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Abstract Since the introduction of all-trans retinoic acid

(ATRA) and arsenic trioxide (As2O3) for the treatment of

acute promyelocytic leukemia (APL), the overall survival

rate has improved dramatically. However, relapse/refrac-

tory patients showing resistance to ATRA and/or As2O3 are

recognized as a clinically significant problem. Genetic

mutations resulting in amino acid substitution in the reti-

noic acid receptor alpha (RARa) ligand binding domain

(LBD) and the PML-B2 domain of PML-RARa, respec-

tively, have been reported as molecular mechanisms

underlying resistance to ATRA and As2O3. In the LBD

mutation, ATRA binding with LBD is generally impaired,

and ligand-dependent co-repressor dissociation and degra-

dation of PML-RARa by the proteasome pathway, leading

to cell differentiation, are inhibited. The PML-B2 mutation

interferes with the direct binding of As2O3 with PML-B2,

and PML-RARa SUMOylation with As2O3 followed by

multimerization and degradation is impaired. To overcome

ATRA resistance, utilization of As2O3 provides a prefera-

ble outcome, and recently, a synthetic retinoid Am80,

which has a higher binding affinity with PML-RARa than

ATRA, has been tested in the clinical setting. However, no

strategy attempted to date has been successful in over-

coming As2O3 resistance. Detailed genomic analyses using

patient samples harvested repeatedly may help in predict-

ing the prognosis, selecting the effective targeting drugs,

and designing new sophisticated strategies for the treat-

ment of APL.

Keywords APL � PML-RARa � ATRA � Arsenic trioxide

(As2O3) � Drug resistance

Introduction

Almost two decades ago, the prognosis of acute promye-

locytic leukemia (APL) was critically poor due to fatal

coagulation disorders at diagnosis [1, 2]. Even with con-

ventional chemotherapy using anthracyclines, more than

70 % of APL patients showed poor prognosis [3, 4]. After

introduction of all-trans retinoic acid (ATRA) in the clin-

ical setting in combination with conventional chemother-

apy, the prognosis of APL has improved dramatically, with

the result that more than 85 % of patients now achieve

complete remission (CR) and nearly 70 % of patients can

be cured [5–8]. Since 1994, the marked effectiveness of

As2O3 in APL patients, even in relapsed patients after

combination therapy with ATRA, has been confirmed [9–

12]. When As2O3 is utilized as a single agent, *70 % of

patients can be cured, whereas nearly 90 % of patients can

be cured if As2O3 is utilized in combination with ATRA

[13, 14]. Although outcomes of APL treatment with ATRA

and/or As2O3 in combination with conventional chemo-

drugs have improved, relapsed/refractory patients are still

observed in the clinical setting and drug resistance to

ATRA and As2O3 has been recognized as a critical

problem.

More than 98 % of APL patients carry the t(15;17)

translocation, which results in fusions of the retinoic acid
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receptor alpha (RARa) gene with the promyelocytic

leukemia (PML) gene, PML-RARa (Fig. 1) [15–17]. A

very limited number of patients, showing APL phenotype

without t(15;17), exhibit a variety of X-RARa fusions

(Fig. 1) [18–25]. Interestingly, some patients expressing

X-RARa show clinical resistance to ATRA and/or

As2O3. Previous reports have indicated that both ATRA

[26, 27] and As2O3 [28–30] have rigorously defined

molecular targets, an improved understanding of their

molecular mechanisms of action and resistance may be

important to further improving clinical outcomes in APL

treatment.
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Fig. 1 Schematic representation of PML-RARa and X-RARa fusion

protein confirmed in APL. Chromosomal translocations resulting in

the fusion protein are also indicated under the name of fusion protein.

