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Abstract
This work looks at developing an object-driven decision support system (DSS) model with the goal of improving the pre-
diction accuracy of the present expert-driven DSS model in assessing groundwater potentiality. The database of remote 
sensing, geological, and geophysical information was constructed using the technological efficiency of GIS, data mining, 
and programming tools. Groundwater potential conditioning factors (GPCF) extracted from the datasets include lithology 
(Li), hydraulic conductivity (K), lineament density (Ld), transmissivity (T), and transverse resistance (TR) for groundwater 
potentiality mapping in a typical hard rock multifaceted geologic setting in south-western Nigeria. A Python-based entropy 
approach was used to objectively weight these factors. The weightage findings determined that the greatest and lowest given 
values for Ld and K were 0.6 and 0.03, respectively. The produced Python-based PROMETHEE-Entropy model algorithm 
was born through combining the weight findings with the Python-based PROMETHEE-II method. The groundwater poten-
tiality model (GPM) map of the area was created using the model algorithm's outputs on the gridded raster of GPCF themes. 
Based on the suggested approach, the validated results of the created GPM maps using the Receiver Operating Characteristic 
(ROC) curve technique yielded an accuracy of 86%. An object-driven DSS model was created using the approaches that were 
used. The created object-driven model is a viable alternative to existing approaches in groundwater hydrology and aids in 
the automation of groundwater resource management in the research region.

Keywords Groundwater potential · Geophysics · Remote sensing and GIS · PROMETHEE-II · Entropy · Python 
programming

Introduction

Water is an essential component of life since it maintains 
life (Akintorinwa et al. 2020). According to Arsene et al. 
(2018) and Srinivasan et  al. (2013), these valuable but 
finite natural resources are generally required for home and 
industrial applications; without them, production and sus-
tainability are near to impossible. Molden (2007) and Al 
Sabahi et al. (2009) define groundwater as water enclosed 

in a geologic substance in the earth's subsurface known as 
an aquifer. These aquifer units might be weathered layers, 
voids, cracks, faults, and so forth. Groundwater is a major 
source of water in Nigeria for home use and agriculture. 
As a result, groundwater evaluation and acquisition are 
critical for obtaining portable drinking water, assisting in 
irrigation operations, and also in enterprises (Yousefi et al. 
2018; Ouedraogo et al. 2016). According to Obaje (2009), 
groundwater occurrence in Nigeria's basement complex 
is relatively low and irregular, owing to the prevalence of 
abrupt discontinuities in features and faults responsible for 
groundwater accumulation, as well as low aquifer overbur-
den (Olabode 2019; Anbazhagan et al. 2011; Chandra et al. 
2008). Because of the nature of the crystalline basement 
rocks underlying the hard rock terrain, these discontinui-
ties are frequently characterised by low porosity and low 
permeability of fluids percolation, which causes localisation 
of groundwater potential zones and scattered presence of 
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pockets of groundwater accumulation present in the base-
ment complex terrain, making groundwater occurrence 
generally low and irregular (Olabode 2019; Ajayi 2017; 
Akintorinwa 2014; Odeyemi et al. 1985). According to Ajayi 
(2017) and Mogaji et al. (2011), few crystalline rocks, such 
as schist, worn quartzite, gneiss, and so on, have exhibited 
great groundwater potential, and their aquifer units often 
serve as a conduit to the natural resource in huge quantities. 
Geophysical surveys are one of the most commonly used 
methodologies for evaluating groundwater potential zones 
since the conduit medium cannot be seen immediately on 
the earth's surface (Braga et al. 2006). Several researchers 
have done groundwater hydrology studies, particularly in 
hard rock terrain, with promising results, including Omosuyi 
(2010), Mogaji et al. (2014), Oladunjoye et al. (2019), and 
Akintorinwa et al. (2020).

In the realm of groundwater hydrology, the use of geo-
graphic information system (GIS) and remote sensing 
(RS) techniques has proven to be good in spatial analysis 
related hurdles (Mogaji et al. 2021; Rahmati and Meselle 
2016; Rahmati et al. 2015; Manap et al. 2014; Nasiri et al. 
2012). This is because satellite database archives provide 
convenient and rapid access to data, saving time and money 
in analysis (Zare et al. 2013). In prior study in this subject, 
the combined use of GIS, RS, and multicriteria decision 
analysis (MCDA) functioned as a superior decision sup-
port system in demarcating groundwater potential zones 
(Ajaykumar et al. 2020; Mogaji and Lim 2016; Al-Abadi 
2015). MCDA approaches have been used to give weights 
to index parameters from various research (Arshad et al. 
2020; Mogaji and Lim 2016; Adiat et al. 2012; Chowdhury 
et al. 2009). The Analytical Hierarchy Process is one of the 
most extensively utilised MCDAs (AHP). Based on funda-
mental mathematics and psychology, the AHP model is a 
systematic approach for organising and evaluating compli-
cated decisions (Saaty 1987). It is a measuring theory based 
on pairwise comparisons that depends on expert opinion to 
establish priority scales. Yet, due to the model's subjectivity, 
the assessment may be inconsistent and prejudiced. Yet, it 
has been successfully applied in the subject of groundwater 
hydrology (Mogaji and Omobude 2017; Akinlalu et al. 2017; 
Adeyemo et al. 2017). Because of AHP's subjectivity and 
biases, academics have looked ahead and moved to research 
models that are devoid of human or expert input or view-
points. They are also known as objective models or data-
driven approach models. These models include frequency 
ratio (Arshad et al. 2020; Pourtaghi and Pourghasemi 2014; 
Elmahdy and Mohammed, 2014; Ozdemir 2011; Oh et al. 
2011), artificial neural networks (Adiat et al. 2019; Lee 
et al. 2012; Corsini et al. 2009), weights of evidence (Chen 
et al. 2018; Pourtaghi and Pourghasemi 2014; Lee et al. 
2012), maximum of entropy (Rahmati et al. 2015), prefer-
ence ranking organisation method for enrichment evaluation 

(PROMETHEE-II) (Widianta et al. 2018; Roodposhti et al. 
2012), and evidential belief functions (Pourghasemi and 
Beheshtirad 2015; Nampak et al. 2014; Mogaji et al. 2014). 
These data-driven techniques employ mathematical algo-
rithms with known well/spring locations as dependent vari-
ables, as well as other known factors, to assess groundwa-
ter occurrence in a certain geo-spatial setting (McKay and 
Harris 2015). The weights of the parameters evaluated for 
groundwater zonation of the research region were calculated 
using the entropy technique of weightage calculation in this 
study.

According to Lin and Weng (2009) and Wang et  al. 
(2020), the entropy technique is an object (non-expert) driven 
strategy that comprises computing the entropy and entropy 
weight to determine the weight values of specific indicators. 
Entropy is inversely related to entropy weight, therefore the 
lower the entropy, the higher the associated entropy weight. 
The quantity of meaningful information provided by the tar-
get to the decision-maker is lowered. Many scholars in sev-
eral branches of science have employed entropy extensively 
in the literature (Al-Abadi et al. 2017; Al-Abadi and Shahid 
2016; Li et al. 2012; Safari et al. 2012; Qi et al. 2010).

Brans (1982) created the PROMETHEE-II algorithm, 
which was further upon by Vincke and Brans (1985). PRO-
METHEE-II employs a full ranking approach on a limited 
set of possibilities, ranging from best to worst. This approach 
compares options pairwise along each identified criterion 
and takes into account the preference function of criteria 
over others, which tends to provide superior results (Abdul-
lah et al. 2019; Nasiri et al. 2012; Roodposhti et al. 2012). 
This approach has been widely employed in a variety of dis-
ciplines of study, including banking, water resource manage-
ment, investments, healthcare, tourism, the industrial sec-
tor, dynamic management, and so on (Widianta et al. 2018; 
Roodposhti et al. 2012). This approach has been widely 
employed in a variety of disciplines of study, including 
banking, water resource management, investments, health-
care, tourism, the industrial sector, dynamic management, 
and so on (Widianta et al. 2018; Roodposhti et al. 2012).

