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1  Introduction

Maternal metabolism changes during pregnancy to meet the 
demands of the mother and the feto-placental unit (Lain & 
Catalano, 2007). Aberrations in these changes are associ-
ated with pregnancy complications such as gestational dia-
betes (GDM) (Kivelä et al., 2021; White et al., 2017), which 
predisposes the mother herself to subsequent type 2 diabetes 
and her offspring to obesity in later life (Hod et al., 2015). 
Prepregnancy overweight is a well-established risk factor 
for GDM. It has previously been demonstrated, in a cohort 
of women with overweight, that the serum metabolic profile 
of women developing GDM differs from those who remain 
normoglycemic already in early pregnancy (Mokkala et al., 
2020). However, thus far, there has been rather little pub-
lished information on the extent to which the metabolic 
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Abstract
Introduction  Aberrations in circulating metabolites have been associated with diabetes and cardiovascular risk.
Objectives  To investigate if early and late pregnancy serum metabolomic profiles differ in women who develop prediabetes 
by two years postpartum compared to those who remain normoglycemic.
Methods  An NMR metabolomics platform was used to measure 228 serum metabolite variables from women with pre-preg-
nancy overweight in early and late pregnancy. Co-abundant groups of metabolites were compared between the women who 
were (n = 40) or were not (n = 138) prediabetic at two years postpartum. Random Forests classifiers, based on the metabolic 
profiles, were used to predict the prediabetes status, and correlations of the metabolites to glycemic traits (fasting glucose 
and insulin, HOMA2-IR and HbA1c) and hsCRP at postpartum were evaluated.
Results  Women with prediabetes had higher concentrations of small HDL particles, total lipids in small HDL, phospholipids 
in small HDL and free cholesterol in small HDL in early pregnancy (p = 0.029; adj with pre-pregnancy BMI p = 0.094). The 
small HDL related metabolites also correlated positively with markers of insulin resistance at postpartum. Similar associa-
tions were not detected for metabolites in late pregnancy. A Random Forests classifier based on serum metabolites and clini-
cal variables in early pregnancy displayed an acceptable predictive power for the prediabetes status at postpartum (AUROC 
0.668).
Conclusion  Elevated serum concentrations of small HDL particles in early pregnancy associate with prediabetes and insu-
lin resistance at two years postpartum. The serum metabolic profile during pregnancy might be used to identify women at 
increased risk for type 2 diabetes.
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profile during pregnancy and its potential aberrations influ-
ence the onset of diabetes postpartum.

Our working hypothesis was that by undertaking com-
prehensive examination of metabolic profiles, in addition 
to traditional metabolic markers, it could be possible to 
elucidate the associations of circulating metabolites during 
pregnancy to postpartum metabolic disorders and thus to 
reveal potential targets for interventions. With respect to the 
traditional metabolic markers, high third trimester glycated 
hemoglobin (HbA1c) levels at least 36 mmol/mol (5.4%) 
have been associated with an increased risk of diabetes mel-
litus in women with GDM from pregnancy up to five years 
postpartum (Claesson et al., 2017; Varejão et al., 2021). 
Elevated high-sensitivity C-reactive protein (hsCRP) levels 
during mid-pregnancy have also been associated with dys-
glycemia during the first postpartum year (Durnwald et al., 
2018; Ozuguz et al., 2011).

In non-pregnant populations, certain distinct serum 
metabolites, such as the levels of branched-chain amino 
acids (BCAAs), as well as those of phenylalanine, glutamate 
and several lipids, have been associated with an elevated 
risk of type 2 diabetes (Long et al., 2020) and cardiovas-
cular events (Ruiz-Canela et al., 2017). The association 
between the serum metabolic profile during pregnancy and 
a glucose metabolism disorder at postpartum has previously 
been described in only one publication (Liu et al., 2021); 
it was reported that fasting serum levels of BCAAs valine, 
leucine and isoleucine, acylcarnitine C2 and 3-hydroxybu-
tyrate measured at 28 weeks of gestation were associated 
with prediabetes or type 2 diabetes 10 to 14 years later.