Long and short forms of PML-RARa with or without nuclear

localizing signal (NLS) are reported [86]. ATRA and As2O3

responsiveness in the clinical setting and/or in vitro analyses is

indicated in the right panel. Gray triangles indicate break points of

chimeric protein. Numbers indicate the amino acid positions. A to

E functional domains in RARa, DBD DNA binding domain, LBD
ligand binding domain, RING really interesting new gene finger

domain, B1 and B2 B-box motifs, C–C coiled-coil domain, POZ/BTB
pox virus and zinc finger/BR–C, ttk and bab domain, Pro proline rich

domain, Zn zinc finger domain, NR nuclear reassembly, RIIA
dimerization domain, BBD BCL6-binding domain, AR ankyrin

repeats, ? sensitive, - resistant, NR not reported
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Mechanisms of action of molecular targeting drugs

to APL cells

ATRA

Wild-type RARa is a nuclear hormone receptor that binds to

consensus sequence DR5 (five bases spaced between two

AGGTCA motifs) in target gene promoters, normally as

heterodimer with retinoid X receptor (RXR) [31–33].

Without ligands, ATRA and 9-cis retinoic acid, RAR-RXR

heterodimer induces transcription repression throughout

chromatin remodeling by recruiting transcription co-

repressors, such as N-CoR/SMRT large protein complexes,

that contain histone deacetylases (HDACs) [27, 34–37] and

histone methyltransferases [38–40]. In the presence of

ligand (*10-7 M), the co-repressor complexes dissociate

from RAR-RXR, and transcriptional de-repression and

activation are induced [34–37, 41]. PML-RARa binds to

DR5 of target gene promoters primarily as a homodimer, but

also as a heterodimer with RXR [42, 43], and induces tran-

scription repression by recruiting N-CoR/SMRT complexes

and polycomb group repressive complex 1 and 2 (PRC1/2)

[39, 40], which contain histone methyl transferases, in the

absence of ligands [27] (Fig. 1). PML-RARa can be SU-

MOylated at K160 of the PML protein to recruit death

domain-associated protein (DAXX), resulting in the tran-

scriptional repression of target genes [44]. Even in the pres-

ence of physiological concentration of ligand (10-7 M), the

co-repressor complex still binds with PML-RARa and the

transcriptional repression cannot be dissolved. In the pres-

ence of pharmacological concentration of ATRA (10-6 M),

transcription activation can be induced by dissociation of co-

repressor complexes from PML-RARa and proteasome-

dependent PML-RARa degradation [45–47].

As2O3

The efficacy of As2O3 on APL cells was first reported by

Chen et al. in 1996 [28], who showed the dual effect of

apoptosis at relatively high concentrations (0.5–2 lM/L)

and partial differentiation at low concentrations (0.1–0.5

lM/L) in both ATRA-responsive and ATRA-resistant APL

cells. As2O3 induces the targeting of nucleoplasmic PML-

RARa with a micro speckled pattern into nuclear bodies

with a normal speckled pattern prior to degradation [30,

48–50]. As2O3 induces the formation of reactive oxygen

species (ROS) [30], which induce multimerization of

PML-RARa through intermolecular disulphide crosslinks

at PML B1-domain (Fig. 2) and PML-RARa SUMOyla-

tion by ubiquitin-conjugating enzyme 9 (UBC9) [30]. A

recent report indicated that As2O3 directly binds with PML

at the C–C motif in the PML B2-domain, and that PML

SUMOylation can be induced by enhancement of UBC9

binding at the PML RING domain [29, 30, 50]. SUMOy-

lated PML recruits RING finger protein 4 (RNF4), which is

known as a SUMO-dependent ubiquitin ligase [51], and

polyubiquitylated PML-RARa can be degraded by ubiq-

uitin–proteasome pathway [29, 49, 51].

Molecular mechanisms of drug resistance in APL cells

From the molecular mechanisms of ATRA and As2O3

effectiveness as indicated above, several mechanisms of

drug resistance have been speculated [52]. In this section,

we outline the molecular mechanisms of resistance that are

thought to be significant from the clinical perspective.

