2 tyrosine phosphatase inactivates IRF8 [97], a 
transcription factor required for monopoiesis, and acts on 
RUNX1 to increase its ability to generate megakaryocytes 
and CD8 T cells [98]. Induction of SHP2 phosphoryla-
tion by G-CSF might occur secondary to activation of Src 
kinases [99], and we find that tyrosine phosphorylation of 
Runx1 by Src, or potentially additional kinases, increase 
its trans-activation potency to facilitate granulopoiesis 
(unpublished). As noted, sumoylation of C/EBPα reduces 
its activity, and hyposumoylation increases myelopoiesis in 
zebrafish embryos [100].

Cross‑talk with additional transcription factors

PU.1, an Ets transcription factor, is also a key regulator 
of myeloid development. PU.1-/- mice lack B cells and 
monocytes and have markedly reduced neutrophils [101]. 
In contrast to C/EBPα, higher levels of PU.1 are required 
for monocyte as compared to granulocyte lineage develop-
ment; Mx1-Cre mediated deletion of the 236  bp −14  kb 
PU.1 enhancer leads to 80 % reduction of PU.1 with loss 
of monopoiesis but preservation of granulopoiesis [102]. 
RUNX1 also contributes to myelopoiesis. The −14  kb 
PU.1 and +37 kb Cebpa enhancers are each activated by 
RUNX1, with exposure of Runx1(f/f);Mx1-Cre mice to 
pIpC reducing Cebpa mRNA twofold and PU.1 mRNA 
1.5-fold in CMP and GMP [82, 103]. Notably, from a func-
tional perspective Runx1 deletion impairs granulopoiesis 
while increasing monopoiesis, leading us to propose that 
Cebpa is more critical than PU.1 as a RUNX1 target dur-
ing both normal and malignant myelopoiesis [82]. The 
PU.1 promoter and −14 kb enhancer are each activated by  
C/EBPα [104, 105]. The quantitative importance of this 
regulation during myelopoiesis is uncertain given that 
higher levels of C/EBPα favor granulopoiesis, whereas 
higher levels of PU.1 favor monopoiesis. PU.1 induction by 
C/EBPα could potentially vary during hematopoiesis, e.g. 
increased at the GMP stage to facilitate myeloid vs. mega-
karyocyte/erythroid commitment and then reduced to facil-
itate granulocyte vs. monocyte lineage specification.

By forming a C/EBPα:c-Jun heterodimer via LZ inter-
action, C/EBPα can divert c-Jun:c-Fos complexes from 
auto-activating the c-Jun promoter [106], though we have 
suggested that during myelopoiesis AP-1 complexes are not 
depleted by C/EBP proteins, but rather that C/EBP:AP-1 
heterodimers binds hybrid DNA elements to activate mono-
cytic genes in cooperation with PU.1 and AP-1 [25]. C/

EBPα can directly interact with PU.1 to inhibit activation 
of a model PU.1 reporter [107], although cooperative acti-
vation of myeloid genes such as neutrophil elastase by C/
EBPα and PU.1 indicates that this mechanism is not always 
operative [108]. IRF8 directly interacts with C/EBPα to 
inhibit its interaction with endogenous C/EBPα target 
genes, thereby preventing granulopoiesis to favor monopo-
iesis [109]. Perhaps C/EBPα:AP-1 hetero-dimers are less 
sensitive to IRF8 inhibition, allowing them to contribute 
to monopoiesis in the presence of IRF8. C/EBPα down-
regulates Pax5 RNA through an uncertain mechanism to 
inhibit lymphopoiesis [110]. Exogenous C/EBPα impairs 
and reduced C/EBPα enhances erythropoiesis [60, 63, 64, 
70]. The effect of reduced C/EBPα on erythropoiesis might 
reflect decreased PU.1 levels, leading to GATA-1 derepres-
sion [111, 112]. However, Cebpa knockdown only reduced 
PU.1 1.6-fold while markedly enhancing erythropoiesis, 
leading to the speculation that direct regulation of GATA-1 
or a GATA-1 co-factor by C/EBPα might also restrict the 
CMP to MEP transition [64]. Indeed avian C/EBPβ down-
regulates FOG mRNA to enable eosinophil lineage devel-
opment [113]. Of note, induction of GATA-2 in C/EBPα-
expressing GMP leads to eosinophil lineage commitment 
[59]. Finally, mice lacking the bHLH transcription factor 
Twist-2 have increased neutrophils, monocytes, and baso-
phils, in part reflecting the ability of Twist-2 to inhibit C/
EBPα trans-activation [114].

