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Abstract The promotion of US energy efficiency policy
is seen as a very important activity. Generally, the level of
energy efficiency of a country or state is approximated by
energy intensity, commonly calculated as the ratio of
energy use to GDP. However, energy intensity is not an
accurate proxy for energy efficiency given that changes in
energy intensity are a function of changes in several
factors including the structure of the economy, climate,
efficiency in the use of resources, behaviour and technical
change. The aim of this paper is to measure persistent and
transient energy efficiency for the whole economy of 49
states in the US using a stochastic frontier energy demand
approach. A total US energy demand frontier function is
estimated using panel data for 49 states over the period
1995 to 2009 using two panel data models: the Mundlak

version of the random effects model (which estimates the
persistent part of the energy efficiency) and the true
random effects model (which estimates the transient part
of the energy efficiency). The analysis confirms that
energy intensity is not a good indicator of energy effi-
ciency, whereas, by controlling for a range of economic
and other factors, the measures of energy efficiency ob-
tained via the approach adopted here are. Moreover, the
estimates show that although for some states energy
intensity might give a reasonable indication of a state’s
relative energy efficiency, this is not the case for all states.

Keywords US total energy demand . Efficiency and
frontier analysis . Persistent and transient energy
efficiency

JEL Classification D . D2 . Q . Q4 . Q5

Introduction

The promotion of energy efficiency policies is seen as a
major strand of energy policy in the US and across the
globe given the need to reduce greenhouse gas emis-
sions and maintain security of energy supply. It is there-
fore vital that in the US the true relative energy efficien-
cy across the different states is clearly measured.
However, generally a state’s energy efficiency is ap-
proximated by energy intensity—commonly calculated
as the ratio of energy use to GDP (or approximated by
energy productivity—the inverse of the energy intensi-
ty). Nonetheless, these two indicators, energy intensity
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and energy productivity, are not good proxies for energy
efficiency because changes in both indicators are a
function of changes in several factors including the
structure of the economy, the level of production,
climate, the level of efficiency in the use of resources
and technical change. For example, EC (2000, p. 3)
recognises that ‘Changes in energy intensity for final
energy consumption are a first and rough estimate indi-
cator for changes in energy efficiency’, and the US
Energy Information Agency came to a similar conclu-
sion.1 Therefore, a decrease in energy intensity or an
increase in energy productivity of a state does not nec-
essarily imply that the efficiency in the use of energy in
the state has increased.

Given the problems with the proxy measures,
different approaches have been proposed in the
academic literature that attempt to identify the
change in the true level of efficiency in the use of
energy at the aggregate economy level.2 One ap-
proach proposed by Bossanyi (1979) and Myers
and Nakamura (1978) is based upon Index
Decomposition Analysis (IDA). This makes use of
several types of index numbers and is achieved by
decomposing the changes in energy intensity into
the change in fuel mix, the change in the structure
of the economy and what they regard as the actual
change in energy efficiency.3 Moreover, some stud-
ies using IDA propose an additional step of the
empirical analysis to identify, using an econometric
approach, the determinants of the variation over
time and across regions of energy intensity. For
instance, Metcalf (2008) decomposed US state ag-
gregate energy intensity for the period 1970–2001
and attempted econometrically to identify the

determinants of the changes in intensity, efficiency
and activity indexes.4

Another approach is based on the concept of
productive efficiency and input specific technical
efficiency introduced by Farrell (1957) and Kopp
(1981) and can be used for estimating production,
cost, distance or input demand frontier functions.
From the economics point of view, it is important
to produce energy services in an efficient way;
that is, by minimising the amount of inputs used
in the production of a given energy service, by
choosing the combination of inputs that minimise
the production cost and by adopting the least cost
technology. A reduction in energy consumption
for the production of energy services can come
about by an improvement of the level of the
efficiency in the use of inputs (productive effi-
ciency), by an adoption of a new energy saving
technology or by both processes. A theoretical
explanation of this approach was originally intro-
duced by Huntington (1994) and developed in
Filippini and Hunt (2015). Zhou and Ang
(2008), Filippini and Hunt (2011) and Lin and
Du (2013) are examples of empirical applications
that have attempted to use frontier analysis
methods that have been developed in applied pro-
duction theory. These recognise (albeit implicitly
in some cases) that, in order to analyse the level
of (energy) efficiency, it is important to base the
analysis on a theoretical framework that regards
energy as an input into a production function for
producing an energy service (such as heating and
lighting). It is therefore believed that this latter
approach, which is advocated in this paper, is
more suitable for performing an economic analy-
sis of energy efficiency (hereafter EE) given its
theoretical foundation in the microeconomics of
production.5

