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Abstract
Background Preterm birth is a leading cause of death in children under the age of five. The risk of preterm birth is increased 
by maternal HIV infection as well as by certain antiretroviral regimens, leading to a disproportionate burden on low- and 
medium-income settings where HIV is most prevalent. Despite decades of research, the mechanisms underlying spontaneous 
preterm birth, particularly in resource limited areas with high HIV infection rates, are still poorly understood and accurate 
prediction and therapeutic intervention remain elusive.
Objectives Metabolomics was utilized to identify profiles of preterm birth among pregnant women living with HIV on two 
different antiretroviral therapy (ART) regimens.
Methods This pilot study comprised 100 mother-infant dyads prior to antiretroviral initiation, on zidovudine monotherapy 
or on protease inhibitor-based antiretroviral therapy. Pregnancies that resulted in preterm births were matched 1:1 with con-
trols by gestational age at time of sample collection. Maternal plasma and blood spots at 23–35 weeks gestation and infant 
dried blood spots at birth, were assayed using an untargeted metabolomics method. Linear regression and random forests 
classification models were used to identify shared and treatment-specific markers of preterm birth.
Results Classification models for preterm birth achieved accuracies of 95.5%, 95.7%, and 80.7% in the untreated, zidovu-
dine monotherapy, and protease inhibitor-based treatment groups, respectively. Urate, methionine sulfone, cortisone, and 
17α-hydroxypregnanolone glucuronide were identified as shared markers of preterm birth. Other compounds including hip-
purate and N-acetyl-1-methylhistidine were found to be significantly altered in a treatment-specific context.
Conclusion This study identified previously known as well as novel metabolomic features of preterm birth in pregnant 
women living with HIV. Validation of these models in a larger, independent cohort is necessary to ascertain whether they 
can be utilized to predict preterm birth during a stage of gestation that allows for therapeutic intervention or more effective 
resource allocation.

Keywords Preterm birth · Women living with HIV · Metabolomics · Zidovudine · Plasma · Dried blood spots

1 Introduction

Prematurity or preterm birth (PTB) is defined as birth before 
37 weeks of gestation and is the leading cause of death in 
children under the age of five. An estimated 15 million 
infants are born preterm and approximately one million chil-
dren die of complications of PTB annually (World Health 
Organization, 2020). The majority of PTB occur spontane-
ously as opposed to iatrogenic causes. Despite its tremen-
dous burden on public health, spontaneous PTB (sPTB) 

remains poorly understood and relatively difficult to predict 
or prevent (Esplin et al., 2017; Honest et al., 2012). In fact, 
only recently has spontaneous PTB been considered as an 
obstetric ‘syndrome’, wherein one or more of a multitude of 
possible upstream pathways ultimately lead to a final com-
mon presentation (Souza et al., 2019a). Some of the impli-
cated etiological pathways involve inflammation, decidual 
hemorrhage, immunological factors, uterine stretch and 
endocrine derangement (Manuck et al., 2015; Behrman & 
Butler, 2007). Progesterone, and to a lesser extent, estrogen 
appear to have some role. Progesterone supplementation has 
been used for more than a decade to prevent PTB in at-risk 
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women, although its efficacy has recently been called into 
question (Blackwell et al., 2020).

HIV infection is associated with an increased rate of PTB, 
occurring in 15–20% of all pregnancies with notable varia-
tion by treatment regimen (Fowler et al., 2016). The etiology 
of PTB is particularly complex in the context of HIV infec-
tion as it may be spontaneous, HIV-associated, antiretroviral 
therapy (ART)-associated, or a combination thereof. The 
rate of PTB initially declined with the use of ART as mater-
nal health improved on therapy, but then increased with 
certain antiretroviral regimens (Powis et al., 2011; Schulte 
et al., 2007). This increase is particularly notable in women 
who are receiving protease inhibitors (PI) where rates of 
PTB increase almost two-fold; in fact, it is estimated that 
protease inhibitor use may result in 91,000 additional pre-
term births per year (Fowler et al., 2016; Powis et al., 2011). 
Over 30% of new HIV infections are estimated to occur in 
people aged 14–25 years, and young women are substan-
tially more likely to become infected versus men in the same 
age group (UNAIDS, 2017, 2020). Given the disproportion-
ately high rate of new HIV infections in young women and 
the higher rates of pregnancy among women living with HIV 
(WLH) compared with earlier in the epidemic, the num-
ber of HIV-associated preterm births is unfortunately likely 
to increase as well. Therefore, it is of vital importance to 
better understand the etiology of PTB among this at-risk 
population.