Role of reduced C/EBPα expression or activity in myeloid 
transformation

CEBPA ORF mutations

The protein-coding CEBPA ORF is mutated in approxi-
mately 10  % of AML cases, most often those with FAB 
M1 or M2 morphology lacking t(8;21) [115, 116]. Two 
categories of mutations occur. N-terminal mutations lead 
to premature translational termination of C/EBPαp42 and 
increased levels of C/EBPαp30, lacking a TAD. C-terminal 
mutations occur in the LZ, often in its first α-helix, pre-
venting DNA-binding. About 50 % of AMLs with CEBPA 
ORF mutations have an N-terminal mutation on one allele 
and a C-terminal mutation on the other, and patients with 
double-mutant CEBPA have improved prognosis compared 
to those with only one mutant allele [117]. Approximately 
10  % of AML cases with CEBPA N-terminal mutations 
acquire the alteration via the germline [117]. Less than 5 % 
of patients with myelodysplastic syndrome (MDS) harbor 
CEBPA mutations, and these are most often mono-allelic 
[116, 118, 119].

The large majority of C-terminal mutations are in-frame, 
indicating that these C/EBPαLZ variants contribute to 
transformation not only due to their lack of DNA-binding 
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activity, but also as active oncoproteins. Both C/EBPαp30 
and several C/EBPαLZ mutants retain the ability to inter-
act with NF-κB p50 to induce Bcl-2 and inhibit apoptosis 
[18, 19, 53], a C/EBPαLZ variant interfered with the abil-
ity of C/EBPαp42 to activate transcription in cooperation 
with PU.1 [119], potentially reflecting sequestration of 
PU.1 or co-activators, and additional protein interactions 
might further allow C/EBPαLZ variants to contribute to 
transformation.

The ability of C/EBPαp42 to inhibit cell cycle progres-
sion consequent to interaction with E2F proteins is depend-
ent upon integrity of its N-terminus [16]; therefore, C/
EBPαp30 likely has reduced ability to inhibit proliferation 
of leukemic blasts via effects on cell cycle regulator pro-
teins, as is observed [120, 121]. C/EBPαp30 can zipper 
with C/EBPαp42 and weaken its trans-activation strength, 
and p30:p30 homodimers compete with p42:42 homodi-
mers for binding to DNA [115]. p30 binds a subset of C/
EBP sites with reduced affinity compared with p42 but 
binds others with equal affinity, retains a TAD and induces 
multiple genes not affected by p42, including the Ubc9 
SUMO ligase, and may further alter progenitor biology via 
protein interactions [115, 121–124].

Heterozygous WT/p30 knockin mice have no hema-
tologic abnormalities; in contrast p30/p30 mice uni-
formly develop AML by one year [120]. Preleukemic p30/
p30 mice are neutropenic but retain GMP and myeloid 
CD11blowc-kit+ CFUs that replate indefinitely in IL-3/SCF. 
Biallelic C/EBPαLZ mice lack GMP and only develop 
delayed erythroleukemia, whereas LZ/p30 mice develop 
myeloid transformation with more rapid kinetics than p30/
p30 mice [125]. C/EBPαp30 apparently provides C/EBPα 
activity sufficient to generate GMP but insufficient for fur-
ther myeloid maturation, and these GMP are then subject 
to further mutations leading to full myeloid transforma-
tion. In contrast, Cebpa(-/-) mice do not develop GMP or 
AML, but have increased CMP and LSK [60], consistent 
with the finding that p30/p30 or LZ/p30 leukemia-initiating 
cells (LIC) reside predominantly in the GMP or LinloSca-
1−c-kit+CD11blo populations [120, 121]. Of note, in the 
absence of C/EBPα, neither Bcr-Abl, MLL-ENL, nor 
HoxA9/Meis1 induce myeloid transformation, consist-
ent with the idea that a minimal level of C/EBPα activity 
is required to generate GMP as a substrate for transforma-
tion [85, 126, 127]. Consistent with this idea, co-expression 
of the FLT3ITD-activated tyrosine kinase receptor with C/
EBPp30 and a C/EBPαLZ mutant accelerates transforma-
tion, with preleukemic GMP expansion [128].

