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Abstract

Introduction Sebum-based metabolomics (a subset of “sebomics”) is a developing field that involves the sampling, identifica-
tion, and quantification of metabolites found in human sebum. Sebum is a lipid-rich oily substance secreted by the sebaceous
glands onto the skin surface for skin homeostasis, lubrication, thermoregulation, and environmental protection. Interest in
sebomics has grown over the last decade due to its potential for rapid analysis following non-invasive sampling for a range
of clinical and environmental applications.

Objectives To provide an overview of various sebum sampling techniques with their associated challenges.

To evaluate applications of sebum for clinical research, drug monitoring, and human biomonitoring.

To provide a commentary of the opportunities of using sebum as a diagnostic biofluid in the future.

Methods Bibliometric analyses of selected keywords regarding skin surface analysis using the Scopus search engine from
1960 to 2022 was performed on 12th January 2023. The published literature was compartmentalised based on what the work
contributed to in the following areas: the understanding about sebum, its composition, the analytical technologies used, or
the purpose of use of sebum. The findings were summarised in this review.

Results Historically, about 15 methods of sampling have been used for sebum collection. The sample preparation approaches
vary depending on the analytes of interest and are summarised. The use of sebum is not limited to just skin diseases or
drug monitoring but also demonstrated for other systemic disease. Most of the work carried out for untargeted analysis of
metabolites associated with sebum has been in the recent two decades.

Conclusion Sebum has a huge potential beyond skin research and understanding how one’s physiological state affects or
reflects on the skin metabolome via the sebaceous glands itself or by interactions with sebaceous secretion, will open doors for
simpler biomonitoring. Sebum acts as a sink to environmental metabolites and has applications awaiting to be explored, such
as biosecurity, cross-border migration, localised exposure to harmful substances, and high-throughput population screening.
These applications will be possible with rapid advances in volatile headspace and lipidomics method development as well
as the ability of the metabolomics community to annotate unknown species better. A key issue with skin surface analysis
that remains unsolved is attributing the source of the metabolites found on the skin surface before meaningful biological
interpretation.
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1 Introduction

The examination of bodily excretions has been a part of
medical investigation long before the term “metabolomics”
was coined. For example, urinalysis was used as a diagnostic
tool 6000 years ago (Armstrong, 2007), where Sumerian and
Babylonian physicians recorded their pathological assess-
ments of colour and consistency on clay tablets (Wellcome,
1911). Nowadays, due to advances in technology, modern
diagnostics typically employ metabolomics to probe into a
biological sample’s chemical composition. Metabolomics is
an analytical profiling technique that generally uses hyphen-
ated mass spectrometry and bioinformatics to determine the
number and concentration of metabolites in biological sam-
ples. It has risen in prominence as a field that comprises both
biomarker discovery and molecular diagnostics.
Metabolomics assays can be applied to a wide range of
biological samples, where the choice of the sample should be
driven by the clinical question being investigated. It is com-
mon to study biofluids to discover potential diagnostic bio-
markers; whereas, the use of tissues or cells has more appli-
cation in investigating physiological mechanisms (Chetwynd
et al., 2017). A bibliometric analysis of biofluids used for
metabolomics research in 2021 revealed blood, urine, and
faeces to be the most popular with 55.1%, 12.2%, and 10.8%
of total published papers using them, respectively.! Despite
this, there is a growing interest in the metabolomics of less
conventional biological matrices, one of them being skin
secretions. Skin secretions are a mixture of sebum, sweat,
corneocyte debris, and proteolytic products of filaggrin,
collectively known as “residual skin surface components”
(RSSC) (Dumas & Ntambi, 2018; Ludovici et al., 2018;
Shetage et al., 2018). Their composition is predominantly
governed by complex hormonal and metabolic mechanisms
and may be confounded by interactions with the external
environment and bacterial colonies on the skin surface
(Bolognia et al., 2018; Bouslimani et al., 2015; Dumas &
Ntambi 2018; Lovaszi et al., 2017; Luca & Valacchi, 2010;

! The bibliometric analysis was performed on the Scopus search
engine (15th July 2022) using the keywords “serum”, “plasma”,
“whole blood”, “faeces”, “urine”, “saliva”, ‘“sebum”, “sputum”,
“cerebrospinal fluid”, “ascite”, “cheek swab”, “sperm”, “vaginal
discharge”, “bone marrow”, “breast milk”, “mucus”, “bile”, “pus”,
”, “amniotic fluid”, “gastric

L ITS LI »

“phlegm”, “semen”, “earwax”, “‘vomit”,
acid”, “exudate”, “aqueous humour”, “cerumen”, “chyle”, “lymph”,
“pericardial fluid”, “peritoneal fluid”, “pleural fluid”, “serous fluid”,
“synovial fluid”, and “menstrual fluid” followed by “AND “metabo-
lomics™ for each. The search was limited to papers published in
2021. A percentage was calculated by dividing the number of pub-
lications for each keyword search by the total number of publications
of all the keyword searches combined, then multiplying by 100. Here,
the term “blood” combines the percentages calculated for the key-

word searches of “serum”, “plasma”, and “whole blood”.
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Zouboulis et al., 2016). Therefore, they can provide a wealth
of information regarding the body’s physiological state. Skin
secretions are readily available as superficial fluids and thus
offer an attractive opportunity for developing non-invasive
diagnostic tests with point-of-care potential.