The PROMETHEE-II approach based on entropy weight 
was employed in this study to assess the groundwater poten-
tiality index and rating of the study region. The creation of 
these combined MCDA techniques was prompted by the 
combination of the properties of both model algorithms. To 
begin, the PROMETHEE-II considers the preference func-
tions of each criteria to enhance decision-making regarding 
the outcome. Furthermore, the entropy technique employs a 
data-driven strategy in determining the weights of criteria, 
making this task object-driven and devoid of human input 
in producing the final algorithm index. Additionally, in the 
realm of groundwater hydrology, the coupling of these model 
techniques with GIS and RS has not been used to groundwa-
ter potential mapping. Lastly, because of its robust libraries 
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and high-speed computing capabilities, the model algorithms' 
procedures were calculated using the Python programming 
language (Butwall et al. 2019). These integrated methodolo-
gies were used to estimate the groundwater potentiality of the 
study region using geoelectrical and remote sensing-derived 
metrics such as lithology (L), hydraulic conductivity (K), 
lineament density (Ld), transmissivity (T), and transverse 
resistance (TR). The methodology was demonstrated in typi-
cal multifaceted geologic settings.

Methodology, study area, and data used

Methodology

As indicated in Fig. 1, the study technique was carried out 
in four stages, employing geology, remote sensing, and 

geophysical data. The initial phases required collecting, 
processing, and interpreting remote sensing, geology, and 
geophysical characteristics for this study's groundwater 
potential evaluation. Following that, thematic maps of the 
conditioning factors were created in ArcGIS, and uniformly 
spaced fishnet (observation) points were placed to extract 
pixel values at those points. Furthermore, the Python-based 
entropy method of weighting was used on the fishnet points, 
as well as the PROMETHEE-II algorithm, producing the 
PROMETHEE-Entropy-based groundwater potential index 
(GPI), which was synthesised in the GIS environment to pro-
duce the groundwater model map of the study area. Finally, 
the suggested model was validated using borehole data and 
a reflection coefficient map of the research region. Figure 1 
depicts the process flowchart.

Fig. 1  The adopted methodology 
flowchart for the study
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Description of the study area

The research area is in northern Ondo state, Nigeria, and 
includes the local government areas of Akoko south-west, 
Akoko south-east, Akoko north-west, Akoko north-east, 
and Ose, as indicated in Fig. 2. The region is designated 
by the Minna-Nigeria 31N datum of the UTM (Universal 
Traverse Mercatum) system and extends from longitude 
5°30″E to 6°0″E and latitude 7°10″N to 7°45″N. It is sur-
rounded to the west, north, and east by Ekiti, Kogi, and 
Benin states, respectively, and to the south by other sections 
of Ondo state. The overall area covered by the research area 
is approximately 1492.55 square kilometres. The terrain in 
the research region is relatively low to highly undulating, 
with surface elevations ranging from 162 to 1500 m above 
sea level. Ikare and Oke agbe, located in the northern half 
of the research region, have high elevations characteristic 

of dispersed batholiths, but communities to the south, such 
as Idoani, Oba, and Idosale, have low-lying rock exposures 
(Olabode 2019; Oyedotun and Obatoyinbo 2012).

The environment is hot and humid, with rain-bearing 
south-west monsoon winds blowing in from the Sahara 
Desert. The rainy season lasts from April to October, with 
repeated maxima occurring from August to October, with 
annual rainfall ranging from 1500 to 2000 mm. The aver-
age annual temperature is roughly 23–26 °C (Duze and Ojo 
1982), with a relative humidity of 75–95%. Forest-savannah 
vegetation is the natural vegetation.

The research area is underlain by the Precambrian base-
ment complex of Southern Nigeria (Rahaman 1988). The 
geological units identified in the region include granite, mig-
matite gneiss, and quartzite. More than 70% of the area is 
underlain by migmatite gneiss. Figure 3 shows a geological 
map of the area.

a.

b.

Fig. 2  Location maps showing: a map of Ondo State and Nigeria and b study area map displaying the data acquisition points and other features
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Data used

Lithology

The lithologic map of the research area was derived from 
Ondo State's regional geology and mineral resources map 
(NGSA 2006). After georeferencing the scanned copy of the 
regional map in an ArcGIS environment, the shape file of the 
research area was extracted from the state map to generate 
the lithological map of the study area shown in Fig. 3.

Remote sensing

The remote sensing techniques employed in this study 
include lineament extraction from LANDSAT 8 images of 
the subject region. In the year 2020, this image was retrieved 

from the United States Geological Survey (USGS) Earth 
Explorer with route 189 and row 055. Visual interpreta-
tion of both LANDSAT 8 photos was used to identify the 
lineaments (Fig. 3). To extract the area of interest (AOI), a 
432 (RGB) false-colour composite band combination was 
employed, followed by principal component analysis (PCA), 
band rationing, directional filtering, and edge enhancement 
using PCI Geomatica 2012. These lineaments were identi-
fied, photographed, scanned, and placed on a lithologic map 
(Fig. 3).

Lineaments are typically examined using frequency 
or length against azimuth histograms (Zakir et al. 1999; 
Mostafa and Zakir 1996), rose diagrams (Karnieli et al. 
1996), and/or lineament density maps (Zakir et al. 1999; 
Mostafa and Zakir 1996). (Zakir et al. 1999). The most 
popular way is to construct density maps of lineaments 

Fig. 3  Geologic map of the 
study area (Modified after Geo-
logical and mineral resources 
map of Ondo State) Nigeria, 
2006)
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(Zakir et al. 1999). Equation (1) expresses the Ld defini-
tion mathematically:

where 
∑

Li = total length of all the lineaments (km) and 
A = area of the grid  (km2).

The lineament density map is shown in Fig. 4 below.

(1)Ld =

i=n∑
i=1

Li

A

(
km−1

)
,

Geophysical investigation

Data acquisition and  interpretation The geophysical data 
in the study region were collected using the Schlumberger 
array of electrical resistivity techniques. The array was uti-
lised to collect 118 vertical electrical soundings (VES) data 
from 1 to 100  m utilising half-electrode spacing (AB/2). 
This approach takes into account vertical differences in the 
apparent resistivity of the ground, which were measured 
with a fixed centre of the array. The survey was carried out 
by progressively expanding or increasing the electrode spac-
ing around a fixed centre of the array. Normally, electrodes 

Fig. 4  Lineament density  
thematic layer for the study area



1963Acta Geophysica (2024) 72:1957–1984 

1 3

are positioned in a straight line, with a pair of potential 
electrodes placed between two pairs of current electrodes. 
In this work, the Global Positioning System (GPS) was uti-
lised to spatially identify VES sites for spatial analysis in 
a GIS setting. The apparent resistivity of the VES data is 
the product of the resistance and the matching geometric 
factor (G) of the electrode spacing for each spread length 
(AB/2). On a log–log graph sheet, these apparent resistiv-
ity values were plotted against the electrode spacing. The 
VES curves that were generated were displayed and divided 
into types. These classifications demonstrate the qualita-
tive character of subsurface lithology. In addition, quantita-
tive interpretations of the partial curve matching findings, 
which are the layer thickness and layer resistivity, were 
determined. The results were entered into the WinResistTM 
Software as model parameters (Vander-Velper 2004). The 
theoretical model curve, the primary geoelectric parameters 
(layer resistivity, layer thickness), and the depth to the top 
of each layer provide good insight into the aquifer's subsur-
face information, which is vital for groundwater potential 
research. Figure 5 and Table 1 show typical curves depend-
ing on underlying geology and a summary table representa-
tion of geoelectric characteristics.

The derived secondary geoelectric parameter The primary 
geoelectric parameters, layer resistivity and layer thickness, 
were utilised to determine the secondary geoelectric param-
eters, which are important conditioning variables in delin-
eating groundwater potential zones in the research region. 
The validation method takes into account hydraulic conduc-
tivity (K), transmissivity (T), transverse resistance (TR), and 
reflection coefficient (Rc). The primary geoelectric charac-
teristics in Table 1 were reanalysed using Eqs. 2–5 to gen-
erate the aforementioned groundwater conditioning factors. 
Table 2 displays the values of the calculated K, T, TR, and 
Rc parameters.