We wanted to investigate the associations of early and 
late pregnancy serum metabolic profiles to the prediabe-
tes status at two years’ postpartum in an at-risk cohort of 
women who had overweight before becoming pregnant. 
We hypothesized that the serum metabolic profiles both in 
early and late pregnancy would differ between the women 
with and without prediabetes at two years’ postpartum. The 
first aim of the study was to investigate the differences in 
serum metabolites in both early and late pregnancy between 
the women who later developed prediabetes or remained 
healthy. We also aimed to investigate if the serum metabo-
lites during pregnancy could be used to predict prediabetes, 
and furthermore we evaluated the associations of the serum 
metabolites with glycemic traits at postpartum.

2  Methods

2.1  Participants and study design

This study is a follow-up study of women participat-
ing in a single-center dietary intervention trial during 

pregnancy (Pellonperä et al., 2019) (ClinicalTrials.gov: 
NCT01922791). Briefly, the trial investigated the effect 
of dietary intervention with fish oil and/or probiotics on 
maternal and offspring health. The main outcomes were the 
incidence of GDM and allergy in the offspring. The inclu-
sion criteria were overweight (self-reported prepregnancy 
BMI ≥ 25 kg/m2) and early pregnancy (< 18 weeks of gesta-
tion). The exclusion criteria were GDM diagnosed during 
the current pregnancy, multifetal pregnancy, and metabolic 
or inflammatory disease, such as type 1 or type 2 diabetes, 
celiac disease, or inflammatory bowel disease. A total of 439 
women were recruited to the intervention trial. Here, we 
examined 178 women from whom fasting serum samples 
in early and/or late pregnancy and fasting blood glucose 
analyzed for diagnosis of prediabetes at two years postpar-
tum were available. The early pregnancy serum metabolo-
mics analysis was available for 174 of the women and the 
late pregnancy serum metabolomics analysis for 169 of the 
women. We excluded the women who used GDM medica-
tion (metformin, insulin or both; n = 10) from the late preg-
nancy analyses. The women participated in two study visits 
during pregnancy, in early pregnancy at a mean 13.9 weeks 
of gestation (SD 2.0 weeks) and in late pregnancy at a mean 
35.1 weeks of gestation (SD 0.9 weeks), and in the follow-
up visit at two years’ postpartum (mean 2.0 years, SD 0.04 
years).

The clinical characteristics of the women were inquired 
by questionnaires. The intakes of energy and macronutri-
ents were calculated from 3-day food diaries filled in near 
to the study visits using computerized software (AivoDiet 
2.0.2.3, Aivo, Turku, Finland), which utilizes the Finnish 
Food Composition Database Fineli (Fineli). Blood pressure 
was measured during the study visits with Omron M5-1 
(Intelli™ sense, Omron Matsusaka Co., Ltd, Japan). Height 
was measured to the nearest 0.1 cm with a wall stadiometer 
at the early pregnancy study visit. Pre-pregnancy BMI was 
calculated from self-reported weight, obtained from welfare 
clinic records, and the height measured in early pregnancy. 
Mean weekly weight gain between early and late pregnancy 
was calculated from the weights measured at the study visits.

A standard 2-hour 75-g OGTT for pregnant women was 
performed (Working group set up by the Finnish Medi-
cal Society Duodecim, the Medical Advisory Board of the 
Finnish Diabetes Association and the Finnish Gynecologi-
cal Association, 2013) and diagnosis of GDM was based on 
at least one value at or above the threshold levels: 0 h ≥ 5.3, 
1  h ≥ 10.0 and 2  h ≥ 8.6 mmol/l. Prediabetes at two years 
postpartum was determined according to the criteria issued 
by the American Diabetes Association (ADA) as fasting 
plasma glucose from 5.6 to 6.9 mmol/l (American Diabetes 
Association, 2011). Of the study participants, 40 had predia-
betes; two of them reported having type 2 diabetes.
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2.2  Blood sampling and analysis