1 This problem in the measurement of energy efficiency is
discussed by the EIA at: www.eia.gov/emeu/efficiency/measure_
discussion.htm.
2 There are also bottom-up approaches used by energy profes-
sionals to estimate the level of energy efficiency. For example,
EPRI (2009) applies a bottom-up methodology that is based on
equipment stock turnover and the adoption of efficiency measures
for energy at the technology and end-use levels within different US
sectors andMcKinsey (2009) who undertook a detailed analysis of
the potential for improved efficiency in energy use by the US non-
transport sector.
3 See Boyd and Roop (2004) and Ang (2006) for a general
discussion and application of this method and Belzer (2014) for
an example related to the introduction by the US Department of
Energy of an Energy Intensive Index using the decomposition
approach that attempts to separate the difference factors that affect
energy efficiency from non-efficiency factors.

4 Several papers have followed Metcalf (2008) in attempting to
analyse the determinants of energy intensity, such as Jimenez and
Mercado (2014).
5 Note that in previous works (Filippini and Hunt 2011, 2012), the
term ‘underlying energy efficiency’ has been used to indicate the
efficient use of energy obtained using stochastic frontier analysis
in order to emphasise the distinction between this and the proxy
measure energy intensity. In this paper, however, the general term
energy efficiency is used but it is important to keep this distinction
in mind.
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Frontier analysis can be undertaken by estimat-
ing either a non-parametric or a parametric best
practice frontier for the use of energy, where the
level of EE is computed as the difference between
the actual energy use and the predicted energy
use at the frontier. Zhou and Ang (2008) is an
example of the non-parametric approach, where
the EE performance of 21 OECD countries over
5 years (1997–2001) is measured using a Data
Envelopment Analysis (DEA) model. However,
Filippini and Hunt (2015) discuss in some detail
three parametric approaches that can be used to
estimate the level of efficiency in the use of
energy: (1) the energy requirement function, (2)
the Shephard energy distance function and (3) the
energy demand frontier function. One example of
applying the energy demand frontier function ap-
proach is Filippini and Hunt (2011)6 where they
estimate a frontier whole economy aggregate en-
ergy demand function for 29 OECD countries
over the period 1978 to 2006 using Stochastic
Frontier Analysis (SFA).7 An example of applying
the Shephard energy distance function is Lin and
Du (2013) who analysis of the efficient use of
energy across China’s 30 administrative regions
over the period 1997 to 2010.8

This paper favours the use of the parametric
energy demand frontier function approach as sug-
gested in Filippini and Hunt (2015). It therefore
builds on Filippini and Hunt (2011, 2012) by
attempting to measure the efficiency of energy
use for the whole economy of 49 states in the
US.9 This produces a specific measure of EE by
explicitly controlling for income and price effects,

population, climate, household size, the structure
of the economy and the underlying energy de-
mand trend (UEDT).10 This is seen as important,
given the need to isolate the true EE across the
different states. This paper attempts therefore to
unpick exactly what is meant by the term EE and
re-couch it in terms of productive economic effi-
ciency and inefficiency, the focus being on where
consumers of energy and energy services are
away from their economically optimal position
on the isoquant (i.e. they are inefficient), and
from this develop a measure of EE based on
economic principles. Furthermore, using different
frontier models for panel data enables the estima-
tion of the persistent, as well as the transient, EE
for the US states. The use of parametric frontier
analysis for the estimation of the level of EE of
an economic system seems to be a promising
approach to solve, at least partially, some limita-
tions of the simple measure such as energy inten-
sity (hereafter EI). Of course, as discussed further
in the paper, this approach also has some limita-
tions that should be considered when interpreting
the results.

The paper is organised as follows. The next section
presents and discusses the rationale and specifica-
tion of the energy demand frontier function
followed by a section that discusses the data and
econometric specification. The results of the esti-
mation are presented in the penultimate section,
with a summary and conclusion in the final
section.

An aggregate frontier energy demand model

Energy is a derived demand, emanating from the de-
mand for an energy service. A state’s total aggregate
energy demand is therefore a demand derived from the

6 Examples of the use of parametric frontier analysis at the disag-
gregate level are Buck and Young (2007) who measured the level
of EE of a sample of Canadian commercial buildings and Boyd
(2008) who estimated an energy use frontier function for a sample
of wet corn milling plants.
7 Both approaches—non-parametric and parametric—have
advantages and disadvantages, but neither one has emerged as
dominant, at least in the scientific community. In terms of
the parametric approach adopted here, an important advantage is
the possibility, using panel data, to use econometric methods
that allow for the consideration of unobserved heterogeneity
variables and allow, at the same time, for errors in the variables
and outliers.
8 For a review of several parametric studies, see Filippini and Hunt
(2015).
9 The reason for the use of only 49 states is explained below.