In contrast to C/EBPp30, any one of several C/EBPαLZ 
variants block 32Dcl3 myeloid differentiation, induce 
marrow CFU replating upon retroviral transduction, and 
induce AML upon transplantation of transduced marrow 
cells, alone and accelerated by FLT3ITD [119, 129]. In 

addition, C/EBPαLZ variants reduce Mcsfr/Csf1r expres-
sion, and ectopic Csf1r cooperates with a C/EBPαLZ vari-
ant harboring a C-terminal LZ mutation to induce myeloid 
transformation [129]. In contrast to these findings with C/
EBPαp30, LIP, an N-terminally truncated C/EBPβ isoform, 
but not full-length C/EBPβ, induces indefinite myeloid 
CFU replating and AML in vivo, potentially via C/EBPα 
inhibition [130].

RUNX1 down‑modulation

Alterations affecting RUNX1 or its partner CBFβ are com-
mon in AML [131]. 12  % of AMLs harbor t(8;21), lead-
ing to expression of RUNX1-ETO, which binds RUNX1 
cis elements to represses Cebpa transcription [132]. 8 % of 
AMLs, mainly the M4eo subset, have inv(16), expressing 
CBFβ-SMMHC, which binds RUNX1 to inhibit its activity 
[133], and 13 % of cases, most often M0, have inactivat-
ing point mutations in the RUNX1 DNA-binding domain 
or TAD [134]. RUNX1 point mutations are also present in 
about one-third of cases in which patients with the myelo-
proliferative diseases chronic myeloid leukemia (CML), 
polycythemia vera, or essential thrombocytopenia have 
progressed to AML [135, 136], and RUNX1 point muta-
tions are also found at high frequency in therapy-related 
MDS and in ~3 % of sporadic MDS cases [137]. RUNX1 
point mutation most often occurs in its DNA-binding 
domain on one allele; these variants do not bind DNA, but 
dominantly inhibit RUNX1 trans-activation, potentially via 
interference with RUNX1 dimerization and by competition 
for CBFβ, a protein required for RUNX1 DNA-binding 
[137, 138]. CML blast crisis also occasionally manifests 
t(3;21), expressing RUNX1/MDS1/EVI1 (RME), fusing 
the RUNX1 DNA-binding domain with MDS1/EVI1 to 
generate a potent repressor of RUNX1 targets; RME also 
cooperates with Bcr-Abl to induce AML [139].

Reduced CEBPA transcription consequent to each of 
these RUNX1 alterations, resulting from reduced activity 
of the CEBPA promoter and its +41 kb enhancer (homolo-
gous to the murine +37  kb enhancer), may be central to 
their ability to contribute to myeloid transformation. ChIP-
Seq data for RUNX1-ETO from two human AML patient 
samples and from the Kasumi-1 cell line demonstrates 
exclusive binding at the +41 kb CEBPA enhancer [140]. In 
contrast, CEBPA enhancer point mutations or small dele-
tions were not seen in AML cases [141]. Of note, Mx1-
Cre-mediated Runx1 gene deletion in adult mice does not 
lead to AML, likely due to modest twofold Cebpa mRNA 
reduction in GMP, whereas active repression of the Cebpa 
+37 kb enhancer by RUNX1-ETO or dominant-inhibition 
of RUNX1, RUNX2, and RUNX3 by CBFβ-SMMHC 
or RUNX1 mutants likely results in further Cebpa 
suppression.



336 A. D. Friedman

1 3

Mice lacking the RUNX1-regulated PU.1 −14  kb 
enhancer uniformly develop AML by 6  months [102]. 
However, PU.1 gene mutations occur in  <1  % of human 
AML cases [142]. As noted, our study of Runx1-deleted 
mice led us to suggest that reduction in C/EBPα rather than 
PU.1 activity is the more critical consequence of RUNX1 
oncoprotein expression in human AMLs [82].