Accurate prediction of sPTB has proven difficult, par-
ticularly in women with no clinically indicated risk or prior 
history. Recent studies that leverage “omics” technologies 
to better capture the complex mechanisms underlying spon-
taneous PTB (Huang et al., 2019; Kindschuh et al., 2023; 
Lizewska et al., 2018; Morillon et al., 2020; Ngo et al., 2018; 
Souza et al., 2019b) have shown some promise in identifying 
markers of sPTB. To the best of our knowledge however, 
no similar studies have been performed in WLH who are at 
elevated risk for PTB. Here, we use an untargeted metabo-
lomics approach to identify novel signatures of PTB among 
pregnant WLH on three different treatment regimens. The 
goal of this study is to identify common metabolic markers 
of PTB as well as those specifically altered in the context of 
different antiretroviral therapies.

2  Methods

2.1  Study design and sample collection

A subgroup of 100 pregnant WLH with a CD4 count ≥ 350 
cells/mm3 or country-specific treatment threshold was 
selected based on availability of sample aliquots as part of 
a larger clinical trial (Fowler et al., 2016). Maternal plasma 
and dried blood spot (DBS) samples were collected between 

23 and 35 weeks of gestation either prior to antiretroviral 
initiation (untreated) or during treatment with either zido-
vudine monotherapy (ZDV) or a protease-inhibitor based 
regimen (PI-ART). One woman receiving PI-ART was on 
tenofovir (TDF) + emtricitabine (FTC) + lopinavir/ritona-
vir (LPV/r). All other women received ZDV + lamivudine 
(3TC) + LPV/r. Preterm birth was defined as delivery prior 
to 37 weeks of gestation, with gestational age assessed by 
obstetrical estimate due to unavailability of the gold standard 
ultrasound (Venkatesh et al., 2019). A pediatric assessment 
of gestational age by newborn examination was also uti-
lized for a sensitivity analysis. The term and preterm groups 
were matched for treatment group, country of origin, and 
gestational age at time of sample collection. Infant dried 
blood spot (DBS) samples were collected from the same 100 
mother-infant pairs.

Blood samples were collected in BD Vacutainer tubes 
with Acid Citrate Dextrose (ACD) and transferred to What-
man 903 Protein Saver Cards. Cards were then air dried for 
at least four hours and then placed into gas impermeable 
bags with a desiccant pack and humidity card for long-term 
storage at − 80 °C. Following DBS preparation, the remain-
ing blood volume was centrifuged at 400×g for 10 min. 
Plasma was then transferred to a new sterile tube and cen-
trifuged again at 800×g for 10 min. Aliquots were taken and 
placed into sterile cryovials for storage at − 80 °C.

2.2  Sample processing and metabolomics

Samples were processed by Metabolon Inc. according to 
published methods with modifications as described for DBS 
samples (Evans et al., 2009, 2014; Ford et al., 2020). Untar-
geted ultra-high-performance liquid chromatography/tandem 
mass spectrometry of known biochemicals was conducted 
on plasma and DBS samples by Metabolon Inc. according 
to published methods (Evans et al., 2009, 2014; Ford et al., 
2020). Briefly, aliquots were analyzed using four separate 
methods: two using acidic positive ion conditions optimized 
for either more hydrophilic or more hydrophobic conditions, 
one using basic negative ion optimized conditions, and one 
using negative ionization conditions. All four methods uti-
lized a Waters ACQUITY ultra-performance liquid chro-
matography (UPLC) and a Thermo Scientific Q-Exactive 
high resolution/accurate mass spectrometer interfaced with 
a heated electrospray ionization (HESI-II) source and Orbit-
rap mass analyzer operated at 35,000 mass resolution. In 
the first method, the extract was gradient eluted from a C18 
column (Waters UPLC BEH C18-2.1 × 100 mm, 1.7 µm) 
using water and methanol, containing 0.05% perfluoropen-
tanoic acid (PFPA) and 0.1% formic acid (FA). In the second 
method, the extract was gradient eluted from the same C18 
column using methanol, acetonitrile, water, 0.05% PFPA 
and 0.01% FA at an overall higher organic content. In the 
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third method, basic extracts were gradient eluted from the 
column using methanol and water, however with 6.5 mM 
Ammonium Bicarbonate at pH 8. In the fourth method, elu-
tion was performed from a HILIC column (Waters UPLC 
BEH Amide 2.1 × 150 mm, 1.7 µm) using a gradient con-
sisting of water and acetonitrile with 10 mM Ammonium 
Formate, pH 10.8. The MS analysis alternated between MS 
and data-dependent MSn scans using dynamic exclusion. 
The scan range varied slighted between methods but covered 
70–1000 m/z. Additional information regarding UPLC-MS 
methods are provided in Supplementary File 3.