RARa fusion proteins in APL

In very limited cases with APL phenotype, RARa translo-

cations with X-genes other than PML (PLZF [18], NuMA

[19], NPM [20], STAT5b [21, 53], FIP1L1 [22], PRKAR1A

[23, 24], and BCOR [25]) resulting in the production of

X-RARa fusion protein have been reported (Fig. 1). PML-

RARa forms mainly homodimers, and it has been reported

that homodimerization of PML-RARa is critical for the

pathogenesis of APL [42, 43]. Sternsdorf et al. [54] indi-

cated that forced homodimerization of RARa induces

ALP-like leukemia in a mouse model, indicating that the

dimerization domain of the fusion protein may be critical

to the induction of leukemogenesis by X-RARa. In fact,

homodimerization through specific domains (coiled-coil;

PML-, NPM-, and STAT5b-, POZ/BTB; PLZF-, RIIA;

PRKAR1A-, and so on) has been confirmed in all X-RARa
proteins. Interestingly, in PML-, PRKAR1A- [24], and

BCOR-RARa [25], heterodimerization with RXR is also

important for transformation and/or RARE binding.

Since those chimeric proteins all hold RARa DNA

binding domain (DBD) and ligand binding domain (LBD),

ATRA responsiveness is speculated in all cases. However,

ATRA resistance has been confirmed clinically in cases

showing PLZF-RARa [18, 34, 41] and STAT5b-RARa [21,

53, 55] fusions. One explanation for ATRA resistance is

that the N-CoR/SMRT-corepressor complex interacts with

PLZF, even in the presence of pharmacological concen-

tration of ATRA, such that transcriptional de-repression

cannot occur at RARa target gene promoters [34, 41]. The

molecular mechanisms of ATRA resistance in STAT5b-

RARa-expressing cells has not been fully explicated. Wild-

type Stat5b is localized in cytoplasm, but STAT5b-RARa
aberrantly localizes in nucleus [21]. STAT5b is a compo-

nent of the janus kinase (JAK)-STAT signaling pathway,

and phosphorylation of STAT5b by JAK causes homodi-

merization and translocation into the nucleus, where it acts

as a transcription factor [56]. Aberrant transcription

Mechanisms of action and resistance to ATRA and As2O3 719

123



Ring
B1
B2

C-C

Histone

Histone tale
(Inactive)

LBD

Corepressor complex
(e.g. N-CoR/SMRT-HDAC3, PRC1, PRC2)

DBD
DNA

Degradation

PML-RARα

Coactivator complex
(e.g. CBP/p300, ACTR)

ATRA
(1X10-6)

RXR

Histone tale
modification

(Active)

ATRA
(1X10-6)

PML-RARα
LBD mutation

OFF

ON

OFF

S-S S-S S-S

As As As As
S

S
S

S
S

S

UBC9UBC9

S

As

As

As

As

As

S-S

As

As

Degradation

PML-RARα
B2 mutation
(A216V, L218P)

As2O3

As2O3

PML-RARα

PML-RARα

ROS
ROS

S-S

Disulfide formation
Disulfide formation
Arsenic binding
Multimerization
UBC9 interaction
SUMOylation

Histone tale
(Inactive)

Polyubiquitilation

RNF4

Fig. 2 Molecular mechanisms of action and resistance to ATRA and

As2O3 in APL cells. PML-RARa are found mainly as homodimers

through the C–C domain of PML, and partially as heterodimers with

RXR. PML-RARa binds with target gene promoter in the absence of

ligand, and recruits co-repressor complexes, such as N-CoR/SMRT

complexes containing histone deacetylases (e.g. HDAC3) [34–37, 41]

and PRC1/2 complex containing histone methyltransferases (e.g.