10 The UEDT attempts to capture exogenous technical prog-
ress and other exogenous factors, such as changes in envi-
ronmental pressures and regulations, changes in standards,
and the general changes in tastes and behaviour (Hunt et al.
2003a, b). Moreover, it could be argued that even though
technologies are available to each state, they are not nec-
essarily installed at the same rate; however, it is assumed
that this results from different behaviour across states and
reflects inefficiency across states; hence, it is captured by
the different (in)efficiency terms for all states.
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demand for several energy services used in an economy,
all of which are produced by combining capital, energy
and labour. Consequently, in this context, aggregate
total energy demand can be interpreted as a state’s input
demand function. Therefore, following Filippini and
Hunt (2011), it is assumed that there exists an aggregate
energy demand relationship for a panel of states of the
US, as follows11:

Eit ¼E Pit;;Y it;POPit;HDDit;CDDit;HSit;SHI it;SHSt;Ai;UEDTt;EEit

� �
ð1Þ

where Eit is aggregate energy consumption, Yit is GDP,
Pit is the real price of energy, POPit is population,HDDit

are the heating degree days, CDDit are the cooling
degree days,HSit is the household size, SHIit is the share
of value added of the industrial sector and SHSit is the
share of value added for the service sector12; all for state
i in year t. Ai is the geographical area size of each state,
UEDTt reflects a commonUEDTacross states capturing
both exogenous technical progress and other exogenous
factors. EEit is the unobserved level of EE for state i in
year t. Hence, a low level of EE implies an inefficient
use of energy (i.e. waste energy), so that in this situation,
awareness of energy efficiency could be increased in
order to reach the optimal energy demand. Of course, an
inefficient use of energy implies productive inefficiency,
i.e. a non-optimal use of all inputs, not necessarily only
of the energy input. Nevertheless, from an empirical
perspective, the aggregate level of EE is not observed

directly, but instead this indicator has to be estimated.
Consequently, in order to estimate a state’s level of EE
and identify the best practice state in terms of energy
utilisation, the stochastic frontier function approach
introduced by Aigner et al. (1977) is used. The level of
precision when measuring the EE of each state using a
stochastic frontier approach depends upon the type and
number of variables included in the estimated specifica-
tion like Eq. (1). Here, it is believed that the variables
considered in Eq. (1)—those usually utilised in econo-
metric studies of aggregate energy demand—represent,
relatively well, the most important energy demand
drivers.13

An aggregate input demand frontier function gives
the minimum level of input used by an economy for any
given level of output; hence, the difference between the
observed input and the cost-minimising input demand
represents both technically as well as allocative ineffi-
ciency.14 In the case of an aggregate total energy de-
mand function, used here, the frontier gives the mini-
mum level of energy consumption necessary for a state
to produce any given level of energy services. This
frontier approach allows the possibility to identify if a
state is, or is not, on the frontier. Moreover, if a state is
not on the frontier, the distance from the frontier mea-
sures the level of energy consumption above the base-
line demand, e.g. the level of energy inefficiency.

The approach used in this study is therefore based on
the assumption that the level of energy inefficiency of a
state’s whole economy can be approximated by a one-
sided non-negative term, so that a panel log-log func-
tional form of Eq. (1) adopting the stochastic frontier
function approach proposed by Aigner et al. (1977) can
be specified as follows:

eit ¼ αþ αppit þ αyyit þ αpoppopit þ αhshsit þ αhddhddit

þ αcddcddit þ αSHISHI it þ αSHSSHSit þ αaai

þ αt t þ vit þ uit ð2Þ

where eit is the natural logarithm of aggregate energy
consumption (Eit), pit is the natural logarithm of the real

11 It is recognised that some analysts and researchers argue against
such an aggregate approach, preferring a more disaggregated
approach, for instance at the industrial or residential level and/or
with different energy sources. And there is no reason why the
approach adopted here cannot be applied at these levels (see
Filippini and Hunt 2012 for an example of using aggregate data
but at the residential level). Furthermore, the analysis of aggregate
energy used here is consistent with numerous previous academic
studies that have attempted to analyse aggregate energy consump-
tion as well as reports and studies by energy agencies and policy
makers such as the International EnergyAgency (see, for example,
IEA 2009). Moreover, by including in the model specification
explanatory variables that reflect the structure of the economy
and the residential sector, it is believed that the sectoral differences
in energy consumption are taken into account.
12 Although these two share variables vary both over time and
across states, the variation over time is small relative to the
variation across states, thus primarily controlling for the different
economic structures across the states but with a small allowance
for the change in these relativities over time.