Missing values were imputed with the minimum quanti-
fied value of each biochemical in the sample matrix (plasma 
or DBS). There were a median of 0 and 2 samples with 
missing values for plasma and DBS analytes, respectively. 
All values were then log-transformed and standardized using 
a Z-transform.

2.3  Statistical analysis

Principal components analysis (PCA) was performed to 
visualize separation by PTB across the overall metabolite 
profiles. Permutational multivariate analysis of variance 
(PERMANOVA) with Euclidean distances, was used to 
assess PTB, antiretroviral regimen, country of origin, and 
gestational age at sample as predictors. Linear regres-
sion models were built separately with each standardized 
metabolite value as an outcome using an interaction model 
with antiretroviral regimen and preterm birth (as assessed 
by obstetric estimate) as covariates. A sensitivity analysis 
was also performed with preterm birth defined via newborn 
examination. Linear regression results were summarized as 
estimated marginal means.

Random forests classification models were constructed 
separately for each drug regimen to predict PTB. Based 
on our prior comparison of DBS and plasma sampling for 
metabolomics (Tobin et al., 2021), normalized and stand-
ardized DBS- and plasma-derived metabolite abundances 
were used as input for the multi-omics model as well as for 
separate models within each sample matrix. A power analy-
sis of a random forests classification model specifically in 
the context of metabolomics data suggests that the current 
study is sufficiently powered to predict PTB (Acharjee et al., 
2020). Country of origin was also included as a covariate 
due to its significance in the PERMANOVA results. A two-
step approach was utilized to select both the optimal num-
ber of features as well as the specific features used for each 
model. In the first step, one hundred forests each comprising 
10,000 trees were built to obtain feature importance values 
calculated as mean decrease in accuracy. In the second step, 
tenfold cross-validation with a sequentially reduced number 
of features was then used to identify the optimal number of 
features to be used. Finally, a sparse model was constructed 

for each regimen and sample matrix containing the optimal 
number of metabolites calculated in step 2 (up to a maxi-
mum of fifty features to aid interpretability), with features 
selected by the highest importance as calculated in step 1. 
Model accuracy, sensitivity, specificity, Matthew’s correla-
tion coefficient (MCC), and area under the receiver opera-
tor curve (AUC) were calculated from the out-of-bag error 
estimate (Breiman, 2001) for the final sparse model. The 
Benjamini–Hochberg false discovery rate (FDR) method 
was used to adjust for multiple comparisons and q-values 
less than 0.05 were accepted as significant.

All analyses were performed in the R statistical environ-
ment (version 3.6.3) (R Core Team, 2019). A full list of 
the R packages used in the analyses is provided in Online 
Appendix A. Analysis code and data files necessary to repro-
duce the analyses are available upon request.

3  Results

3.1  Cohort demographics

Untargeted metabolomics was performed on maternal 
plasma, maternal dried blood spots (DBS), and infant DBS 
from 100 mother-infant dyads who were either enrolled but 
yet to be treated (untreated), on ZDV, or on protease inhib-
itor-based antiretroviral therapy (PI-ART). A strong batch 
effect was observed among maternal DBS samples from 
a single study site (see Supplementary Results in Online 
Resource 1) and therefore the decision was made to exclude 
these 21 maternal DBS samples, but not their corresponding 
plasma samples, from all further analyses. Three additional 
dyads were excluded as they were exposed to other drug 
regimens during the course of pregnancy. The remaining 
participants were used for all subsequent analyses of mater-
nal plasma (n = 97, Table 1) and maternal DBS (n = 76, 
Table S1) samples (Fig. 1).

3.2  Maternal profiles of preterm birth

Principal components analysis (PCA) of maternal metabolite 
profiles revealed weak but statistically significant segrega-
tion by PTB, antiretroviral regimen, and country of origin 
(Fig. 2A and Table S2, PERMANOVA p < 0.001 with 2.0%, 
5.2%, and 9.9% of variance explained, respectively). Linear 
regression revealed 83 statistically significant mean com-
pound differences when comparing women who delivered 
preterm to those who delivered at term, including methio-
nine sulfone, 17α-hydroxypregnanolone glucuronide, estriol 
3-sulfate, and cortisone (Fig. S1, Tables S3-S6). Four reg-
imen-specific differences were also identified, with plasma 
urate and N-acetyl-1-methylhistidine significantly associated 
with PTB in untreated women only (Fig. 2B, Tables S3, S5). 
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The overall increase in methionine sulfone levels in women 
who delivered preterm was largely driven by differences in 
the ZDV group (Fig. 2B). A sensitivity analysis conducted 
using newborn examination as the basis for preterm birth 
definition revealed distinct sets of significant features (Fig. 
S2A), although the regression estimates among features sig-
nificant according to at least one of the measures were highly 
correlated (r = 0.76, p < 0.001, Fig. S2B). Regression models 
with elastic net regularization identified similar differences 
associated with preterm birth (Table S7).