Fasting (9 h minimum) blood samples were drawn from the 
antecubital vein. The serum was separated and frozen in ali-
quots at -80 degrees Celsius. The serum metabolic profile 
was analysed using a high-throughput proton NMR metabo-
lomics platform (Nightingale Health Ltd, Helsinki, Finland) 
as previously described (Soininen et al., 2015). The plat-
form evaluates 228 metabolites and their ratios, including 
biomarkers of lipid and glucose metabolism, amino acids, 
ketone bodies and glycoprotein acetyls (GlycA), a marker 
of low-grade inflammation. Other sample analyses were 
assayed in a certified laboratory (Tykslab, the Hospital 
District of Southwest Finland) immediately after blood 
sampling. Fasting glucose was measured with an enzy-
matic method using hexokinase and fasting insulin with an 
immunoelectrochemiluminometric assay. HbA1c was deter-
mined with ion-exchange HPLC. An automated colorimet-
ric immunoassay was used to measure hsCRP. Homeostatic 
model assessment for insulin resistance (HOMA2-IR) was 
calculated from fasting glucose and fasting insulin levels 
(Wallace et al., 2004).

2.3  Statistical analysis

The statistical analysis for the clinical characteristics data 
of the women was made with IBM SPSS Statistics 28.0 for 
Windows (IBM SPSS, Chicago, IL, USA). The normal-
ity of distributions was visually observed from histograms 
and evaluated using Shapiro-Wilk’s test. Deviations from 
normality were assumed when Shapiro-Wilk’s test p < 0.05. 
The homogeneity of variances was evaluated with Levene’s 
test (p < 0.05 indicating violation of this assumption). Nor-
mally distributed continuous variables are summarized with 
means and standard deviations and non-normally distrib-
uted continuous variables with medians and interquartile 
ranges. Categorical data are presented as frequencies and 
percentages.

Differences in the clinical characteristics were evaluated 
with the Student’s t-test for normally distributed continuous 
variables and with the Mann-Whitney U-test for non-nor-
mally distributed continuous variables. Pearson chi-square 
test was used for evaluating differences in categorical vari-
ables between the groups. Two-sided p-values < 0.05 were 
considered significant.

Analysis of the metabolomic data was carried out using 
the R version 4.1.0. In the early pregnancy data, 42 metabo-
lites had missing values; these were imputed using randomly 
sampled values from the available data of each metabolite 
independently. Principal Component Analysis (PCA) was 
done using the calculatePCA function from scater pack-
age (McCarthy et al., 2017), after log10 transformation, the 

data were then scaled to zero mean and unit variance per 
metabolite, with the functions log10 and rowMeans from 
the base R package (R Core Team, 2021) and rowSds from 
the matrixStats package (Bengtsson, 2021).

Co-abundant groups of metabolites were computed by 
using the original metabolomic data. A dissimilarity matrix 
was calculated using Spearman correlation, with the help of 
cor function from the stats R package (R Core Team, 2021). 
Then hierarchical clustering was performed with the hclust 
from the stats package, using ward.D2 method and a dis-
similarity value cut-off of 0.2 (corresponding to a correla-
tion value of 0.8), cutree from stats package.

Similar transformation as for the PCA was used to visu-
alize the data for early and late pregnancy as a heatmap, 
using the Heatmap function from the ComplexHeatmap 
package (Gu et al., 2016). The dendrogram visualized with 
the heatmap was based on the same method to compute the 
co-abundant groups. We analyzed the 211 prevalent metab-
olites, with a detection threshold of 0.01 and a prevalence 
of 10% among the samples; calculated using the getPreva-
lentTaxa function from the mia package (Ernst et al., 2022).