13 For instance, the adjusted R2 of the estimation of Eq. (1) using
Ordinary Least Squares and Fixed Effects is relatively high.
14 As discussed in more detail in Filippini and Hunt (2015), the
estimation of an energy demand frontier function allows the pos-
sibility to estimate a non-radial measure of the level of EE—based
on the concept of input specific efficiency developed by Kopp
(1981).
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price of energy (Pit), yit is the natural logarithm of GDP
(Yit), popit is the natural logarithm of population (POPit),
hddit is the natural logarithm of the heating degree days
(HDDit), cddit is the natural logarithm of the cooling
degree days (CDDit), hsit is the natural logarithm of the
household size (HSit), ai is the natural logarithm of the
area size (Ai) and t is a time trend that proxies the
UEDT.15 SHIit and SHSit are as defined above.
Furthermore, the error term in Eq. (2) is composed of
two independent parts. The first part, vit, is a symmetric
disturbance capturing the effect of noise and as usual is
assumed to be normally distributed. The second part, uit,
which reflects the level of EEit in Eq. (1), is interpreted
as an indicator of the inefficient use of energy, e.g. the
waste energy. It is a one-sided non-negative random
disturbance term that can vary over time, assumed to
follow a half-normal distribution.16 A more efficient use
of energy will increase a state’s EE. The impact of
technological and organisational innovation in the pro-
duction and consumption of energy services on energy
demand is therefore captured in a number of ways,
including through the price term and the time trend.
For instance, a rise in energy prices with a negative price
elasticity and a negative coefficient of the time
trend both suggest that energy saving technologies
would be adopted over time, thus allowing states
to decrease, ceteris paribus, their energy consump-
tion. The model specification therefore allows on
one side for states to modify their energy demand
by adopting new energy saving technologies and
on the other side by improving the level of effi-
ciency in the use of energy (and the other inputs).

In summary, Eq. (2) is estimated in order to estimate
EE for each state in the sample. The data and the
econometric specification of the estimated equations
are discussed in the next section.

Data and econometric specification

The study is based on a balanced US panel data
set for a sample of 49 states (i=1, …, 49) over
the period 1995 to 2009. For the purposes of this
paper, attention is restricted to the contiguous
states (i.e. Alaska and Hawaii are excluded),
whereas the District of Columbia is included and
considered as a separate ‘state’. The data set is
based on information from the US Energy
Information Administration (EIA) database called
States Energy Data System, from the US
Department of Commerce, the US Census Bureau
and the National Climatic Data Center at NOAA.

Eitis each state’s aggregate total energy consump-
tion for each year in trillion BTUs, Yit is each
state’s real GDP for each year in thousand US
2010$ and Pit is each state’s real energy price for
each year in per million BTUs 2010$. Total energy
consumption figures and prices are from the EIA.
Population (POPit) and GDP are from the Bureau
of Economic Analysis of the US Census Bureau.
The heating and cooling degree days (HDDit and
CDDit) are obtained from the National Climatic
Data Center at NOAA. 17 The data on area size
(Ai) and household size, the number of people per
household (HSit) are collected from the U.S. Census
Bureau. Descriptive statistics of the key variables
are presented in Table 1.

There are a number of different SFA model
specifications using panel data that could be con-
sidered suitable for the task at hand.18 These in-
clude the basic models for panel data: the pooled
model (PM), the random effects model (REM), the
true fixed effects model (TFEM) and the true
random effects model (TREM). Furthermore, as
shown by Farsi et al. (2005) and by Filippini
and Hunt (2012), it is possible to estimate some

15 Kumbhakar and Lovell (2000) note that the inclusion of a time
trend as a regressor in a frontier model as a proxy for technical
progress can frequently cause problems in estimation. One possi-
ble reason being the difficulty in disentangling the separate effects
of technical change and productive efficiency change when both
vary over time. An alternative approach is to include yearly time
dummies or, if the number of years is high, time dummy variables
that consist of two years rather than one. Although ideally time
dummies are preferred in order to capture any possible non-
linearity of the UEDT, here, in order to reduce the number of
parameters to be estimated, a time trend was chosen. However, as a
robustness check, the models were also estimated with some time
dummies and there were no discernible differences in the estimat-
ed parameters.
16 It could be argued that this is a strong assumption for EE, but it
does allow the identification of the efficiency for each state sepa-
rately. This is a standard assumption used in the production frontier
literature; see Kumbhakar and Lovell (2000, p. 148) for a
discussion.