Hydraulic conductivity, K (m/day), is given by:

where ρ = aquifer resistivity

where, K = hydraulic conductivityh = aquifer thickness

(2)K = 0.0538e−0.0072�,

(3)Transmissivity, T
(
m2∕day

)
= Kh,

(4)

Transverse resistance, TR (Ωm)

= h
n
∗ �

n
= h1 ∗ �1 + h2 ∗ �2 + ……… . + h

n
∗ �

n
,

Fig. 5  Typical resistivity model curves obtained in the study area; a migmatite gneiss, b quartizite series and c granite gneiss rock unit
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where n = number of layers overlying the aquifer 
unith = layer thickness, ρ = layer resistivity

where ρn is the layer resistivity of the nth layer and ρn-1 is the 
layer resistivity overlying the nth layer.

(5)Ref lection coeff icient,Rc =
�n − �n−1

�n + �n−1

,

Selection of  groundwater potentiality conditioning factors 
(GPCF) and production of their thematic layers in the GIS envi‑
ronment The groundwater potential of the research was eval-
uated using five (5) factors: lithology, hydraulic conductivity, 
lineament density, transmissivity, and transverse resistance. 
Thematic maps of these factors were generated using Arc-
GIS 10.3's inverse distance weighting (IDW) approach, and 
data from Table 2 were utilised to develop the geo-electrically 
linked thematic layers displayed in Figs. 6, 7, and 8.

Table 1  Summary of the 
interpreted geoelectric 
parameters

VES Layer resistivity (Ωm) Layer thickness (m) Curve type

ρ1 ρ2 ρ3 ρ4 ρ5 h1 h2 h3 h4

1 456 90 1476 1.2 1.2 H
2 942 26 704 0.8 0.7 H
3 603 145 21196 0.8 3 H
4 2377 139 6065 0.4 6.2 H
5 1522 229 10615 1 14.8 H
6 1461 140 1429 0.7 2.8 H
7 1076 122 3124 0.7 2.4 H
8 426 122 658 0.3 5.4 H
9 1399 215 2322 0.9 1.9 H
10 878 155 2692 2.5 13.8 H
11 279 18 2557 0.7 0.4 H
12 4516 91 16224 1.2 12.2 H
13 4721 343 268 1191 1.3 0.4 14.3 QH
14 2060 357 5670 1.2 14.2 H
15 1208 171 3917 3.3 69 H
16 2277 480 1195 295 20096 1.1 1.5 6.1 10.6 HKH
17 525 77 2563 2 6.5 H
18 23 109 533 1 7.5 A
19 566 45 791 105 19560 0.5 0.5 4.5 15 HKH
20 101 254 137 6265 1.2 2.8 28 KH
21 53 130 80 203 1.1 2.9 5.4 KH
22 210 25 301 131 859 0.7 0.3 3.4 6.1 HKH
23 354 131 609 1.8 4.3 H
24 181 70 3633 1.1 1.6 H
25 147 309 20728 1.4 5.6 A
? ? ? ?
? ? ? ?
110 63 121 25 6776 0.8 1.6 3.4 KH
111 32 88 549 0.9 5 A
112 85 39 3523 1 2.6 H
113 64 30 2490 1.5 3.2 H
114 281 86 148 18315 0.6 1.1 4.4 HA
115 132 83 7708 0.8 3.2 H
116 255 641 192 15396 0.9 1.6 2.7 KH
117 404 71 1304 1 4 H
118 171 92 18785 1.6 3 H
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The groundwater potential conditioning factors (GPCF) 
thematic maps shown in Figs. 2, 4, 6, 7, and 8 were created 
to model the groundwater potential of the research region. 
These layers were used as input parameters for develop-
ing the suggested PROMETHEE-Entropy model method 
in Python. Table 3 was created for ease of computation by 
guaranteeing uniformly dispersed fishnet points (Fig. 9) over 
the study area. Akintorinwa et al. (2020), Olabode 2019, 
Alhassan et al. (2015), and Nasiri et al. (2012) have high-
lighted the hydrological relevance of the GPCF for the sug-
gested model method (2012).

Models review

The entropy method According to Lin and Weng (2009), 
the entropy method is an object-driven (non-expert) signifi-
cance approach that involves determining the weight val-
ues of individual indicators by calculating the entropy and 
entropy weight (Qi et al. 2010). The method is based on the 
idea of discreet probability distribution where uncertainty is 
depicted with broad distribution (Zou et al. 2006) and since 
entropy is the measure of a system’s disorder nature, it can 
be used to extract useful information from a given data (Al-
Abadi et al. 2016). The difference in the values of the evalu-

Table 2  Summary of the 
derived secondary geoelectric 
parameters

K: Hydraulic conductivity; TR: Transverse resistance; T: Transmissivity; Rc: Reflection coefficient

VES Lat Long K (m/day) T  (m2/day) TR (Ωm) Rc

1 7.3726 5.782 0.028142 0.033771 548.2 0.885057
2 7.3724 5.7825 0.044615 0.031231 754.6 0.928767
3 7.4453 5.7239 0.01894 0.05682 483.4 0.986411
4 7.4452 5.72416 0.019776 0.122612 951.8 0.95519
5 7.44521 5.72424 0.010345 0.153101 1523 0.957765
6 7.37594 5.73524 0.019634 0.054976 1023.7 0.821542
7 7.37552 5.73532 0.022351 0.053643 754.2 0.924831
8 7.58986 5.8083 0.022351 0.120696 128.8 0.687179
9 7.59042 5.808326 0.011442 0.021739 1260.1 0.830508
10 7.59928 5.840215 0.017624 0.243214 2196 0.891113
11 7.588169 5.902494 0.04726 0.018904 196.3 0.986019
12 7.619999 5.884966 0.02794 0.340873 5420.2 0.988845
13 7.725406 5.87069 0.007812 0.111713 6275.5 0.632625
14 7.725434 5.87069 0.004116 0.058447 2473 0.881533
15 7.374188 5.7116 0.015706 1.083747 3987.4 0.916341
16 7.37413 5.711435 0.006432 0.068178 4425.8 0.971066
17 7.37452 5.775158 0.030904 0.200874 1051 0.941667
18 7.57175 5.92052 0.024544 0.184081 24 0.660436
19 7.539312 5.820104 0.025261 0.378919 1101 0.989321
20 7.52084 5.749325 0.020063 0.561762 833.4 0.957201
21 7.520675 5.74963 0.030243 0.163314 436.3 0.434629
22 7.5207 5.74966 0.020949 0.127787 458.9 0.735354
23 7.304917 5.86299 0.020949 0.090079 638.2 0.645946
24 7.305333 5.86291 0.032501 0.052002 200.1 0.962193
25 7.396825 5.82033 0.005815 0.032565 206.8 0.970623
? ? ? ? ? ? ?
? ? ? ? ? ? ?
110 7.26853 5.820464 0.044938 0.152788 245 0.992648
111 7.26834 5.82108 0.02855 0.142752 29.8 0.723705
112 7.326942 5.992162 0.040629 0.105634 86 0.978102
113 7.326692 5.99169 0.043349 0.138715 97 0.97619
114 7.326637 5.99108 0.018535 0.081555 264.2 0.983968
115 7.3278 5.9926 0.029597 0.09471 106.6 0.978693
116 7.327165 5.992634 0.013502 0.036457 1256.1 0.975366
117 7.574587 5.71538 0.032268 0.129072 405 0.896727
118 7.574559 5.715157 0.02774 0.08322 274.6 0.990253
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ating objects on a criteria has a direct effect on the entropy, 
which is inversely proportional to the entropy weight. Many 
scholars in several branches of science have employed 
entropy extensively in the literature (Al-Abadi et al. 2017; 
Al-Abadi and Shahid 2016; Li et al. 2012; Safari et al. 2012; 
Qi et al. 2010).