In the linear model comparing co-abundant groups of 
metabolites between the women with and without predia-
betes, age, pre-pregnancy BMI and intake of polyunsatu-
rated fatty acids (PUFAs) were chosen as covariates because 
these differed significantly between the study groups in 
early pregnancy. The dietary intervention during pregnancy 
was chosen as a covariate based on prior results (Mokkala et 
al., 2021). Model 1 included the following covariates: age, 
intake of PUFAs and the intervention with model 2 includ-
ing also pre-pregnancy BMI since we wanted to be able to 
examine metabolites which correlated strongly with BMI. 
Linear models were carried out using the lm function and 
p-values adjusted with the Benjamini-Hochberg method, 
p.adjust from the stats package.

A Random Forests classifier was used to predict predia-
betes status based on the metabolomic profiles and covari-
ates separately and combined. This was carried out using the 
ranger package (Wright & Ziegler, 2017) along with cross-
validating each model 10 times with the caret R package 
(Kuhn, 2021). To further investigate the predictive power 
of each model, parallel models with randomly assigned pre-
diabetes status were trained and cross-validated. The per-
formance of each model was reported in terms of area under 
the receiver operating characteristic curve (AUROC), using 
the evalm function from the Mleval (John, 2020).

The association of metabolomic data to glycemic traits 
was analyzed by Spearman correlation and significance was 
p-value adjusted with the FDR method, using the getExperi-
mentCrossCorrelation from the mia package, where three 
levels of significance were used: 0.2, 0.05 and 0.001. Corre-
lation values and significance were visualized as a heatmap 
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for prepregnancy BMI, the associations were attenuated 
(p = 0.094 and p = 0.070, respectively).

One co-abundant group of metabolites was higher in 
late pregnancy in the women with prediabetes as com-
pared to women who did not develop this condition (Fig. 2, 
p = 0.014, Linear model adjusted for age, intervention and 
intake of PUFAs). The group included only acetoacetate, 
and it remained significant even after adjusting for the pre-
pregnancy BMI (p = 0.020).

3.3  Prediction of prediabetes status at two years 
postpartum with serum metabolites during 
pregnancy

We used AUROC of a Random Forests classifier for predict-
ing the prediabetes status at two years’ postpartum. When 
based on serum metabolites in early pregnancy, the value 
was 0.655, while it was 0.438 based on only covariates i.e. 
age, intervention, prepregnancy BMI and intake of PUFAs 
in early pregnancy and 0.668 when based on both serum 
metabolites and covariates in early pregnancy. After 10-fold 
cross-validation, it was observed that the classifier based 
on serum metabolites and covariates performed the best 
(Fig. 3). The following five serum metabolites and covari-
ates were the most important features in the classifier; glyc-
erol, cholesterol esters to total lipids ratio in very large HDL 
particles, acetoacetate, free cholesterol to total lipids ratio 
in large HDL and age. Both the classifier based on serum 
metabolites and the classifier based on serum metabolites 
and covariates performed significantly better than those 
classifiers which randomly assigned the prediabetes status.

The AUROC of a Random Forests classifier predicting 
the prediabetes status at two years postpartum based on 
serum metabolites in late pregnancy was 0.64, which was 
a similar value as that obtained with the classifier based on 
both serum metabolites and covariates in late pregnancy 
(AUROC 0.638). The AUROC value of the classifier based 
on covariates only in late pregnancy was somewhat lower 
(AUROC 0.53). None of the classifiers differed significantly 
from the classifiers which assigned the prediabetes status at 
random (Fig. 3).

3.4  The correlations between serum metabolites 
during pregnancy and glycemic traits at two years 
postpartum

FDR-adjusted Spearman correlations were used to investi-
gate the associations of serum metabolites in early and late 
pregnancy to glycemic traits (fasting glucose and insulin, 
HOMA2-IR and HbA1c) and hsCRP at two years postpar-
tum (Fig.  4). The concentrations of small HDL particles, 
total lipids in small HDL, phospholipids in small HDL and 

using the Heatmap function from the ComplexHeatmap 
package.