17 See http://www.ncdc.noaa.gov/.
18 For a general presentation of these models, see Greene (2005a,
b, 2008) and Farsi and Filippini (2009).
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of these models using an adjustment introduced by
Mundlak (1978) in order to account for the econo-
metric problem of unobserved heterogeneity bias,
such as the Mundlak adjusted pooled model
(MPM) and the Mundlak adjusted random effects
model (MREM). This adjustment attempts to sep-
arate the unobserved variables from inefficiency.
Moreover, within this suite of models, some (such
as the REM and the MREM) attempt to provide
information on the persistent (time-invariant) part
of inefficiency, whereas others (such as the TFEM
and the TREM) attempt to provide information on
the transient (time-varying) part of inefficiency.19

However, the distinction between transient and
persistent efficiency has only recently been
introduced in the literature; hence, for this reason,
previous studies that have attempted to estimate
EE, such as Filippini and Hunt (2011, 2012) and
Lin and Du (2013), do not make this distinction.

All these models have their relative advantages
and disadvantages, and the choice of model is not
straightforward: it depends upon the goal of the
exercise and the type of data and variables that are
available. The PM is the SFA model in its original
form proposed by Aigner et al. (1977) and adapted
for panel data by Pitt and Lee (1981). This model
does not exploit the possibility given by panel data
to control for unobserved heterogeneity variables
that are constant over time. Therefore, the unob-
served heterogeneity bias can be a serious problem
in this model. On the contrary, the REM intro-
duced by Pitt and Lee (1981) interprets the typical
panel data individual random effects as inefficien-
cy rather than unobserved heterogeneity as in the
traditional literature on panel data econometric
methods.20 The level of efficiency estimated with
the REM does not vary over time. Therefore, this
model arguably provides information on the per-
sistent part of efficiency in the use of energy. One

19 It is worth noting that some recently proposed complex econo-
metric approaches attempt to control for unobserved heterogeneity
bias in order to obtain, from the same model, information on
persistent and transient inefficiency (see, for example, Tsionas
and Kumbhakar 2014 and Colombi et al. 2014). There is also an
approach proposed by Filippini and Greene (2015), which is
relatively straightforward, but at the time of writing, it is still in
an implementation and testing phase.
20 Schmidt and Sickles (1984) and Battese and Coelli (1992)
presented variations of this model.T
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problem with the REM is that any unobserved, time-
invariant, group-specific heterogeneity is considered as
inefficiency and the level of efficiency does not vary over
time. However, as shown in Farsi et al. (2005), the
application of Mundlak’s adjustment to the REM frontier
framework decreases the bias in inefficiency estimates by
separating inefficiency from unobserved heterogeneity.
This separation of inefficiency from unobserved hetero-
geneity is based on the assumption that the effects of
unobserved time-invariant state characteristics are cap-
tured by the coefficients of the group mean of the ex-
planatory variables of the Mundlak adjustment equation.

Greene (2005a, b) proposed the TFEM and the
TREM whereby the PM is extended by adding fixed
and random individual effects, respectively. The TFEM
and the TREM are able to distinguish time-invariant
unobserved heterogeneity from the time-varying level
of efficiency component (the transient part). However,
in these models, any time-invariant or persistent com-
ponent of inefficiency is completely absorbed in the
state-specific constant terms. Therefore, in contexts
characterised by persistent inefficient use of energy
determined for instance by the presence in a country of
old houses or of an urban planning system that does not
minimise the travel time, this provides relatively high
levels of estimated transient EE.

Given this discussion, the MREM is seen as the
appropriate approach to estimate the persistent part of
the level of EE, and the TREM the appropriate approach
to estimate the transient part of the level of EE.21

Consequently, in order to obtain estimates of both the
persistent and transient parts of the inefficiency for the
49 states in the US, these two separate models, the
MREM and the TREM, are estimated here and the two
estimated values of inefficiency are interpreted accord-
ingly.22 Of course, because the two models are

measuring a different component of the level of EE, it
is not expected to obtain similar rankings from these
models. Table 2 summarises the two models.

After Eq. (2) is estimated, it is possible to estimate a
state’s efficiency using the conditional mean of the
efficiency term E[uit|uit+vit] proposed by Jondrow
et al. (1982), and the level of EE can be expressed by:

EEit ¼ EF
it

Eit
¼ exp −ûit

� �
ð3Þ

where Eit is the observed energy consumption and
Eit
F is the frontier or minimum demand of the ith

state in time t. An EE score of one indicates a
state on the frontier (100 % efficient), while non-
frontier states, e.g. states characterised by a level
of EE lower than 100 %, receive scores below
one. This therefore gives the measures of EE
estimated below.23 In summary, Eq. (2) is esti-
mated using the MREM and TREM, and for each
of these, Eq. (3) is used to estimate the respec-
tive persistent and transient EE for each state for
each year. Moreover, as previously discussed, it
is expected that, compared to the estimated per-
sistent EE, the level of the transient EE would be
relatively high but with a lower variation. The
results from the estimation are given in the next
section.