3.3  Markers of preterm birth in treatment‑naïve 
women

To better characterize regimen-specific signatures of PTB, 
we next constructed random forests classification models 
separately for each treatment group. Multi-omics models 
utilizing both maternal plasma and DBS data achieved accu-
racies of 95.5%, 95.7%, and 80.7% in the untreated, ZDV 
monotherapy, and PI-ART groups, respectively (Fig. S3 and 
Table 2), with a mean accuracy of 89.5%. Plasma urate and 
N-acetyl-1-methylhistidine, identified by linear regression as 
markers of PTB, were also selected as predictive features in 
the random forests model for the untreated group (Fig. 3A).

DBS levels of dopamine 3-O-sulfate, methionine sulfone, 
and allantoin were also selected as predictive markers of 
PTB (Fig. 3A). Separate models for PTB based on DBS- and 

plasma-derived metabolite profiles largely recapitulated 
these results (Figs. S4, S5 and Tables S9, S10). Levels of 
many of the identified features, including methionine sul-
fone, were positively correlated with creatinine levels (Fig. 
S6). Intriguingly, three uncharacterized compounds (‘X-
12410’ and ‘X-12104’ in plasma, ‘X-25009’ in DBS) were 
also identified as markers of PTB.

3.4  Metabolic predictors of preterm birth in women 
on zidovudine monotherapy

In women on ZDV monotherapy, drastically altered levels of 
methionine sulfone and hippurate in both DBS and plasma, 
as well as 17α-hydroxypregnanolone glucuronide in plasma, 
were identified as key markers of PTB (Fig. 3B). Notably, 
17α-hydroxypregnanolone glucuronide was significantly 
elevated in the preterm group as a whole (Figs. 4, S3) and 
appears to be a common plasma marker of PTB regardless 
of treatment. The overall elevation of methionine sulfone 
levels in women who delivered preterm appears to be driven 
primarily by large increases in the ZDV group and to a lesser 
extent in the PI-ART and untreated groups (Fig. 4). Hip-
purate levels were decreased in the ZDV group but not the 
PI-ART and untreated groups (Figs. 3, 4).

3.5  Preterm birth in women on protease 
inhibitor‑based ART 

The classification model for PTB in women on PI-based 
ART did not perform as well as those in the other groups 
(Fig. 2). However, a large number of steroid compounds 
including cortisone, 17alpha-hydroxypregnanolone glucu-
ronide, 5alpha-pregnan-3beta, 20alpha-diol monosulfate, 
and 5alpha-pregnan-3beta-ol,20-one sulfate were selected as 
predictive features (Fig. 3C). DBS levels of two compounds 
involved in purine metabolism, 7-methylguanine and N2,N2-
dimethylguanosine, were also strongly associated with PTB. 
The increase in cortisone levels among women who deliv-
ered preterm is striking (Fig. 4) and may reflect higher stress 
levels in women who deliver preterm.

3.6  Profiles of preterm birth in the infant

In addition to identifying potentially predictive markers of 
PTB in maternal substrates, we also wanted to investigate 
the impact of PTB on the newborn infant. An initial analy-
sis revealed strong segregation between metabolite profiles 
collected from infants either within the first 3 days of life or 
at a later time up to 1 month of age (Fig. S7), likely due to 
contributions from infant metabolism. Therefore, we focused 
our analysis on a subset of n = 56 infants who were sampled 
within the first 3 days of life (Table 3; Fig. S1).

Maternal plasma Maternal DBS Infant DBS

n=100

Maternal plasma Maternal DBS Infant DBS

n=97

3 dyads excluded due to 
other ART regimens

21 maternal    samples excluded 
due to batch   effect

n=76

Maternal DBS

n=97 n=56

Infant DBSMaternal plasma

Subset to first 3 days of life

Fig. 1  Study design. Schematic showing exclusion criteria and the 
number of samples used for analysis of maternal plasma, maternal 
DBS, and infant DBS samples
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As with the maternal profiles, preterm versus term 
birth, antiretroviral regimen, and country of origin were 
identified as significant drivers of overall variation in the 
infant profiles (Table S2). Even though this analysis was 
performed only on infants within the first 3 days of life, 
the infant’s age in days still explained 3.7% of the overall 
variation, suggesting that the infant metabolome changes 
rapidly after delivery. Linear regression did not identify 
any significantly altered compounds in either the ZDV 
monotherapy or PI-ART treatment arms, nor among all 
preterm infants as a whole (Tables S11, S12). Although 
classification models for preterm birth are not particularly 