Shannon proposed the notion of the index of entropy 
first (1948). The approach allows us to calculate the weights 
by assuming that the issue has m viable alternatives, Ai 
(i = 1,2,…,m), and n assessment criteria Cj (j = 1,2,…,n) 
(Aysegul and Esra 2017). The first step is to create the choice 

matrix (Eq. 6). The essence is that it compares the perfor-
mance of several alternatives based on many parameters.

(6)X = (Xij)m×n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X11 X
12

.

.

.

… X1n

X2n X
2n

.

.

.

… X2n

Xm1 Xm2 … Xmn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 6  Hydraulic conductivity 
map of the study area
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for i = 1,2…,m; j = 1,2,…,n, where Xim = feasible alterna-
tives, Xjn = evaluation criteria, m = number of alternatives, 
n = number of criteria

After the preceding steps, the decision matrix is nor-
malised by dividing each criterion value (Xij) by the total 
arithmetic column sum of the criteria. The normalised 
equation is written as Eq. (7):

(7)rij =
xij∑m

i=1
xij
i = 1, 2… ,m; j = 1, 2,… , n.

The entropy values of each criterion are then calculated. 
After the above stages, the entropy values (ej) (as in Eq. 8) 
are computed.

where h =
1

m
.

Then entropy weight (wj), Eq. 9, is calculated:

(8)ej = −h

m∑
i=1

rij ∈ rij i = 1, 2… ,m; j = 1, 2,… , n,

(9)wj =
1 − ej

n −
∑m

i=1
ej
,

Fig. 7  Transmissivity map of 
the study area
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Entropy Python class The entropy weights for each ground-
water potential conditioning factor (GPCF) studied in this 
study were computed using a Python programming class 
attribute. After embedding the Python-based entropy func-
tion into a class property, the appropriate libraries were 
imported, input variables were assigned, and the table 
was imported as a csv file. The normalised weights of the 
GPCFs computed using the Python-based entropy weight-

(10)where

n∑
j=1

wj = 1.
ing approach are shown in Table 4. The entropy technique 
codes are presented in the Appendix.

PROMETHEE‑II The PROMETHEE-II technique is a com-
prehensive outranking flow method created by Brans (1982) 
and later extended by Vincke and Brans (1985). This 
approach is one of the PROMETHEE methods created to 
help decision-makers rate a finite number of choices par-
tially or entirely (Nasiri et al. 2012; Roodposhti et al. 2012). 
The preference function of each criterion versus other crite-
ria is considered, resulting in a smooth and robust decision-
making process when employing PROMETHEE-II (Nasiri 
et al. 2012).

Fig. 8  Transverse resistance 
map of the study area
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Table 3  Decision matrix for 
the groundwater potential 
conditioning factors

Fishnet no Longitude Latitude L K (m/day) Ld  (km2) T  (m2/day) TR (Ωm)

0 5.859741 7.204569 17 0.009 0.02 0.088 3022
1 5.831421 7.242249 17 0.029 0.02 0.196 601
2 5.859741 7.242249 17 0.023 0.13 0.145 1111
3 5.803101 7.279928 17 0.03 0.78 0.206 422
4 5.831421 7.279928 29 0.033 0.13 0.224 328
5 5.859741 7.279928 29 0.024 0.02 0.14 588
6 5.888062 7.279928 17 0.023 0.02 0.098 605
7 5.916382 7.279928 17 0.023 0.02 0.095 623
8 5.803101 7.317607 29 0.027 0.04 0.151 870
9 5.831421 7.317607 29 0.025 0.04 0.147 759
10 5.859741 7.317607 29 0.022 0.02 0.123 535
11 5.888062 7.317607 17 0.016 0.02 0.072 685
12 5.916382 7.317607 17 0.019 0.02 0.078 640
13 5.944702 7.317607 17 0.023 0.02 0.105 388
14 5.973022 7.317607 17 0.025 0.07 0.122 320
15 6.001343 7.317607 17 0.03 0.33 0.143 265
16 5.689819 7.355286 17 0.026 0.04 0.458 1141
17 5.71814 7.355286 17 0.032 0.06 0.317 779
18 5.74646 7.355286 17 0.026 0.12 0.192 1123
19 5.77478 7.355286 29 0.022 0.02 0.112 1629
20 5.803101 7.355286 29 0.027 0.02 0.126 1544
21 5.831421 7.355286 29 0.028 0.08 0.159 1728
22 5.859741 7.355286 17 0.028 0.02 0.115 870
23 5.888062 7.355286 54 0.026 0.02 0.114 688
24 5.916382 7.355286 17 0.024 0.02 0.112 529
25 5.944702 7.355286 17 0.024 0.02 0.123 525
26 5.973022 7.355286 17 0.029 0.02 0.155 349
27 5.689819 7.392965 17 0.024 0.02 0.415 996
28 5.71814 7.392965 17 0.024 0.02 0.372 1078
29 5.74646 7.392965 17 0.025 0.1 0.187 976
30 5.77478 7.392965 29 0.023 0.02 0.107 1433
31 5.803101 7.392965 29 0.03 0.02 0.114 829
32 5.831421 7.392965 17 0.034 0.11 0.105 601
33 5.859741 7.392965 29 0.039 0.02 0.127 764
34 5.888062 7.392965 54 0.031 0.02 0.14 748
35 5.916382 7.392965 54 0.028 0.02 0.266 1647
36 5.944702 7.392965 54 0.03 0.02 0.285 808
37 5.973022 7.392965 17 0.033 0.02 0.321 407
38 5.689819 7.430644 17 0.023 0.02 0.173 709
39 5.71814 7.430644 17 0.02 0.02 0.168 857
40 5.74646 7.430644 17 0.028 0.09 0.145 372
41 5.77478 7.430644 17 0.029 0.02 0.186 304
42 5.803101 7.430644 29 0.029 0.17 0.198 385
43 5.831421 7.430644 29 0.037 0.02 0.195 607
44 5.859741 7.430644 54 0.043 0.02 0.159 285
45 5.888062 7.430644 54 0.019 0.02 0.1 392
46 5.916382 7.430644 54 0.025 0.02 0.243 580
47 5.944702 7.430644 54 0.039 0.02 0.377 273
48 5.973022 7.430644 17 0.038 0.02 0.489 255
49 5.689819 7.468323 17 0.026 0.57 0.092 380
50 5.71814 7.468323 17 0.024 0.07 0.111 482
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Table 3  (continued) Fishnet no Longitude Latitude L K (m/day) Ld  (km2) T  (m2/day) TR (Ωm)