Estimation results

The estimation results of the frontier energy demand
models using the two models discussed above are given
in Table 3.24 Most of the estimated coefficients25 and

21 The additional Mundlak terms in the MREM and the individual
effects in the TREM capture the effect of unobserved time-
invariant variables at the state level. For instance, unobserved
differences across the states in the structure of the economy or in
the structure of the energy demand that remain constant over time
are taken into account by these effects and therefore should help
ameliorate some of the issues related to the use of aggregate data.
22 The TFEM is also an appropriate approach to measure the level
of transient inefficiency; thus, as a robustness check, this model
was also estimated and the results are highly correlated with the
results obtained with the TREM. Therefore, to avoid confusion by
presenting several similar models, it was decided to restrict the
analysis to the TREM.

23 This is in contrast to the alternative indicator of energy ineffi-
ciency given by the exponential of uit. In this case, a value of 0.2
indicates a level of energy inefficiency of 20 %.
24 The estimation has been performed using the software NLOGIT
(version 2012). Further, the TREM is estimated using a maximum
simulated likelihood approach. In this version of the paper, the
Halton sequences rather than pseudo-random numbers for the
simulation have been used with the number of replications set to
300.
25 Note that most of the estimated coefficients can be regarded as
estimated elasticities given the variables are in logarithmic form
(the coefficients on the industrial and service share being the
exceptions).
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lambda26 have the expected signs and are statistically
significant at the 10 % level and, generally, the results
obtained in the two models are relatively similar. The
results suggest that the variables included in the model
are pertinent and explain most of the variation in aggre-
gate energy demand across both state and time.27

The results suggest that US total energy demand
is price inelastic, with the estimated elasticity being
statistically significant from zero but relatively low
at about −0.07. The results also suggest that US
total energy demand is income inelastic, with an
estimated elasticity of about 0.5. For the weather
variables, the estimated heating degree-day elastic-
ity has the expected sign and is significant, whereas
the coefficient of the CDD variable is not signifi-
cantly different from zero; similarly, the AREA
coefficient is not significant in the MREM. The
estimated household size elasticities are significant
however and, as expected, are negative (both being
close to −1) suggesting that an increase of 10 % in
the household size decreases energy consumption
by approximately 10 %. This decrease is probably
due to economies of scale in the production of
some residential energy services; for instance, the
size of a fridge is unlikely to vary proportionally
with the number of household members.

The estimated coefficients of the share of the indus-
trial sector and of the service sector suggest a negative

impact of these two variables onUS total energy demand
(noting that the reference sector is agricultural and min-
ing). The coefficient of the time trend variable is negative
and significant in both models, suggesting that energy-
saving technical progress dominates other exogenous
factors with an inward shift of the energy demand func-
tion over time. Finally, in the MREM, half of the includ-
ed Mundlak terms are significant (note that in order to
avoid multicollinearity between these mean variables
and the original variables, a subset only of the variables
are introduced for the Mundlak adjustment).28

Table 4 provides descriptive statistics for the overall
US EE estimates for the 49 states obtained from the26 Lambda (λ) gives information on the relative contribution of uit

and vit on the decomposed error term εit and shows that in this case,
the one-sided error component is relatively large.
27 It is worth noting that the adjusted R2 obtained by estimating the
model using simple OLS is relatively high (0.97), suggesting that
model specification includes the most important explanatory
variables.

Table 3 Estimated coefficients (t ratios in parentheses)

MREM TREM

Constant 24.3170*** (13.19) 13.7990*** (70.53)

αy 0.4808*** (10.54) 0.4880*** (48.28)

αp −0.0695*** (−2.70) −0.0679*** (−4.66)
αpop 0.3701*** (9.45) 0.5330*** (50.00)

αhdd 0.1155** (2.56) 0.0645*** (9.62)

αcdd 0.0096 (0.47) −0.0044 (−1.02)
αhs −1.0116*** (−11.10) −0.9886*** (−33.55)
αSHI −0.5501** (−2.40) −0.5326*** (−4.41)
αSHS −0.5900** (−2.47) −0.5299*** (−4.32)
αa −0.0300 (−1.07) 0.1070*** (48.01)

αt −0.0112*** (−6.58) −0.0132*** (−17.49)
Av-αy −0.2722 (−1.55)
Av-αp −1.7467*** (−6.40)
Av-αpop 0.4057** (2.21)