EZH2) [39] to repress the gene expression. Histone tail deacetyla-

tation and/or methylation are related to transcription repression. In the

presence of pharmacological concentration (1 9 106 lM) of ligand

(ATRA), co-repressor complexes are dissociated from RARa, while

co-activator complexes containing histone acetyltransferases (e.g.

p300/CBP) are recruited, and transcription activation occurs. In the

cases of PML-RARa with LBD mutations, ligand binding with LBD

is interfered and co-repressor dissociation does not occur in the

presence of pharmacological concentrations of ATRA. In the

presence of As2O3, the formation of reactive oxygen species (ROS)

is induced, and PML intermolecular disulfide crosslinks through B1

domain, that induce multimerization, and SUMOylation of PML by

ubiquitin-conjugating enzyme 9 (UBC9) occur. As2O3 directly bind

with PML-B2 domain and enhancing UBC9 binding and SUMOy-

lation of PML. SUMOylated PML recruits RING finger protein 4

(RNF4), and is polyubiquitylated by RNF4, and proteasome-depen-

dent degradation occurs. If PML-RARa has PML-B2 mutation, direct

binding of As2O3 with PML is impaired, and polyubiquitylation and

degradation are perturbed
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regulation of STAT5b target genes in addition to RARa
target genes by STAT5b-RARa may be related to ATRA

resistance.

On the other hand, As2O3 resistance in clinical setting

was observed in patients expressing PLZF- [57, 58],

STAT5b- [55], and BCoR-RARa [25]. The As2O3-binding

C–C motif is confirmed in PML-B2 domain, and As2O3

binding is critical for the multimerization followed by

PML-RARa degradation [29, 30, 42]. Lack of As2O3

binding sites in X-RARa protein may be one explanation

of loss of As2O3 responsiveness. However, no direct effect

of As2O3 on RARa has been reported.

Mechanisms of resistance to ATRA

A number of mechanisms have been proposed to explain

ATRA resistance in APL patients expressing PML-RARa,

such as amino acid substitution in RARa LBD domain by

genetic mutations, increased catabolism of ATRA, pres-

ence of cytoplasmic retinoic acid binding protein

(CRABP), and abnormal ATRA delivery to the cell

nucleus. Only genetic mutations on the RARa LBD

domain in PML-RARa have been confirmed as an ATRA-

resistant mechanism, from both clinical observations and

in vitro molecular analyses [59–66]. Genetic mutations

(missense, nonsense, and deletions) on RARa LBD domain

have been confirmed in ATRA-resistant patients and APL

cell lines, which grow despite pharmacological concen-

trations of ATRA, as summarized in Fig. 3. These muta-

tions accumulate in the three subregions (zones I, II, and III

in Fig. 3) of the LBD domain [66]. Gallagher et al. [66]

reported that PML-RARa LBD mutation was confirmed 18

of 45 (40 %) relapse patients treated with ATRA/chemo-

therapy. In vitro analyses using ATRA-resistant NB4 cells

(NB4-R1, -R2 [67], -R4 [60], and -RA [61]) and mutated-

PML-RARa expressing Cos-1 cells [65] indicated that

ATRA binding affinity with mutated PML-RARa was

generally lower than that with PML-RARa without muta-

tions, due to conformational changes in LBD. Furthermore,

ligand-dependent N-CoR/SMRT co-repressor release and

co-activator recruitment (e.g. ACTR histone acetyltrans-

ferase), which are critical for the transcriptional activation

of genes with RARE sites and morphological cell differ-

entiation, was impaired under the therapeutic dose of

ATRA [60, 65, 67].

To overcome ATRA resistance, a number of therapeutics

has been tested in vitro and in vivo. Several clinical reports

indicated that As2O3 rescue most of relapsed/refractory

patients treated with ATRA/chemotherapy [9–12, 68].

Am80, a synthetic retinoid that shows higher binding affinity

with PML-RARa than ATRA, is utilized in the clinical set-

ting [69–71]. Am80 is approximately 10 times more potent

than ATRA as an in vitro inducer of differentiation in NB-4

and HL60 cells, and is chemically more stable than ATRA

[72, 73]. Histone deacetylase (HDAC) inhibitors [74], such

as sodium butyrate (NaF), valproic acid (VPA), and tri-

chostatin A (TSA), have been utilized with ATRA and are

expected to transcriptionally activate PML-RARa target

genes to inhibit co-repressors complexes that contain

HDACs [75–77]. Another approach to overcoming the

resistance uses other molecular targeting therapeutics, such

as gemtuzumab ozogamicin (GO), an anti-CD33 monoclonal

antibody linked with calicheamicins [78, 79].