51 5.74646 7.468323 17 0.023 0.1 0.137 412
52 5.77478 7.468323 17 0.025 0.08 0.154 241
53 5.803101 7.468323 17 0.033 0.18 0.212 335
54 5.831421 7.468323 29 0.032 0.11 0.222 509
55 5.859741 7.468323 29 0.03 0.22 0.172 374
56 5.888062 7.468323 29 0.026 0.02 0.194 476
57 5.916382 7.468323 29 0.026 0.04 0.288 567
58 5.604858 7.506002 17 0.039 0.02 0.383 280
59 5.633179 7.506002 17 0.039 0.02 0.391 266
60 5.661499 7.506002 17 0.033 0.09 0.256 432
61 5.689819 7.506002 17 0.027 0.32 0.186 485
62 5.71814 7.506002 17 0.024 0.1 0.215 521
63 5.74646 7.506002 17 0.022 0.24 0.397 674
64 5.77478 7.506002 17 0.027 0.02 0.269 369
65 5.803101 7.506002 17 0.03 0.03 0.21 328
66 5.831421 7.506002 17 0.033 0.25 0.251 240
67 5.859741 7.506002 17 0.038 0.12 0.316 219
68 5.888062 7.506002 29 0.034 0.02 0.296 350
69 5.916382 7.506002 29 0.032 0.12 0.324 400
70 5.604858 7.543681 17 0.04 0.02 0.385 294
71 5.633179 7.543681 17 0.04 0.02 0.391 289
72 5.661499 7.543681 17 0.035 0.02 0.257 487
73 5.689819 7.543681 17 0.034 0.02 0.206 487
74 5.71814 7.543681 17 0.03 0.02 0.237 491
75 5.74646 7.543681 17 0.026 0.02 0.362 591
76 5.77478 7.543681 17 0.028 0.17 0.309 451
77 5.803101 7.543681 17 0.028 0.14 0.232 257
78 5.831421 7.543681 17 0.031 0.02 0.251 176
79 5.859741 7.543681 17 0.044 0.02 0.42 303
80 5.888062 7.543681 17 0.036 0.02 0.315 644
81 5.916382 7.543681 17 0.032 0.02 0.273 857
82 5.944702 7.543681 17 0.032 0.02 0.298 863
83 5.633179 7.58136 17 0.036 0.02 0.207 720
84 5.661499 7.58136 17 0.039 0.02 0.142 1011
85 5.689819 7.58136 17 0.039 0.02 0.151 715
86 5.71814 7.58136 17 0.042 0.02 0.147 163
87 5.74646 7.58136 17 0.034 0.02 0.201 462
88 5.77478 7.58136 17 0.025 0.07 0.191 837
89 5.803101 7.58136 17 0.015 0.02 0.064 1182
90 5.831421 7.58136 17 0.022 0.02 0.21 1203
91 5.859741 7.58136 17 0.027 0.02 0.274 1246
92 5.888062 7.58136 17 0.031 0.02 0.277 1389
93 5.916382 7.58136 17 0.031 0.02 0.216 1115
94 5.944702 7.58136 54 0.032 0.02 0.257 1115
95 5.661499 7.619039 17 0.037 0.02 0.157 899
96 5.689819 7.619039 17 0.037 0.02 0.17 786
97 5.71814 7.619039 17 0.036 0.02 0.197 653
98 5.74646 7.619039 17 0.032 0.02 0.214 741
99 5.77478 7.619039 29 0.025 0.02 0.186 1027
100 5.803101 7.619039 17 0.02 0.02 0.165 1225
101 5.831421 7.619039 17 0.021 0.02 0.22 1467
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PROMETHEE-II is based on a pairwise analysis of 
options for each criterion. The procedure consists of four 
phases, which are highlighted below.

Determination of deviations based on pairwise compari-
sons by computing the desired degree value for each pair of 
possible decisions and each criterion is stated in Eq. (11). 
The preference function is used in the way shown in Eq. 
(12):

where gj(a) and gj(b) show the performance (value of a crite-
rion j) of alternatives a and b (for a decision a or decision b), 
respectively.dj(a,b) = difference of the performance (value 
of a criterion j for two decisions a and b).

Pj (a, b) is the preference of alternative a regarding alter-
native b on each criterion, as a function of dj (a, b).

Aggregation of all criteria's preference degrees for each 
pair of potential options, followed by computation of the 
global preference index for each of these possible decisions, 
is indicated in Eq. (13):

where π(a, b) is the preference of an over b (from zero to 
one) and wj is the weight associated with jth criterion.

Calculation of the outranking flows (positive and negative 
outranking flow) is shown in Eqs. 14 and 15.

(11)dj(a, b) = gj(a) + gj(b)

(12)Pj(a, b) = Fj

[
dj(a, b)

]
j = 1,… , k,

(13)∀a, b ∈ A, �(a, b) =

k∑
j=1

Pj(a, b)wj,

(14)�
∓(a) =

1

n − 1

∑
x∈A

Π(a, x)

where ϕ+(a) and ϕ− (a) are positive and negative outranking 
flows for each alternative, respectively.

Calculation of complete outranking flow index is shown 
in Eq. 6.

where ϕ(a) is the net outranking flow for each alternative.

PROMETHEE‑II Python class In this study, the PRO-
METHEE-II steps were implemented utilising the class fea-
ture of the Python programming language. The constructor, 
which initialises the class object, and the net outranking flow 
method are included in the Python PROMETHEE-II class. 
The class feature was activated when the required libraries 
were imported. The following Python programmes were 
used to compute the PROMETHEE-net II's outranking flow.

Preparation of the proposed PROMETHEE‑Entropy model 
for groundwater potential mapping

The object-oriented prowess of the PROMETHEE-Entropy 
algorithm was a key consideration in this study, which was 
accomplished by modelling five groundwater potential con-
ditioning factors (GPCFs): lithology (L), hydraulic conduc-
tivity (K), lineament density (Ld), transmissivity (T), and 
transverse resistance (TR). The number of criteria (GPCF), 
number of alternatives (fishnet points), weights of each cri-
terion, and types of criteria were among the input parameters 
utilised in constructing the Python-based PROMETHEE-
Entropy algorithm. The algorithm procedures are divided 

(15)�
−(a) =

1

n − 1

∑
x∈A

Π(x, a),

(16)�(a) = �
+(a) − �

−(a),

Table 3  (continued) Fishnet no Longitude Latitude L K (m/day) Ld  (km2) T  (m2/day) TR (Ωm)

102 5.859741 7.619039 17 0.025 0.33 0.275 2102
103 5.888062 7.619039 17 0.028 0.05 0.339 3370
104 5.916382 7.619039 17 0.028 0.02 0.281 2137
105 5.831421 7.656718 17 0.023 0.02 0.223 1571
106 5.859741 7.656718 17 0.024 0.02 0.245 1944
107 5.888062 7.656718 17 0.025 0.25 0.264 2211
108 5.916382 7.656718 17 0.025 0.52 0.262 2020
109 5.859741 7.694397 17 0.014 0.02 0.14 2093
110 5.888062 7.694397 17 0.015 0.17 0.151 2102
111 5.916382 7.694397 17 0.019 0.18 0.19 1932
112 5.859741 7.732076 17 0.006 0.02 0.07 2413
113 5.888062 7.732076 17 0.007 0.22 0.083 2346

L: Lithology; K: Hydraulic conductivity; Ld: Lineament density; T: Transmissivity; TR: Transverse resist-
ance
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into two phases. The first is the computation of the objective 
weights of each criterion using the entropy approach, which 
was accomplished using the previously stated Python-based 
entropy algorithms. These weights were then supplied into 

the PROMETHEE-II class along with other input param-
eters. The criteria were divided into two types: beneficial 
and non-beneficial criteria, denoted numerically by 1 and 
− 1, respectively. (Table 5). Beneficial criteria are those in 

Fig. 9  Fishnet template map of 
the study area

Table 4  Calculated entropy 
values, degree of divergence 
and entropy weights for 
groundwater potential 
conditioning factors

L: Lithology; K: Hydraulic conductivity; Ld: Lineament density; T: Transmissivity; TR: Transverse  
resistance

L K Ld T TR

Entropy values  (ej) 0.981412 0.992321 0.847570 0.980040 0.950980
dj (1 −  ej) 0.018588 0.007679 0.152430 0.019960 0.049020
Entropy weights  (wj) 0.075501 0.03006 0.61476 0.080599 0.199090
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which the maximum values are preferred, whereas non-ben-
eficial criteria are those in which the minimum values are 
preferred. The net outranking flow index of this study was 
calculated using the combined Python-based entropy and 
PROMETHEE-II classes.

Results and discussion

Discussion of groundwater potential conditioning 
factors

As shown in column 3 of Table 5, groundwater potential 
conditioning factors (GPCFs) have a significant importance 
to groundwater accumulation in the aquifer. The relevance 
is discussed further below.

Lithology

Lithology is a significant component that affects ground-
water accumulation in an ecosystem, particularly in terms 
of quantity. There are three primary geological units in 
the research area: Migmatite gneiss, Granitic gneiss, and 

Quartzite Schist (Fig. 3). As compared to other rock groups 
in the study region, Quartzite Schist exhibits the greatest 
degree of fracture (Olabode 2019). The amount and poten-
tial of groundwater in the research region is directly related 
to the degree of weathering of the rocks in the study area. 
Olabode (2019) assigned the following values to each of the 
lithologic units in Table 3: magmatite gneiss (17), granite 
gneiss (29), and quartzite schist (57). For migmatite, gran-
ite, and quartzite, the area extents are 1096.91, 108.54, and 
287.1  km2 correspondingly. The Migmatite gneiss rock unit 
covers over 75% of the study region. The majority of the 
towns in the north, north-central, and north-west are under-
lain by Migmatite gneiss rock units, whereas the centre and 
southern parts of the study region are underlain by Quartzite 
Schist rock units, and the south-east is underlain by Granite 
gneiss rock units.