insightful in this context, we still utilized this approach 
as an alternative means of feature selection (Fig. 5 and 
Table S13, 90.0% and 89.3% accuracy for the ZDV and 
PI-ART groups, respectively). Notably, gluconate as well 
as a plethora of progestin and androgenic steroid com-
pounds including dehydroepindrosterone sulfate (DHEA-
S) were selected as features in the ZDV model (Fig. 5B). 
In the PI-ART model, the top discriminatory features 
included proline, N-acetyl-isoputreanine, and carboxyle-
thyl-GABA (Fig. 5C), all of which are involved in amino 
acid metabolism.

Fig. 2  Maternal metabolites 
in preterm birth. a Principal 
components analysis of mater-
nal metabolite profiles using 
Euclidean distances. Ellipses 
show 95% confidence areas 
for the treatment regimens as 
marked. Numbers in brackets 
denote percent of overall varia-
tion explained by each compo-
nent. b Coefficients from linear 
regression analysis of maternal 
metabolites stratified by treat-
ment regimen. Only metabolites 
that were significant in any sin-
gle analysis are shown. Metabo-
lites with positive estimates are 
increased in women who deliver 
preterm and metabolites with 
negative estimates are increased 
in women who deliver at term. 
Error bars denote 95% confi-
dence intervals. Values in red 
are statistically significant with 
FDR-adjusted p < 0.05
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4  Discussion

We applied an untargeted metabolomics approach to char-
acterize metabolic signatures of preterm birth in a cohort of 
100 WLH prior to treatment and on two different treatment 
regimens. Linear regression and random forests classifica-
tion models revealed both shared and regimen-specific mark-
ers of PTB.

Plasma N-acetyl-1-methylhistidine and urate were sig-
nificantly increased in untreated women who delivered pre-
term and to a lesser extent in the preterm groups of the two 
other groups. N-acetyl-1-methylhistidine is a known marker 
of chronic kidney disease, and reduced kidney function has 
been associated with pregnancy complications including 
PTB (Kendrick et al., 2015; Yu et al., 2014). Maternal urate 
levels have also been associated with adverse perinatal out-
comes including PTB in hypertensive pregnancy (Hawkins 
et al., 2012; Roberts et al., 2005).

Methionine sulfone and hippurate were found to be sig-
nificantly altered in women on ZDV monotherapy who 
delivered preterm. Two recent metabolomic studies found 
higher levels of methionine sulfone in people living with 
HIV versus healthy controls (Babu et al., 2019) and specifi-
cally as an effect of long-term ART (Peltenburg et al., 2018). 
At the time of sampling, our cohort had exposure to only a 
short duration of treatment and therefore it is possible that 
the oxidative stress indicated by this metabolite had only 

started to accumulate. Methionine sulfone was also found 
to be correlated with creatinine levels as measured by the 
metabolomics platform. Creatinine levels were previously 
found in a separate study to be associated with increased 
risk of provider-initiated but not spontaneous preterm 
births (Harel et al., 2020). Altogether, the magnitude of the 
increase observed in the ZDV group as well as the associa-
tion with creatinine levels suggests that methionine sulfone 
may function pleiotropically with respect to PTB. Hippurate 
is a product of shared metabolism by host and microbial 
pathways and has been associated with consumption of 
fruits, vegetables, and whole grains (Lees et al., 2013; Pal-
lister et al., 2017). Recent studies have identified hippurate 
as a key biomarker of gut microbial diversity, the loss of 
which is implicated in a number of diseases including meta-
bolic syndrome, inflammatory bowel disease, and Crohn’s 
disease (Pallister et al., 2017; Williams et al., 2009, 2010). 
It would be interesting to speculate that the decreased levels 
of hippurate seen in women who deliver preterm reflect a 
paradigm of gut microbiota dysbiosis, but additional inves-
tigations are necessary given the lack of dietary data and 
small sample size of the present study.