Av-αhdd −0.1525*** (−2.60)
Av-αhs 0.4278 (0.76)

Av-αSHS −0.6784 (−1.21)
State effects No Yes

σα – 0.4018***
(87.70)

σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
u þ σ2v

p
0.2145*** (39.54) 0.0629*** (39.54)

Lambda (λ)
λ=σu/σv

4.5506** (2.53) 1.5886*** (10.12)

Log likelihood 1110.5322 1058.9134

***Significant at 0.01 level, **significant at 0.05 level, *signifi-
cant at 0.10 level

28 For the selection of the variables to consider in the Mundlak
adjustment equation, a regular fixed and random effects model was
estimated and the model specification used in the estimation of the
MREM is supported by the results of a Hausman test.

Table 2 Econometric specifications of the stochastic cost frontier

MREM TREM

State effects αi αi ¼ γX i þ δi

X i ¼ 1
T ∑

T

t¼1
X it iid(0,σα

2)

Random
error εit

εit ¼ δi þ vit
δieNþ 0;σ2

δ

� �
viteN 0;σ2u

� �
εit ¼ uit þ vit
uiteNþ 0;σ2

u

� �
viteN 0;σ2u

� �
Inefficiency E(δi I vit) E(uit I vit)
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econometric estimation. As discussed previously, the
MREM provides information on the persistent level of
inefficiency, whereas the TREM provides information
on the transient part of efficiency. Nevertheless, it
should be noted that although the persistent EE estimat-
ed by the MREM is time invariant, it does not mean that
the model constrains states from using less energy by
adopting new technologies over time given the inclusion
of the UEDT in the form of a time trend with an
estimated negative coefficient.

Table 4 shows that, as expected, the estimated
transient part of EE is higher than the persistent
part, but the variation in the estimated transient EE
is somewhat lower than the variation in the esti-
mated persistent EE. In fact, the level of estimated
transient efficiency is very similar for all states, all
being very close to the average of 96 %; conse-
quently, the ranking obtained from these estimates
is not that informative. However, as stated above,
there is far greater variation across states in the
level of estimated persistent efficiency—hence, for
the remainder of this paper, the focus is on the
estimated persistent EE from the MREM.

As discussed in Filippini and Hunt (2011,
2012), it is expected that estimated EE would be
negatively correlated with EI; thus, for most states,
it is expected that the level of EI decreases with
an increase of the estimated level of EE. However,
as Filippini and Hunt (2011) argue, if this tech-
nique were to be a useful tool for teasing out the
true EE, then a perfect, or even near perfect,
negative correlation would not be expected since
all the useful information would be contained in
standard EI measures. This proves to be the case
with the estimates here, as illustrated in Fig. 1
with the correlation coefficient between average EI

and average estimated persistent EE from the
MREM being only −0.46. Furthermore, there is not
a strong correlation between the rankings, with the
Spearman rank correlation coefficient between aver-
age EI and average estimated persistent EE from the
MREM being only 0.18.29

This is further highlighted in Fig. 2 that ranks
the states in terms of the estimated persistent EE
and EI and classifies the states into three groups:
relatively efficient states, relatively inefficient
states and relatively moderately efficient states.
Although the states are ranked in Fig. 2, arguably
the best way to consider the results from such a
SFA estimation is in the groups as shown in Fig. 2
given that some of the states’ estimated persistent
EE differ by very little.30 Nonetheless, based on
the groupings, Fig. 2 shows that EI would appear
to be a good predictor of a state’s relative EE for
some states but a very poor indicator for others.
For example , Kansas , Lou i s i ana , Maine ,
Mississippi, Montana, New Mexico, North
Dakota, Ohio, Oklahoma, South Dakota, Texas
and Wyoming are classified as being relatively
inefficient states according to the estimated EE
and are states with relatively high levels of EI.
At the other end of the spectrum, the District of
Columbia and Florida are classified as being rela-
tively efficient states according to the estimated
EE and are states with relatively low levels of
EI. However, California, Connecticut, Delaware,
Massachusetts, Maryland, New Hampshire, New
York and Nevada are classified as being relatively
inefficient states according to the estimated EE but
are states with relatively low levels of EI. In
addition, Idaho, Indiana, Michigan, Utah and
Wisconsin are classified as being relatively effi-
cient states according to the estimated EE but are
states with relatively low levels of EI.