3  Results

3.1  Clinical characteristics

The majority i.e. 60% of the women were living with over-
weight and 40% with obesity. Almost a third of the women 
developed GDM in this current pregnancy; in most cases, it 
was treated with diet only (Table 1). The women who devel-
oped prediabetes by two years postpartum (n = 40) had a 
higher prepregnancy BMI, were older and were more likely 
to have had GDM during pregnancy compared to those 
who did not (n = 138). In addition, their fasting glucose 
and HbA1c in early pregnancy and fasting glucose, fasting 
insulin and HOMA2-IR in late pregnancy were higher than 
those of the women with no prediabetes. There were no sig-
nificant differences between the groups according to which 
dietary intervention group they had been assigned in early 
pregnancy (data not shown). In early pregnancy, the women 
who later developed prediabetes had greater daily intakes of 
total fat, monounsaturated fatty acids and PUFAs than those 
who did not (Online Resource 1).

3.2  Differences in serum metabolites during 
pregnancy between the women with and without 
prediabetes at two years postpartum

The levels and/or ratios of many serum metabolites changed 
from early to late pregnancy as visualized in Online Resource 
2 with the majority of the metabolite concentrations and/or 
ratios displaying an increase. There was no clear clustering 
of the metabolites in PCA based on the prediabetes status 
at two years postpartum in either at early or late pregnancy 
(Fig. 1).

Co-abundant groups of serum metabolites in early and 
late pregnancy were identified using a dissimilarity matrix 
and hierarchical clustering. Two co-abundant groups of 
metabolites differed in early pregnancy between the women 
with and those without prediabetes (Fig. 2). The first group 
included higher concentrations of small HDL particles, total 
lipids in small HDL, phospholipids in small HDL and free 
cholesterol in small HDL in the women with prediabetes 
compared to the women without prediabetes (p = 0.029, 
Linear model adjusted for age, intervention and intake of 
PUFAs). The second group showed a higher phospholipids 
to total lipids ratio in large HDL particles in the women with 
prediabetes compared to the women without prediabetes 
(p = 0.020, Linear model adjusted for age, intervention and 
intake of PUFAs). When the models were further adjusted 
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Table 1  Clinical characteristics of the study participants
All women
n = 178

No prediabetes 
at two years 
postpartum
n = 138

Prediabetes at two 
years postpartum
n = 40

n (%) n (%) n (%) P-value
Age in early pregnancy (years; mean, SD) 31.5 (4.6) 31.0 (4.7) 33.0 (4.3) 0.020a

Pre-pregnancy BMI (kg/m2; median, IQR) 29.0 (26.5‒31.5) 28.4 (26.2‒31.1) 30.5 (27.8‒34.1) 0.011b

Ethnicity 1.0c

   European 175 (98) 135 (98) 40 (100)
   Asian 1 (1) 1 (1) 0 (0)
   Other 2 (1) 2 (1) 0 (0)
College or university education 116 (65) 94 (68) 22 (55) 0.14c

Smoking during pregnancy 6 (3) 4 (3) 2 (5) 0.62c

Family history of diabetes or metabolic syndrome 44 (25) 34 (25) 10 (25) 1.0c

Primiparous 82 (46) 59 (43) 23 (58) 0.11c

Prior GDM 16 (9) 13 (9) 3 (8) 0.77c

GDM in the current pregnancy 51 (30) 27 (20) 24 (62) < 0.001c

GDM treatment < 0.001c

   diet only 40 (23) 25 (19) 15 (39)
   metformin 6 (4) 2 (2) 4 (10)
   insulin 1 (1) 0 (0) 1 (3)
   insulin + metformin 4 (2) 0 (0) 4 (10)
Weight gain between early and late pregnancy (kg/week; mean, SD) 0.42 (0.18) 0.43 (0.18) 0.36 (0.16) 0.054a

Systolic blood pressure (mmHg)
   early pregnancy (median, IQR) 117.5 

(111.3‒125.0)
117.0 
(110.5‒125.0)

118.8 
(113.8‒124.1)

0.21b

   late pregnancy (median, IQR) 119.0 
(113.1‒128.0)