Drastic remodeling of progesterone and other steroid 
pathways was observed in women who delivered pre-
term. A recent metabolomic study of preterm birth among 
women not living with HIV also observed significant dif-
ferences in lipid and steroid-related metabolites (Manuck 

Table 2  Random forests models

Characteristics and performance of random forests models, multi-omic (maternal plasma + maternal DBS), maternal plasma, and maternal DBS 
for preterm birth in each treatment group
a Matthew’s correlation coefficient
b Area under the receiver operator characteristic curve
c Zidovudine monotherapy group
d Protease inhibitor-based antiretroviral therapy group

Number of features Accuracy MCCa AUC b Sensitivity Specificity

Multi-omics (n = 76)
 Untreated 12 95.45 0.9129 0.9669 1 0.9167
  ZDVc 7 95.65 0.9161 0.9923 1 0.9091
 PI-ART d 20 80.65 0.6193 0.9333 0.8571 0.7647

Number of features Accuracy MCC AUC Sensitivity Specificity

Plasma (n = 97)
 Untreated 5 92.86 0.8564 0.9641 0.9231 0.9333
 ZDV 20 87.1 0.736 0.9872 0.85 0.9091
 PI-ART 20 89.47 0.7922 0.9694 0.9375 0.8636

Number of features Accuracy MCC AUC Sensitivity Specificity

DBS (n = 76)
 Untreated 20 95.45 0.9129 0.9587 1 0.9167
 ZDV 4 95.65 0.9161 0.9615 1 0.9091
 PI-ART 20 83.87 0.6792 0.9208 0.8667 0.8125
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et al., 2021), although there was little overlap between the 
specific features identified. This may be due to differences 
in the timing of sample collection (median of 19 weeks’ 
gestation versus 31 weeks in our study) as well as patient 
demographics (Western versus primarily African). In 

our study, 17α-hydroxypregnanolone glucuronide was 
increased in all treatment groups, suggesting that is it a key 
marker of PTB in general. Relatively little is known about 
17α-hydroxypregnanolone glucuronide as opposed to the 
pregnenolone form that is an intermediate in sex steroid 

Fig. 3  Maternal signatures of 
preterm birth. Random forests 
(RF) model for preterm birth in 
a untreated women, b women 
on zidovudine monotherapy, 
and c women on PI-ART. Fea-
tures shown represent the sparse 
set selected by cross-validation 
and are ordered by decreasing 
importance in the RF model as 
indicated by shaded boxes on 
the left. Points and error bars 
show the coefficients and 95% 
confidence intervals from linear 
regression analysis of the same 
metabolite. Metabolites with 
positive estimates are increased 
in women who deliver preterm 
and metabolites with nega-
tive estimates are increased in 
women who deliver at term. 
Values in red were statistically 
significant in the linear regres-
sion analysis
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biosynthesis pathways, but a speculative pathway for its pro-
duction suggests that it reflects progesterone metabolism as 
opposed to availability. Levels of two other pregnanolone 
isomers, 5alpha-pregnan-3beta, 20alpha-diol monosulfate, 
and 5alpha-pregnan-3beta-ol,20-one sulfate, were decreased 
in women on PI-based ART compared to those on ZDV or 
sampled prior to treatment. However, these two isomers 
were found at higher levels in women who delivered pre-
term versus term taking PI-ART. These two compounds 
are reduced progesterone metabolites and thus may reflect 
protease inhibitor-mediated decreases in progesterone levels 
(Papp et al., 2015, 2016). Progesterone supplementation by 

multiple forms including 17α-hydroxyprogesterone caproate 
(17-OHPC) has been widely used prophylactically to reduce 
the risk of PTB in at-risk women (Committee on Practice 
Bulletins-Obstetrics TACoO, Gynecologists, 2012; Meis 
et al., 2003). However, recent clinical trials have failed to 
identify any effect of 17-OHPC supplementation on rates 
of PTB (Blackwell et al., 2020; Coler et al., 2021; Nelson 
et al., 2017; Price et al., 2019) and the US Food and Drug 
Administration (FDA) has recently withdrawn its approval of 
hydroxyprogesterone caproate injection to reduce the risk of 
preterm birth. Notably, these larger studies were conducted 
in widely disparate populations from both developed and 
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Fig. 4  Selected metabolite abundances. Boxplots of normalized 
metabolite abundance values for selected features. Bold lines indi-
cate medians, whiskers indicate 1.5*IQR (interquartile range) from 
first and third quartiles, and points indicate individual sample values. 

Statistically significant comparisons are marked with * FDR-adjusted 
p < 0.05, **FDR-adjusted p < 0.01 for comparison of PTB versus 
term delivery by treatment group (small brackets) or all PTB versus 
term delivery (large bracket)

Table 3  Demographic characteristics related to infant analyses

Bold values indicate p < 0.05
Demographics of the mother-infant dyads used for analysis of infant samples. p values are derived from χ2 and one-way ANOVA tests for cat-
egorical and continuous variables, respectively