Within these results, it is worth highlighting
California, which is found to be relatively

Table 4 Summary of EE estimates across all states, 1995–2009

MREM:
persistent EE

TREM:
transient EE

Minimum 0.57 0.81

Maximum 0.99 0.99

Mean 0.86 0.96

Median 0.87 0.96

Standard deviation 0.10 0.02

Coefficient of variation 12 % 2 %

29 For the TREM, the correlation coefficient and the Spearman
rank correlation coefficient are −0.20 and 0.24, respectively.
However, it should be remembered that these are based on the
estimated transient EE that has very little variation with them all
being very close to 96 %.
30 The cut-off points between the different groups are based on
statistical measures (the upper quartile and the median) so could be
considered arbitrary; however, like any classification system, the
line has to be drawn somewhere.
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inefficient according to the estimated persistent EE
estimates. This would appear to be at odds with
the conventional wisdom of policymakers and
professionals who generally regard California as
being a highly energy efficient state as well as a
number of research papers such as Howrowitz
(2007) and Sudarsham (2013). This view is nor-
mally based on EI or electricity intensity, so a
direct comparison with the analysis here is difficult if
not impossible given the whole premise of the EE mea-
sure estimated here that analysis based on EI is poten-
tially biased and misleading for policymakers. Thus, the
research presented here does not necessarily disagree
with some of the previous research such as Howrowitz
(2007, p. 93) who argues that ‘California’s energy effi-
ciency programs … have dramatically reduced state
electricity intensity’. It is just that if the analysis here is
to be believed, there is still more to be done in order for

California to increase its EE and move closer to the
energy demand efficient frontier. 31 Furthermore, the
work here supports the conclusion by Sudarshan
(2013, p. 207) who contends that ‘while indices
such as energy intensities … can provide a great
deal of insight, they also hide as much as they
reveal’. However, it should be noted that the pro-
posed EE measure estimated here could be sensi-
tive to the assumptions adopted regarding the
econometric approach and model specification, so

31 The results presented here would also appear, at first sight, to be
in disagreement with the rankings provided by ACEEE (2013).
However, the ACEEE rankings refer to the degree or intensity of
policy makers to promote EE, not the actual EE. Therefore,
although California is ranked highly by ACEEE but is classified
as being relatively inefficient according to the estimates here, it
suggests that despite the promotion of such policies, California still
has some way to go in order to increase its relative EE.
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Fig. 2 Average EI and estimated persistent EE (1995–2009). a EI (1000 BTU per 2010US$). b Estimated persistent EE (from the MREM)
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A: EI (1000 Btu per 2010US$)

B: Estimated Persistent EE (From the MREM)
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further validation and exploration is needed.
Furthermore, the estimated measure of EE obtained
using a stochastic frontier approach should be seen
as providing a broad approximation of the direction
of the true level of EE rather than an exact number
and rank.

Summary and conclusion

Building on Filippini and Hunt (2011, 2012), this re-
search attempts to define and estimate EE for 49 US
states by combining energy demand modelling and fron-
tier analysis. The energy demand specification controls
for income, price, population, household size heating
degree days, cooling degree days, the area, the share of
the industrial sector, the share of the service sector and a
UEDTand is estimated using theMREM and the TREM.
These two models are seen as interesting techniques for
attempting to uncover the general relative levels of the
true EE of the 49 states and are regarded, given the
current state of knowledge, as being superior to the range
of other techniques available. Moreover, they avoid the
problem of unobserved heterogeneity. Of course, future
research on the level of EE of the US states could attempt
to apply the recently developed econometric estimator
that should be available soon whereby estimates of both
persistent as well as transient efficiency can be obtained
from one model (see Filippini and Greene 2015) at both
the aggregate and sectoral level.

The estimates show that for some states, the simple
measure of EI might give a reasonable indication of a
state’s relative EE, but this is not so for other states,
California being a good example. Therefore, unless the
analysis advocated here is undertaken, US policy
makers are likely to have a misleading picture of the
true relative EE across the states and thus might make
misguided decisions when allocating funds to various
states in order to implement EE measures. Hence, it is
argued that this analysis should also be undertaken in
order to give US policy makers an additional indicator
other than the rather naïve measure of EI in order to try
to avoid potentially misleading policy conclusions. That
said, it is recognised that the application of stochastic
frontier analysis for estimating the level of EE is still a
relatively new approach that requires further work and
validation and is likely to be improved in future research.
Thus, it is not being advocated that the measure of EE
obtained using a stochastic frontier approach should be

used in a mechanical way to produce rankings.
However, at this stage at least, it is suggested that policy
makers could use this as an additional alternative to just
using the proxy measure, EI, and thus provide a general
guide to the relative levels of EE, rather than an exact
number and rank. In other words, the results from such
analysis could be used as an additional instrument for
regulatory decisions.
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