Molecular mechanisms of resistance to As2O3

Even for relapsed/refractory patients following treatment

with ATRA/chemotherapy, As2O3 therapy is highly

effective, with a complete remission rate of more than

80 % [80–82]. Although the CR rate is high even in

relapsed patients, resistance to As2O3 treatment has been

recognized as a clinically critical problem. Information on

As2O3 resistance remains limited compared with that on

ATRA resistance.

Recently, we reported two cases showing clinical As2O3

resistance after treatment with ATRA/chemotherapy, which

exhibited missense mutations leading to substitution of

amino acids in the PML-B2 domain in PML-RARa [50, 68,

83]. One patient with the M3 variant, expressing PML-
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Fig. 3 Genetic mutations resulting in amino acid substitution in

PML-RARa LBD confirmed in clinically ATRA-resistant patients

and ATRA-resistant cell lines. Mutations are confirmed in 3 cluster

regions (zones I to III) in RARa-LBD [66]. Red letters indicate amino

acids substituted in specific patients and/or cells. Amino acid

substitutions and deletions in ATRA-resistant patients are indicated

in blue letters. Substitution in ATRA-resistant cell lines indicated in

black. Names of cell lines are indicated in brackets. The position of

the mutation is described with reference to normal amino acid

sequence of RARa1 [31]
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RARa short form without nuclear localizing signal (NLS)

[84], showed ATRA and As2O3 resistance at his terminal

stage. Significant clonal expansion of PML-RARa mutant

leading to A216V (PML-B2 domain mutation) and G391E

(RARa-LBD mutation) was confirmed in leukemia cells

harvested at the terminal stage (Fig. 4a, b). In vitro analysis

using wild-type and mutant PML-RARa (PR-B/L-mut)-

expressing HeLa and HL60 cells indicated that PML-RARa
(short form) localized in cytoplasm as micro speckled pat-

tern without As2O3, and as a macro granular pattern after

adding As2O3 (Fig. 4c; PML-RARa). In contrast, PR-B/

L-mut localized in cytoplasm with diffuse pattern without

As2O3, and no change was confirmed in the presence of

As2O3(Fig. 4c; PR-B/L-mut). Another case carried an

L218P mutation, also in the PML-B2 domain (PR-B2-

mut2), in PML-RARa long form with NLS. PML-RARa
long form localized in nucleus, while PR-B2-mut2 was

diffusely localized in the nucleus. No change was confirmed

with or without As2O3 (Fig. 4c; PR-B2-mut2). Further

in vitro analysis using PML-RARa overexpressed HeLa

cells indicated that SUMOylation of PR-B/L-mut and PR-

B2-mut2 after As2O3 treatment was strictly impaired.

Recent reports have indicated that direct As2O3 binding to

PML-B2 domain is critical for the serial reaction including

SUMOylation, multimerization, and degradation [29, 30].

Jeanne et al. conclude that dicysteine C212/C213 in PML-

B2 domain may be the direct As2O3 binding motif. From

these results, genetic mutations identified in As2O3-resistant

patients resulting in A216V and L218P may contribute to

As2O3 resistance through impairment of direct As2O3

binding to PML-RARa due to conformational changes in

As2O3 binding sites. Further accumulation of patients for

genetic analyses is required for confirming the clinical sig-

nificance of PML-B2 domain mutations in As2O3 resistance.

Conclusion

Although the overall survival of APL has been significantly

prolonged since the introduction of ATRA and As2O3,

relapse/refractory disease due to ATRA and/or As2O3

resistance remains a serious clinical problem. Additional

genetic mutations in PML-RARa and another gene, such as

FLT3-ITD or TP53 [66, 85], may contribute to disease

progression and drug resistance in APL. Detailed genomic

analyses using clinical samples harvested repeatedly from

patients may help for predicting prognosis, selecting effec-

tive targeting drugs, understanding molecular backgrounds,

and designing sophisticated new therapeutic strategies.
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