118.8 
(112.9‒127.6)

120.8 
(113.1‒132.0)

0.31b

Diastolic blood pressure (mmHg)
   early pregnancy (median, IQR) 78.0 (71.5‒83.0) 76.5 (71.0‒82.3) 79.8 (73.5‒84.8) 0.081b

   late pregnancy (median, IQR) 79.3 (73.1‒86.5) 79.0 (73.4‒85.6) 81.5 (72.0‒91.6) 0.39b

Breastfeeding duration (months; median, IQR) 12.0 (6.0‒15.5) 12.1 (6.8‒17.3) 12.0 (3.6‒14.6) 0.36b

Fasting glucose (mmol/l)
   early pregnancy (median, IQR) 4.7 (4.5‒5.0) 4.7 (4.5‒4.9) 4.9 (4.6‒5.2) 0.029b

   late pregnancy (mean, SD) 4.6 (0.4) 4.5 (0.4) 4.8 (0.6) 0.020a

   2 y postpartum (median, IQR) 5.2 (5.0‒5.5) 5.1 (4.9‒5.3) 5.8 (5.7‒6.2) < 0.001b

HbA1c (mmol/mol)
   early pregnancy (median, IQR) 29.0 (28.0‒31.0) 29.0 (28.0‒31.0) 30.0 (29.0‒32.0) 0.003b

   2 y postpartum (median, IQR) 32.0 (30.3‒34.0) 32.0 (30.0‒34.0) 35.0 (32.3‒36.0) < 0.001b

Fasting insulin (mU/l)
   early pregnancy (median, IQR) 10.0 (8.0‒14.0) 9.0 (7.0‒14.0) 11.0 (8.0‒13.0) 0.16b

   late pregnancy (median, IQR) 15.0 (11.0‒20.0) 14.0 (11.0‒19.0) 16.0 (14.8‒22.0) 0.038b

   2 y postpartum (median, IQR) 11.0 (8.0‒15.0) 10.0 (8.0‒14.0) 14.0 (11.0‒18.8) < 0.001b

HOMA2-IR
   early pregnancy (median, IQR) 1.3 (1.0‒1.8) 1.2 (0.9‒1.8) 1.4 (1.0‒1.7) 0.13b

   late pregnancy (median, IQR) 1.9 (1.4‒2.4) 1.8 (1.4‒2.4) 2.1 (1.8‒2.8) 0.030b

   2 y postpartum (median, IQR) 1.5 (1.0‒1.9) 1.3 (1.0‒1.8) 1.9 (1.5‒2.5) < 0.001b

hsCRP (mg/l)
   early pregnancy (median, IQR) 5.6 (3.5‒8.8) 5.5 (3.5‒8.7) 6.3 (3.5‒9.2) 0.48b

   late pregnancy (median, IQR) 3.9 (2.2‒6.2) 3.9 (2.2‒6.2) 3.6 (2.0‒7.7) 0.95b

   2 y postpartum (median, IQR) 1.6 (0.7‒3.4) 1.4 (0.7‒3.3) 2.3 (1.1‒4.6) 0.027b

GDM, gestational diabetes; HbA1c, glycated hemoglobin; HOMA2-IR, homeostatic model assessment for insulin resistance; hsCRP, high 
sensitivity C-reactive protein.
aStudent’s t-test
bMann-Whitney U-test
cChi-square test
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traits, especially with HbA1c at FDR-level ≤ 0.001. Along 
with many VLDL related variables, the levels of BCAAs 
(i.e. leucine and isoleucine) and monounsaturated fatty acids 
correlated positively with fasting insulin and HOMA2-IR. 
The concentrations of valine, leucine and two ketone bod-
ies i.e. acetoacetate and 3-hydroxybutyrate correlated posi-
tively with that of fasting glucose. Glycerol had a highly 

free cholesterol in small HDL in early pregnancy correlated 
positively with all of the glycemic traits, in addition to pre-
pregnancy BMI, at two years postpartum. There were highly 
significant (FDR ≤ 0.001) positive correlations between tri-
glycerides in medium size HDL particles in early pregnancy 
and fasting insulin and HOMA2-IR. The inflammatory 
marker GlycA correlated positively with all of the glycemic 