Lineament density

Lineament is defined as observable geomorphic linear fea-
tures typified by weak zones with characteristics of fissures/
joints, fractures, and possibly weathered formation that can 
be attributed to geological structures, most notably fractures 

Table 5  Ratings, groundwater 
storage potential type-
classification and entropy 
weight of the GPCF produced 
thematic layers

GPCFs thematic maps Classes Potential of 
groundwater 
storage

Type Entropy weight  (wj)

Lithology Migmatite Gneiss: 17 Low Beneficial: 1 0.0755
Granite Gneiss: 29 Medium
Quartzite Schist: 54 High

Hydraulic conductivity 0.0012–0.016 Very low Beneficial: 1 0.03006
0.016–0.024 Low
0.024–0.029 Medium
0.029–0.035 Medium–high
0.035–0.5 High

Lineament density 0.02–0.074 Very low Beneficial: 1 0.61476
0.074–0.2996 Low
0.2996–0.8558 Medium
0.8558–1.73 Medium–high
1.73–3.155 High

Transmissivity 0.0045–0.1597 Very low Beneficial: 1 0.0806
0.1597–0.2477 Low
0.2477–0.3567 Medium
0.3567–0.5789 Medium–high
0.5789–1.0737 High

Transverse resistance 24–616 Very low Beneficial: 1 0.19909
616–1250 Low
1250–2328 Medium
2328–3554 Medium–high
3554–5414 High
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or lithologic contacts (Chowdhury et al. 2009 and O'Leary 
et al. 1976). The distribution of lineament (Fig. 4) and den-
sity of lineament (Fig. 5) demonstrate that over 95% of the 
research region is underlain by lineament at a very low to 
low density. As a result, the region may be classified as hav-
ing low to medium groundwater potential. Nevertheless, the 
zones with significant groundwater potential in the studied 
region are attributable to secondary porosity and permeabil-
ity, which are also characterised by high lineament density 
(Olabode 2019). According to the lineament density map 
(Fig. 5), the geographical distribution of the lineament den-
sity of the study region is separated into five zones (very low, 
low, medium, medium–high, and high), with area extents of 
965.25, 484.05, 25.25, 9.05, and 8.95  km2 correspondingly.

Hydraulic conductivity

This refers to an aquifer's physical capacity to transfer water 
through pore spaces and cracks when subjected to a hydrau-
lic gradient (Diminescu et al. 2019). According to Table 3, 
the hydraulic conductivity, K, of the research region varies 
from 0.5 to 12.5 m/day. The resulting thematic map (Fig. 7) 
depicts the regional variance of hydraulic conductivity in 
the research area. The area extend coverage of the catego-
rised zones is 38.55, 387.25, 428.25, 324.25, and 268.25 
 km2 correspondingly. According to Okogbue and Omonona 
(2013), Lee et al. (2012), and Tizro et al. (2010), ground-
water potentiality is directly related to an aquifer's K rat-
ing. The K parameter greatly influences the variability of 
groundwater potential from location to location. According 
to the areal extent computation, about 68% of the research 
area is underlain by medium to high hydraulic conductivity 
zones, whereas 32% is inhabited by relatively low and low 
hydraulic conductivity zones. It implies that the aquifer units 
in the area have a high groundwater potential in general. 
Unfortunately, the K parameter cannot alone confirm this 
assessment of the area's groundwater potential.

Transmissivity

The ability of water to pass through pores spaces of a unit 
width of the aquifer under a unit hydraulic gradient is 
referred to as aquifer transmissivity (Salem 1999). This 
means that aquifer units with high transmissivity have high 
fluid permeability across their pore spaces. The transmissiv-
ity of the research region ranges from 0.02 to 33.3  m3/day, as 
shown in Table 3. The resulting aquifer Transmissivity map 
(Fig. 8) depicts the geographical variance of the research 
area's transmissivity, which is divided into five zones: very 
low, low, medium, medium–high, and high. According to 
the characteristic shown in Fig. 8, the research region has 

typically poor transmissivity, with low groundwater poten-
tial zones covering almost 71% of the area. Many communi-
ties in Akoko's south-west, east, and north-west, including 
Ora Ojora, Ikeram, Yaya, Ishe, Isua, Igbe, Ikare-Akoko, and 
Oba, are within the medium to high transmissivity zones.

Traverse resistance

Figure  9 depicts the total transverse resistance of the 
research region, which varies spatially from 24 to 5414 m 
(Table 3). Figure 9 depicts the generated TR map, which is 
divided into five zones (high, medium–high, medium, low, 
and very low zones). According to the produced thematic 
map, Akoko north-east and north-west have primarily low 
transverse resistance, which might be suggestive of possi-
bly low groundwater potential zones in the area, whereas 
towns like Ikarram, Ijora, and Efifa may be experiencing 
the reverse. This situation of low transverse resistance also 
applies to other places where towns such as Oba, Ikun, and 
Afo are expected to face a mixed destiny due to limited 
groundwater potential. This submission is consistent with 
the findings of Adiat et al. (2012), who found that high trans-
verse resistance indicates high permeability of water through 
the aquifer's overlaying strata, implying that TR is directly 
proportional to an area's groundwater potential.

The PROMETHEE‑Entropy index application results

The data-driven ability of the suggested PROMETHEE-
Entropy algorithm to get an object-oriented output is the 
primary emphasis of this work, which was accomplished 
by following the flowchart methodology in Fig. 1. The 
initial step is to extract the fishnet point pixel values from 
each GPCF (Table 3). This table functioned as the deci-
sion matrix for the following phase of the process, which 
required determining the entropy weightage. Table 4 shows 
the weights of each GPCF after passing the matrix through 
the Python-based entropy weight class. Table 5 displays 
the ratings, classifications, criterion type, and potential of 
GPCFs values to groundwater potential. The details from 
Tables 4 and 5 were used as input into the PROMETHEE-II 
class to compute the PROMETHEE-Entropy index, and the 
implementation codes are presented in the Appendix.

Table 6 displays the resultant data frame from above, and 
higher values indicate fishnet sites with more groundwater 
potential, while lower index values indicate fishnet points 
with lower groundwater potential.
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Table 6  Computed model 
results of PROMETHEE-
Entropy class algorithms