ZDV—term ZDV—preterm PI-ART—term PI-ART—preterm p

n 7 8 21 20
Sex = Male (%) 2 (28.6) 2 (25.0) 12 (57.1) 8 (40.0) 0.328
Birthweight (mean (SD), g) 2895 (275) 2576 (482) 2798 (455) 2477 (478) 0.07
Weight at 1 week (mean (SD), g) 3328 (314) 2958 (611) 3112 (528) 2739 (596) 0.078
Gestational age at start of therapy (mean (SD), weeks) 29.4 (3.7) 23.7 (5.0) 25.7 (5.0) 25.9 (4.7) 0.155
Country (%) 0.095
 India 0 (0.0) 0 (0.0) 2 (9.5) 2 (10.0)
 Malawi 5 (71.4) 5 (62.5) 1 (4.8) 5 (25.0)
 South Africa 1 (14.3) 3 (37.5) 14 (66.7) 9 (45.0)
 Uganda 1 (14.3) 0 (0.0) 3 (14.3) 3 (15.0)
 Zambia 0 (0.0) 0 (0.0) 1 (4.8) 1 (5.0)

Gestational age at delivery (mean (SD), weeks) 41.9 (5.7) 31.2 (4.1) 39.8 (1.9) 33.3 (2.0)  < 0.001
Infant age in days (mean (SD)) 1.1 (0.7) 1.6 (0.9) 1.1 (0.7) 1.8 (1.0) 0.044
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Fig. 5  Infant signatures of 
preterm birth. Random forests 
(RF) model for preterm birth 
using infant DBS-derived 
metabolite profiles. a Receiver-
operator characteristic curves 
for classification models of 
birth status for each treatment 
regimen as indicated. Numbers 
in parentheses indicate the area 
under the ROC curve (AUC). 
b–c RF models for preterm 
birth in infants exposed to (b) 
zidovudine monotherapy and c 
PI-ART in utero. Features are 
ordered by decreasing impor-
tance in the RF model as shown 
by shaded boxes on the left. 
Points and error bars show the 
coefficients and 95% confidence 
intervals from linear regression 
analysis of the same metabolite. 
Metabolites with positive esti-
mates are increased in preterm 
infants and metabolites with 
negative estimates are increased 
in term infants

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●17alpha−hydroxypregnenolone 3−sulfate

lignoceroylcarnitine (C24)
N1,N12−diacetylspermine

glycylleucine
aconitate [cis or trans]

hydroxypalmitoyl sphingomyelin (d18:1/16:0(OH))
2,3−dihydroxyisovalerate

ophthalmate
glucuronate

branched−chain, straight−chain, or cyclopropyl 12:1 fatty acid
androstenediol (3alpha, 17alpha) monosulfate (3)

ethylmalonate
X − 22519
X − 13007

dehydroepiandrosterone sulfate (DHEA−S)
valylleucine

N6−carboxymethyllysine
docosadienoate (22:2n6)

indolin−2−one
androsterone sulfate

isobutyrylcarnitine (C4)
leucine

N−acetylproline
(2,4 or 2,5)−dimethylphenol sulfate

phosphate
1−arachidonylglycerol (20:4)

anthranilate
succinate

androstenediol (3beta,17beta) monosulfate (1)
glycerophosphoserine

carboxyethyl−GABA
N−acetyl−isoputreanine

proline

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●

●
●
●

●gamma−glutamyltyrosine
cerotoylcarnitine (C26)

X − 21364
X − 11442

phosphate
5alpha−pregnan−3beta−ol,20−one sulfate
(16 or 17)−methylstearate (a19:0 or i19:0)

palmitate (16:0)
acetylphosphate

myristoleate (14:1n5)
homoarginine

X − 11441
androstenediol (3alpha, 17alpha) monosulfate (2)

deoxycarnitine
5alpha−pregnan−3beta,20beta−diol monosulfate (1)

X − 11795
dehydroepiandrosterone sulfate (DHEA−S)

uridine
5alpha−pregnan−3beta,20alpha−diol monosulfate (2)

3−methyl−2−oxovalerate
N−acetyl−2−aminooctanoate

gluconate

0 11-
Estimate

05.1- 5.15.0- 1
Estimate

5.01-

Feature importance
0.0020
0.0015
0.0010

Feature importance
0.005

0.003

0.001

A

B

Tr
ue

 p
os

iti
ve

 ra
te

0

0.2

0.8

0.6

0.4

1

18.00
False positive rate

0.40.2 0.6

●
● PI-ART (0.9024)

ZDV (1.0000)

C



Metabolomic profiling of preterm birth in pregnant women living with HIV  

1 3

Page 11 of 14 91

developing nations, including a cohort of HIV-infected Zam-
bian women (Price et al., 2019, 2021).