Fig. 2  Boxplots of early and late pregnancy serum metabolites, which 
differed significantly (p < 0.05) between the women with and those 
without prediabetes at two years postpartum based on a linear model 
adjusted for age, intervention and intake of polyunsaturated fatty 
acids. n = 174 in early pregnancy, n = 38 with prediabetes and n = 136 

without prediabetes. n = 159 in late pregnancy, n = 29 with prediabetes 
and n = 130 without prediabetes. The box represents the interquartile 
range, the line is the median and dots are individual values. ** indi-
cates p-value ≤ 0.01 and *** p-value ≤ 0.001. CAG, co-abundant group 
of metabolites

 

Fig. 1  Principal Component Analysis of the serum metabolic profiles of the study participants in early (n = 174) and late pregnancy (n = 159) and 
prediabetes status at two years postpartum. Blue = no prediabetes and red = prediabetes
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particles have been linked with a risk of cardiovascular 
disease (Kontush, 2015). During early pregnancy, higher 
concentrations of small HDL particles have been shown to 
predict GDM (Mokkala et al., 2020). Thus, it appears that 
high levels of small HDL particles are associated with an 
increased cardiometabolic risk at different stages of the life-
cycle. Therefore it is not unreasonable that we detected sim-
ilar metabolic features in pregnant women prior to the onset 
of GDM and prediabetes, as GDM is a known risk factor for 
type 2 diabetes (Bellamy et al., 2009). Further studies are 
warranted to clarify if elevated serum levels of small HDL 
particles during pregnancy predict the onset of type 2 dia-
betes, especially in women affected by GDM, thus identify-
ing a possible high-risk group in need of targeted screening 
and interventions to prevent the onset of diabetes. A dietary 
intervention would represent a feasible approach to exert an 
impact on metabolism. Indeed, in the same cohort as studied 
here, dietary supplementation with fish oil and probiotics 
during pregnancy induced favorable alterations in serum 
lipid variables, although the alterations were less evident 
in women with GDM (Mokkala et al., 2021). Since only 
40 women developed prediabetes by two years postpartum, 
we did not investigate the impact of the dietary intervention 
here. The incidence of prediabetes did not differ between the 
dietary intervention groups.

In addition to the levels of small HDL particles, the 
levels of two BCAAs leucine and isoleucine, the aromatic 
amino acid phenylalanine and an inflammatory marker 
GlycA in early pregnancy correlated positively with mark-
ers of insulin resistance at two years postpartum. BCAAs 
are among the best-established metabolic markers for type 
2 diabetes (Long et al., 2020). Higher levels of leucine, 
isoleucine, phenylalanine and GlycA have been associated 
with an increased risk for type 2 diabetes in young adults 

significant positive correlation with fasting glucose. Highly 
significant negative correlations were detected between the 
ratios of n-6 fatty acids to total fatty acids and linoleic acid 
to total fatty acids and fasting insulin and HOMA2-IR.

Of the serum metabolites in late pregnancy, the concen-
tration of isoleucine correlated positively at FDR-level ≤ 0.2 
with fasting insulin and HOMA2-IR at two years postpar-
tum (Fig. 4). Similarly, the glucose concentration correlated 
positively with fasting glucose, citrate with fasting insulin 
and HOMA2-IR and tyrosine with HbA1c.

4  Discussion

In this study, we demonstrated that women who developed 
prediabetes by two years postpartum had higher serum 
concentrations of small HDL particles, total lipids in small 
HDL, phospholipids in small HDL and free cholesterol in 
small HDL in early pregnancy and higher serum concen-
trations of acetoacetate in late pregnancy as compared to 
women who did not develop prediabetes. The small HDL 
related variables also correlated positively with HbA1c and 
markers of insulin resistance at two years postpartum.