Fishnet no Longitude Latitude Positive out-
ranking flow

Negative out-
ranking flow

Net outranking flow

0 5.859741 7.204569 0.13649 0.09411 0.04238
1 5.831421 7.242249 0.014206 0.086833 −0.07263
2 5.859741 7.242249 0.09459 0.060055 0.034535
3 5.803101 7.279928 0.58728 0.048207 0.539073
4 5.831421 7.279928 0.097911 0.064619 0.033292
5 5.859741 7.279928 0.026535 0.089977  − 0.06344
6 5.888062 7.279928 0.007136 0.10305 − 0.09591
7 5.916382 7.279928 0.007639 0.102999 − 0.09536
8 5.803101 7.317607 0.048521 0.073482 − 0.02496
9 5.831421 7.317607 0.043248 0.077522 − 0.03427
10 5.859741 7.317607 0.024179 0.095788 − 0.07161
11 5.888062 7.317607 0.008925 0.110387 − 0.10146
12 5.916382 7.317607 0.007647 0.108386 − 0.10074
13 5.944702 7.317607 0.002434 0.110598 − 0.10816
14 5.973022 7.317607 0.02998 0.096753 − 0.06677
15 6.001343 7.317607 0.219726 0.069763 0.149963
16 5.689819 7.355286 0.087055 0.061808 0.025247
17 5.71814 7.355286 0.05984 0.063134 − 0.00329
18 5.74646 7.355286 0.09248 0.053969 0.038512
19 5.77478 7.355286 0.072961 0.078158 − 0.0052
20 5.803101 7.355286 0.06998 0.073833 − 0.00385
21 5.831421 7.355286 0.115548 0.051802 0.063746
22 5.859741 7.355286 0.01845 0.090525 − 0.07208
23 5.888062 7.355286 0.076605 0.085697 − 0.00909
24 5.916382 7.355286 0.005561 0.102758 − 0.0972
25 5.944702 7.355286 0.005803 0.101146 − 0.09534
26 5.973022 7.355286 0.005811 0.102065 − 0.09625
27 5.689819 7.392965 0.061171 0.071149 − 0.00998
28 5.71814 7.392965 0.057146 0.070215 − 0.01307
29 5.74646 7.392965 0.071953 0.060723 0.01123
30 5.77478 7.392965 0.062465 0.080096 − 0.01763
31 5.803101 7.392965 0.036068 0.084604 − 0.04854
32 5.831421 7.392965 0.063958 0.076563 − 0.0126
33 5.859741 7.392965 0.039702 0.082641 − 0.04294
34 5.888062 7.392965 0.081835 0.078206 0.003629
35 5.916382 7.392965 0.136403 0.054756 0.081647
36 5.944702 7.392965 0.098889 0.064558 0.034331
37 5.973022 7.392965 0.028941 0.086612 − 0.05767
38 5.689819 7.430644 0.013867 0.088917 − 0.07505
39 5.71814 7.430644 0.018836 0.087968 − 0.06913
40 5.74646 7.430644 0.044578 0.084979 − 0.0404
41 5.77478 7.430644 0.007675 0.100816 − 0.09314
42 5.803101 7.430644 0.121633 0.060294 0.061339
43 5.831421 7.430644 0.037472 0.07883 − 0.04136
44 5.859741 7.430644 0.08061 0.092769 − 0.01216
45 5.888062 7.430644 0.067869 0.103762 − 0.03589
46 5.916382 7.430644 0.083348 0.075321 0.008027
47 5.944702 7.430644 0.106955 0.081349 0.025606
48 5.973022 7.430644 0.0612 0.09226 − 0.03106
49 5.689819 7.468323 0.408714 0.068644 0.340069
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Table 6  (continued) Fishnet no Longitude Latitude Positive out-
ranking flow

Negative out-
ranking flow

Net outranking flow

50 5.71814 7.468323 0.031936 0.091465 − 0.05953
51 5.74646 7.468323 0.049609 0.084864 − 0.03526
52 5.77478 7.468323 0.036935 0.094373 − 0.05744
53 5.803101 7.468323 0.113398 0.065864 0.047534
54 5.831421 7.468323 0.086743 0.059617 0.027127
55 5.859741 7.468323 0.15649 0.059214 0.097276
56 5.888062 7.468323 0.028152 0.086681 − 0.05853
57 5.916382 7.468323 0.052779 0.071303 − 0.01852
58 5.604858 7.506002 0.042229 0.091205 − 0.04898
59 5.633179 7.506002 0.043589 0.091912 − 0.04832
60 5.661499 7.506002 0.058962 0.07038 − 0.01142
61 5.689819 7.506002 0.216589 0.055175 0.161414
62 5.71814 7.506002 0.058113 0.07082 − 0.01271
63 5.74646 7.506002 0.189971 0.045623 0.144348
64 5.77478 7.506002 0.017297 0.092083 − 0.07479
65 5.803101 7.506002 0.015884 0.093972 − 0.07809
66 5.831421 7.506002 0.16967 0.063501 0.106169
67 5.859741 7.506002 0.088617 0.073425 0.015192
68 5.888062 7.506002 0.043166 0.083689 − 0.04052
69 5.916382 7.506002 0.105924 0.057949 0.047975
70 5.604858 7.543681 0.04344 0.090359 − 0.04692
71 5.633179 7.543681 0.044482 0.090566 − 0.04608
72 5.661499 7.543681 0.021941 0.085251 − 0.06331
73 5.689819 7.543681 0.015073 0.088939 − 0.07387
74 5.71814 7.543681 0.016502 0.087377 − 0.07087
75 5.74646 7.543681 0.036737 0.080625 − 0.04389
76 5.77478 7.543681 0.118771 0.057564 0.061208
77 5.803101 7.543681 0.084354 0.07451 0.009844
78 5.831421 7.543681 0.015545 0.102671 − 0.08713
79 5.859741 7.543681 0.053067 0.089535 − 0.03647
80 5.888062 7.543681 0.035606 0.077188 -− 0.04158
81 5.916382 7.543681 0.034288 0.073757 − 0.03947
82 5.944702 7.543681 0.038374 0.072684 − 0.03431
83 5.633179 7.58136 0.02322 0.080706 − 0.05749
84 5.661499 7.58136 0.032321 0.081625 − 0.0493
85 5.689819 7.58136 0.02062 0.086739 − 0.06612
86 5.71814 7.58136 0.012986 0.112049 − 0.09906
87 5.74646 7.58136 0.014066 0.090453 − 0.07639
88 5.77478 7.58136 0.04804 0.069233 − 0.02119
89 5.803101 7.58136 0.030184 0.102847 − 0.07266
90 5.831421 7.58136 0.038624 0.076455 − 0.03783
91 5.859741 7.58136 0.050173 0.069077 − 0.0189
92 5.888062 7.58136 0.059817 0.066 − 0.00618
93 5.916382 7.58136 0.037935 0.072949 − 0.03501
94 5.944702 7.58136 0.109424 0.059627 0.049797
95 5.661499 7.619039 0.02681 0.081853 − 0.05504
96 5.689819 7.619039 0.023103 0.082737 − 0.05963
97 5.71814 7.619039 0.019976 0.083571 − 0.0636
98 5.74646 7.619039 0.02218 0.080202 − 0.05802
99 5.77478 7.619039 0.046841 0.07319 − 0.02635
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Groundwater potential PROMETHEE‑Entropy model 
map of the study area

The PROMETHEE-Entropy method, which is written in 
Python, produced the net outranking flow (groundwater 
potential index), as shown in Table 6 column 6. The ground-
water potential model map of the study area was generated 
using the computed net outranking flow. The map obtained 
using the index is shown in Fig. 11. Using the Natural 

Breaks Method, the generated map was divided into five 
(5) groundwater potential zones (Jenks 1967). The study 
area's geographic variation of the groundwater potential 
index is split into five zones: extremely low, low, medium, 
medium–high, and high. According to a further analysis of 
the generated GPM, the area extents of the very low, low, 
medium, medium–high, and high classes are 442.1, 629.1, 
273.5, 122.5, and 25.35  km2, respectively (Table 7). The 
chart shows that the majority of the towns in the Akoko 
north-east and north-west lie within the very low to low 
groundwater potential zones, with the exception of a few 
towns in the north-eastern section of the study, which include 
Ikeram, Efifa, and Ora-Ojora. Furthermore, the majority of 
the remaining areas of the research fell mostly within the 
extremely low to low groundwater potential zones.