Other alterations in AML affecting C/EBPα

Approximately 50 % of AML cases have reduced CEBPA 
mRNA, with about threefold median reduction amongst 
these cases, maximum tenfold, vs. CD34+CD38+ (mainly 
myeloid) progenitors [143]. CEBPA promoter CpG hyper-
methylation, evident in 37 % of AML cases [143], may in 
part reflect reduced activity of RUNX1 or other transcrip-
tion factors that normally activate the promoter as well as 
selection of preleukemic blasts with repressive promoter 
methylation. Approximately 3  % of AML cases harbor 
dense CEBPA promoter hyper-methylation leading to silenc-
ing of CEBPA expression and up-regulation of T cell genes 
[144]; in these cases the gene encoding C/EBPγ, located 
just upstream of the CEBPA gene, is markedly induced 
due to derepression of E2F proteins [145]. The ability of  
C/EBPγ to zipper with other C/EBPs and reduce their trans-
activation potency might contribute to myeloid transfor-
mation in these cases. Leukemic blasts from patients with 
silenced CEBPA or those with biallelic CEBPA ORF muta-
tions have a gene expression profile similar that obtained 
from the preleukemic LIC population isolated from mice 
harboring biallelic C- and N-terminal C/EBPα mutant vari-
ants or those with reduced Sox4, a gene directly repressed 
by C/EBPα [146].

Over-expression of Trib1 or Trib2, which direct  
C/EBPαp42 but not p30 degradation via the E3 ubiquitin 
ligase COP1, occurs in 15–20  % of AMLs, and Trib1 or 
Trib2 are transforming in murine models [43, 147, 148]. 
FLT3ITD activates ERK and CDK1 to stimulate phospho-
rylation of C/EBPαS21, reducing C/EBPα trans-activation 
strength [149, 150], and Bcr-Abl inhibits translation of 

Cebpa mRNA by inducing hnRNP E2 [151]. Pathways 
known to down-modulate C/EBPα in AML are summa-
rized, along with additional pathway that might be relevant 
(Fig. 3).

Conclusions

The ability of C/EBPα to homo-dimerize and also to het-
ero-dimerize with other bZIP proteins extends the range of 
DNA elements it interacts with and provides opportunity for 
regulation of both C/EBPα and its partners. Future inves-
tigations should provide further insight into the role these 
interactions and C/EBPα protein modifications play during 
myelopoiesis, including determining whether C/EBPα S21 
phosphorylation precluded activation of granulocytic genes 
but still allow induction of monocytic genes as a heterodi-
mer with AP-1 proteins and assessing the role of additional 
C/ΕΒPα modifications, e.g., lysine acetylation or arginine 
methylation. The capacity of C/EBPα to inhibit cell pro-
liferation requires unique control during different stages 
of hematopoiesis to allow the requisite balance between 
the proliferative drive and induction of lineage-specific 
genes. For example, GMP harbor high-levels of C/EBPα 
and yet have high proliferative potential—do they possess 
a mechanism to suppress C/EBPα-mediated inhibition of 
G1 to S cell cycle progression? Further elucidating how the 
N-terminus of C/EBPα contributes to cell cycle inhibition 
upon BR interaction with E2F proteins might provide rel-
evant insight. Several C/EBPα protein modifications have 
been identified, but their role during normal myelopoiesis is 
poorly understood.

Existence of multiple pathways to C/EBPα inhibition 
supports the idea that reduction of C/EBPα expression 
or activity is central to the pathogenesis of AML. Perhaps 
means can be found to reactivate C/EBPα as “differentia-
tion therapy” for AML or MDS, either by inducing expres-
sion of normal CEBPA alleles, targeting signaling pathways, 
miRNAs, or non-coding RNAs to favor increased C/EBPα 
expression or activity, or inducing other C/EBP family 

Fig. 3   Pathways, both 
described and potential, that 
mediate reduced C/EBPα 
expression or activity in AML 
cases via effects on CEBPA 
transcription, mRNA translation 
or stability, or protein expres-
sion, stability, or activity
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members that might substitute for C/EBPα. In particular, 
C/EBPβ induces granulopoiesis in response to cytokine 
signals in the absence of C/EBPα, and replacement of the 
Cebpa ORF by Cebpb is well tolerated [152, 153].
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