We detected elevated serum levels of small HDL par-
ticles in early pregnancy in the women who developed pre-
diabetes by two years postpartum, although the association 
was dependent on the pre-pregnancy BMI. In a large previ-
ous study of non-pregnant women, higher levels of small 
HDL particles and a smaller HDL particle size were associ-
ated with incident type 2 diabetes during a follow-up of 13 
years (Mora et al., 2010). Similarly, a larger HDL particle 
size has been associated with a decreased risk of type 2 dia-
betes in young adults (Ahola-Olli et al., 2019). In addition 
to type 2 diabetes, elevated concentrations of small HDL 

Fig. 3  Boxplots of the area under the receiver operating characteristic 
curve (AUROC) -values of Random Forests models predicting predia-
betes status at two years postpartum with serum metabolites, covari-
ates age, intervention, pre-pregnancy BMI and intake of polyunsatu-
rated fatty acids or serum metabolites and covariates. Student’s t-test 
was used to compare the Random Forests models with true prediabetes 

status labels to models which assigned the status at random (shuffled 
labels). n = 38 with prediabetes and n = 136 without prediabetes in early 
pregnancy, n = 29 with prediabetes and n = 130 without prediabetes in 
late pregnancy. Box represents interquartile range, line median and 
dots individual values. * indicates p-value ≤ 0.05. NS, non-significant
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been suggested that higher BCAA and GlycA levels point to 
a susceptibility to develop type 2 diabetes already decades 
before the onset of the disease (Bell et al., 2020) and that in 
fact insulin resistance causally affects BCAA metabolism 
(Mahendran et al., 2017; Wang et al., 2017). As reviewed 
recently (White et al., 2021), obesity and insulin resistance 

(Ahola-Olli et al., 2019). Liu et al. examined women at 28 
weeks of gestation and observed an association between 
elevated BCAA levels and prediabetes or type 2 diabetes 10 
to 14 years later (Liu et al., 2021). Elevated serum levels of 
leucine, isoleucine and GlycA during pregnancy have also 
been frequently associated with GDM (Kivelä et al., 2021; 
Mokkala et al., 2020; White et al., 2017). Recently it has 

Fig. 4  Heatmaps of FDR-adjusted 
Spearman correlations between 
serum metabolites in early or late 
pregnancy and glycemic traits at 
two years’ postpartum. n = 174 
in early pregnancy and n = 159 
in late pregnancy. * indicates 
FDR ≤ 0.2, ** FDR ≤ 0.05 and 
*** FDR ≤ 0.001. HOMA2-IR, 
homeostatic model assessment 
for insulin resistance; HbA1c, 
glycated hemoglobin; hsCRP, 
high sensitivity C-reactive 
protein
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addition to those detected here, and thus future trials with a 
larger number of participants are called for in order to verify 
our findings. In addition, the maternal BMI value may have 
influenced the associations of metabolites to prediabetes, 
although we included pre-pregnancy BMI as a covariate in 
the analyses. Clearly it would be informative to examine the 
associations also in individuals with normal weight. The fact 
that the study cohort included women from a high-income 
European country might somewhat limit the generalization 
of the results, but the mean age and parity of the study par-
ticipants correlate well with values currently observed in the 
Finnish population (Official Statistics of Finland, Perinatal 
statistics. THL., 2021).

5  Conclusion

Aberrant serum metabolic profile was detected in early 
pregnancy in women who developed prediabetes by two 
years postpartum, namely elevated serum concentrations of 
small HDL particles, and increased total lipids, phospholip-
ids and free cholesterol in small HDL particles. The associa-
tion seems to depend on pre-pregnancy BMI. Together with 
traditional clinical markers, the assessment of the serum 
metabolic profile in early pregnancy could potentially be 
used to predict future prediabetes risk. Future studies will 
be needed to clarify whether the metabolic features detected 
here reveal an at-risk group of women who would benefit 
from interventions to prevent type 2 diabetes during and 
after pregnancy.
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