Validation of model

The PROMETHEE-Entropy GPM map was validated by 
two means: qualitative and quantitative. The resulting 
GPM map was qualitatively confirmed using accessible 

Table 6  (continued) Fishnet no Longitude Latitude Positive out-
ranking flow

Negative out-
ranking flow

Net outranking flow

100 5.803101 7.619039 0.035644 0.082302 − 0.04666
101 5.831421 7.619039 0.053322 0.073503 − 0.02018
102 5.859741 7.619039 0.311349 0.02507 0.286279
103 5.888062 7.619039 0.201797 0.04996 0.151836
104 5.916382 7.619039 0.100542 0.061506 0.039036
105 5.831421 7.656718 0.059443 0.070941 − 0.0115
106 5.859741 7.656718 0.083099 0.066229 0.01687
107 5.888062 7.656718 0.254357 0.02864 0.225717
108 5.916382 7.656718 0.455724 0.022018 0.433706
109 5.859741 7.694397 0.081246 0.083111 − 0.00187
110 5.888062 7.694397 0.175937 0.051928 0.124009
111 5.916382 7.694397 0.176496 0.044321 0.132175
112 5.859741 7.732076 0.09887 0.100469 − 0.0016
113 5.888062 7.732076 0.225144 0.064443 0.1607

Table 7  Characteristics of the groundwater potentiality model (GPM) 
map based on PROMETHEE-Entropy model

Groundwater potential clas-
sification

Areal extent  (km2) Percentage 
coverage 
(%)

Very Low (VL) 539.09 30
Low (L) 366.64 42
Medium (M) 240.75 18
Medium–High (MH) 233.06 8
High (H) 113.01 2

Table 8  The groundwater potentiality model map validation result based on in situ borehole yield data

BH Longitude Latitude Actual Yield from 
drilled borehole  (m3/h)

Actual yield description Expected yield description from 
PROMETHEE-Entropy model map

Remark

1 5.905689 7.680997 1.23 Medium–High Medium High Coincide
2 5.720119 7.534097 2.36 Medium–High Low Not coincide
3 5.742189 7.478507 0.59 Very low–Low Low Coincide
4 5.742182 7.467231 0.7 Very low–Low Low Coincide
5 5.694379 7.434255 1.1 Medium–High Very low Not coincide
6 5.815618 7.443087 1.67 Medium–High Medium Coincide
7 5.873525 7.485179 0.83 Very low–Low Low Coincide
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records of borewell yield data from the study area. The 
Ondo State Water and Sanitation Department provided 
these scanty borehole yield statistics (WATSAN). Accord-
ing to Mogaji (2016), the area actual yield descriptions 
of 0.2 l/s, > 0.2 l/s, 1 l/s, > 1 l/s, 1.5 l/s, and > 2 l/s are 
for the very low rate, low rate, medium rate, and high 
rate, respectively (Table 8). These were utilised to assess 
the prediction maps' percentage accuracy, which is based 
on the comment of coincide and not coincide between 

the predicted yield descriptions from the prediction map 
(Fig. 10) and the actual borehole yields descriptions. This 
analysis is as follows:

Total number of boreholes available = 7.
Number of boreholes where the expected and the actual 

yield classifications coincide = 5
Number of boreholes where the expected and the actual 

yield classifications do not coincide = 2
Success rate (accuracy) of the prediction = 5

7
× 100 = 71%

Fig. 10  The groundwater  
potentiality model (GPM)  
map of the study area based 
on PROMETHEE-Entropy 
approach
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Fig. 11  Reflection coefficient 
map of the study area

Table 9  Confusion Matrix application in generating the ROC curves

Actual values Predicted values

Cut-point High potential (1) Low potential (0)

High potential (1) True positive(TP) False positive(FP)
Low potential (0) False negative(FN) True negative

Table 10  Groundwater Potential 
cut-off points

Groundwater 
model map 
class

Cut-off points

Very low 0.2
Low 0.4
Medium 0.6
Medium–high 0.8
High 1.0
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The quantitative validation, on the other hand, was car-
ried out using the Reacting Operating Characteristics (ROC) 
curve technique, in which the confusion matrix (ROC) was 
applied to the actual data, i.e. the derived Reflection coeffi-
cient parameter, and the predicted data (Groundwater poten-
tial index, GPI) of the study area. The reflection coefficient 
(Rc), Fig. 11, parameter as a groundwater potentiality indi-
cator is significant because it provides an in situ evaluation 
of the rate of fracture that an area bedrock has undergone. 
This Rc feature, according to Ariyo et al. (2011) and Alhassan 
et al. (2015), will frequently improve aquifer unit recharge-
ability through the fracture conduit medium and therefore 
enable groundwater accumulation. The AUC (Area under the 
curve) of the PROMETHEE-Entropy GPM index map was 
calculated using the ROC confusion matrix. The True Positive 
Rate (TPR) and False Positive Rate (FPR) were calculated for 
the determined Reflection coefficient parameter values of the 
study area, as shown in Table 9, by first marking the cut-off 
points on the GPM map index (Table 10) and binary (True (1) 
or False (0)) cut-off points, with values between 0.5 and 0.87 
as True and 0.87 and 0.99 as False (Table 2). The predicted 
groundwater potential index (GPI) values were extracted from 
the GPM map at various cut-points and compared with the 
actual reflection coefficient (Rc) values using Table 9 criteria. 
The Rc values were compared to the appropriate GPI values 
to calculate the True Positive (TP), False Positive (FP), True 
Negative (TN), and False Negative (FN). Equations 17 and 18 
were used to get the TPR (Sensitivity) and FPR (1-Specific-
ity). The area under the curve (AUC) was computed after the 
ROC curve (Fig. 12) was displayed using the relevant Python 
libraries. The AUC value indicates the accuracy of the PRO-
METHEE-Entropy groundwater potential map.

The AUC value of the prediction rate for the PRO-
METHEE-Entropy-based model is 0.86 prediction accu-
racy based on the findings of this investigation, as shown in 
Fig. 12. According to Naghibi et al. (2014), the following 
AUC classes correspond to the prediction accuracy of each 
model map as reported: 0.9–1.0 (excellent), 0.8–0.9 (very 
good), 0.7–0.8 (good), 0.6–0.7 (average), and 0.5–0.6 (poor). 
Given the categorisation above, it is possible to infer that the 
PROMETHEE-Entropy-based model performs "very good."

Conclusion

The use of object-driven multicriteria decision analysis 
(MCDA) techniques on geophysical, geological, ancillary, 
and remote sensing parameters in establishing groundwa-
ter resource sustainability management in typical hard 
rock geologic settings in south-western Nigeria was inves-
tigated in this study. The object-oriented PROMETHEE-
Entropy MCDA approach was applied to 114 fishnet 
(observation) points distributed over the study area's gen-
erated thematic maps. Thematic maps have been gener-
ated by using GIS on processed data from Schlumberger 
VES data, remote sensing, and auxiliary data. The Python 
programming language was utilised to compute the model 
algorithms employed in this study for ease of calculation. 

(17)Sensitivity = TPR =
FP

(TN + FP)

(18)1 − Specif icity = FPR =
TP

(FN + TP)

Fig. 12  ROC curve for the 
PROMETHEE-Entropy model 
map



1981Acta Geophysica (2024) 72:1957–1984 

1 3

This is due to Python's flexibility and high-level compu-
tational skills as a result of the existence of vast libraries 
and other resources.

The groundwater potential conditioning factors 
(GPCFs) of the study area were weighted using the entropy 
approach. Lineament density, hydraulic conductivity, trans-
verse resistance, transmissivity, and lithology make up the 
GPCFs studied. The result of the Python-based entropy 
weighting approach reveals that lineament density has the 
greatest impact on the groundwater potential of the study 
area, whereas hydraulic conductivity has the least weight 
and influence on groundwater storage potentiality. The 
PROMETHEE-II was then utilised to rank the alternatives 
using Python programming by calculating the net outrank-
ing flow of each alternative. The groundwater potential 
index (GPI) of the study area was computed using the net 
outranking flow. The PROMETHEE-Entropy model map 
of the study area was generated using the calculated GPI 
values in a GIS context. According to the groundwater 
potential model (GPM) map, 72% of the region has low 
groundwater potential, while the rest has medium to high 
groundwater potential. As a result, the aquifer units in the 
area are largely unproductive and have low groundwater 
potential.

The PROMETHEE-Entropy model map generated in 
Python was evaluated and compared using qualitative and 
quantitative validation methods. The qualitative valida-
tion was carried out using borehole pumping test data from 
the study area, and the PROMETHEE-Entropy success rate 
was 71%. The ROC curve was also used for quantitative 
validation, and the AUC for the PROMETHEE-Entropy 
method was 86%. The above validation findings indicate 
that the object-oriented PROMETHEE-Entropy-based 
groundwater potential model (GPM) is of good accuracy. 
The developed PROMETHEE-Entropy-based GPM tool 
may be used as part of a decision support system by water 
resource stakeholders to improve the development and man-
agement of groundwater resources in the investigated area 
and other places with similar geologic settings throughout 
the world.

Appendix

Entropy and PROMETHEE‑II Python classes
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