Although we observed a consistent elevation of 
17α-hydroxypregnanolone glucuronide levels among women 
who delivered preterm across all three groups, the overlap-
ping nature of the abundance values suggests significant 
underlying variation in progesterone metabolism. One pos-
sibility is that the efficacy of 17-OHPC supplementation on 
sPTB may be limited to a subset of women who have lower 
baseline levels of progesterone availability.

Decreased hippurate levels were observed specifically 
among women who delivered preterm in the ZDV group, 
with the trend actually reversing among the untreated and PI-
ART groups. Although investigations into the role of com-
mensal microbial communities on PTB have largely focused 
on the urogenital tract (Staude et al., 2018), there is some 
evidence that gut microbial dysbiosis is also involved, either 
as a source for translocation or more generally as a driver 
of systemic inflammation (Dahl et al., 2017; Staude et al., 
2018). Given the association between hippurate and gut 
microbial diversity (Pallister et al., 2017), it would certainly 
be informative to assess the gut microbiota in the context of 
preterm birth and the various treatment regimens.

Use of infant DBS samples for metabolomics in the first 3 
days of life identified infants that were preterm with approxi-
mately 90% accuracy in the group exposed to ZDV and the 
group exposed to PI-ART in this small sample set. This sug-
gests that metabolomics on infant DBS shortly after birth 
has potential for development as a method for post-natal 
gestational dating.

4.1  Strengths and limitations

The strengths of this study are the utilization of an untar-
geted metabolomics platform, which allows for unbiased 
interrogation of hundreds of biochemical compounds. This 
powerful approach does however require appropriate statisti-
cal treatment to limit the appearance of false positive results 
as well as a means to identify the most salient markers for 
the outcome of interest. The random forests method inher-
ently encodes feature selection via cross-validation, thereby 
allowing for the identification of a sparse set of markers for 
the outcome of interest. Furthermore, a consensus approach 
using two different analytic methods (linear regression and 
random forests) with different underlying assumptions gives 
additional confidence to the markers identified by both. 
Finally, by focusing on the most robust set of features, we 
can more easily infer biological plausibility and translation 
to intervention as opposed to a larger panel of hundreds of 
markers.

A major limitation of this pilot study is the lack of data 
regarding the circumstances of PTB; notably, it is possible 
that some of the preterm births in this study were iatrogenic 

as opposed to spontaneous. Such cases, as well as other 
confounders such as diet and socioeconomic status, could 
introduce additional variation and limit the power of an 
already small sample size to detect robust markers of sPTB. 
Additionally, this sample size is also based on even matching 
between cases and controls, which does not reflect the true 
population distribution and therefore could lead to exces-
sive sensitivity to preterm deliveries. Furthermore, the small 
sample size and large number of classifiers built in this study 
are susceptible to overfitting. It will be vitally important to 
test these preliminary findings in an independent valida-
tion cohort, and such efforts are underway. The dynamic, 
complex, and dramatic physiological changes associated 
with pregnancy also complicate our ability to detect robust 
signals from a cross-sectional study design. Rather, it may 
be necessary to characterize signatures of preterm birth as 
differences in metabolic trajectories over the course of preg-
nancy. Such a design would also obviate the need to identify 
the correct timing window during gestation at which the 
signature of preterm birth is most robust while also weighing 
the potential for earlier intervention. All participants in this 
study were on ZDV-based regimens, except a single PI-ART 
participant; therefore, the changes identified in the PI-ART 
group may reflect exposure to any component of the regi-
men. However, given the increased incidence of PTB with 
protease inhibitors as well as the known effects on proges-
terone metabolism, we believe these reflect true metabolic 
alterations in pregnant women on PI-based ART. Finally, the 
samples used in this study were collected during a period 
when ZDV monotherapy and PI-ART was still in use. While 
protease-inhibitor based regimens have been replaced by 
newer antiretroviral regimens, the association of PI-based 
ART with an increased rate of preterm birth allows the use 
of the antiretroviral agent as a probe to better understand 
unique and/or additional metabolic derangements associated 
with PTB. Understanding the potential interaction between 
these regimens, newer antiretroviral regimens, and PTB will 
be important for translation to clinical practice.

5  Conclusions

Caveats aside, our preliminary study provides a number 
of valuable insights into potential mechanisms underly-
ing spontaneous PTB in a complex, high-risk population. 
Several of the metabolites identified as markers of PTB 
here have been previously implicated in other cohorts but 
studies to better understand the mechanisms and pathways 
behind their modulation are needed. Potential links to the 
gut microbiota vis-à-vis hippurate co-metabolism and to 
protease inhibitor-associated disruption of progesterone 
availability also warrant further investigation. Finally, our 
findings provide a proof of concept for the use of untargeted 
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metabolomics as a tool for hypothesis generation and bio-
marker discovery in complex disease processes.
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