Initially, the interest in RSSC as a medium for disease
diagnostics started due to body odour (Kippenberger et al.,
2012). Olfactory diagnosis is not novel and has been used
in the past for diseases, such as scurvy, schizophrenia,
smallpox, and typhoid (Penn & Potts, 1998). The chemicals
typically responsible for these characteristic body odours
are volatile organic compounds (VOCs). Skin VOCs are
predominantly synthesised by either one’s internal metabo-
lism, bacterial activity on the skin surface, exogenous depo-
sition, or skin reactions with environmental factors, such
as ozone and UV (Akitomo et al., 2003; D’Orazio et al.,
2013; Drakaki et al., 2014; Lacy et al., 2014; Li et al., 2021;
Luca & Valacchi, 2010; Natsch & Emter, 1800; Wisthaler
& Weschler, 2010). Although VOCs can originate from
both sebaceous and sweat glands, the excretion from the
latter has been studied for odour-based metabolites more
often (Brasier & Eckstein, 2019; Gallagher et al., 2008).
Biomarkers for several diseases, such as diabetes (Provitera
et al., 2010), lung cancer (Calderén-Santiago et al., 2015),
schizophrenia (Raiszadeh et al., 2012), and cystic fibrosis
(Carter et al. 1984; Vinayavekhin et al., 2010), have already
been identified in sweat. As VOCs span a wide range of
polarities, the hydrophobic VOCs would be more likely to
partition into sebum than sweat and vice versa; therefore,
sebum should equally be seen as a potential reservoir of
odorous compounds. This is supported by recent studies
involving Parkinson’s disease that have discovered odorous
hydrophobic volatile biomarkers in sebum (Fu et al., 2022;
Trivedi et al., 2019).

Sebum as a biofluid has been investigated for many dec-
ades with a focus on understanding normal and pathologi-
cal skin biology. A multitude of papers originating in the
1950-1980s form the basis of sebum knowledge concerning
composition and production. This predates metabolomics
and the associated advanced mass spectrometric technol-
ogy that has enabled more robust analyte characterisation
and metabolome screening capabilities. Bibliometric anal-
yses of literature ranging from 1960 to 2022 demonstrate
the increasing popularity of skin surface analysis over time
(Fig. 1), while Fig. 1B explicitly demonstrates the novelty
of this biofluid for metabolomics and lipidomics as less than
five papers were published in either discipline until 2020.
The slow adoption of sebum is likely due to the techno-
logical limitations associated with the difficulties of reliable,
consistent sebum sampling, the challenges of analysing com-
plex biological matrices for biomarkers, and the inability of
chemical detectors to accurately identify and quantify low
concentration compounds.
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Fig. 1 Bibliometric analyses 400
of selected keywords regard- A
ing skin surface analysis using 350

the Scopus search engine from
1960 to 2022 (performed on
12th January 2023). The exact
search phrases are presented in
the plot legends
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The novelty and ease of sebum analysis and its potential
to direct clinical testing have recently attracted worldwide
interest, particularly for Parkinson’s disease (Quigley, 2019).
With sebum research in its infancy, there is a lack of stand-
ardised protocols for sebum sampling and extraction, i.e., the
front end of an analytical procedure. The subsequent back
end of the procedure involving data acquisition and interpre-
tation can be applied as usual using well-established routine
metabolomics workflows (Alonso et al., 2015; Alseekh et al.,
2021; Ashrafian et al., 2021; Cui et al., 2018; Dudzik et al.,
2018; Nalbantoglu et al., 2019; Rakusanova et al., 2023;

1980 1990 2000 2010 2020

Publication year

—@—"sebum" OR "skin surface" AND "analysis"

@
1980 1990 2000 2010 2020

Publication year

—@—"sebum" OR "skin surface" AND "metabolomics"
—@—"sebum" OR "skin surface" AND "lipidomics"
"sebum" OR "skin surface" AND "mass spec*"

"sebum" OR "skin surface" AND "NMR"

Sarandi et al., 2021; Schrimpe-Rutledge et al., 2016; Segers
et al., 2019; Wishart, 2019). Metabolomics studies rely on
the quality of sample heavily; as the saying goes: “rubbish
in, rubbish out”. This is truly applicable for sebum analysis
because, unlike biofluids such as urine and blood that have
more straightforward sample collections, there are many
diverse sebum sampling techniques currently available that
all collect metabolites differently. This selectivity means that
without prior knowledge, a researcher would be subject to
a systemic bias from their sampling medium that will affect
their research outcomes. Therefore, this review summarises
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Fig.2 Skin structure adapted
from “Anatomy of the Skin”

by BioRender.com (2022).
Retrieved from https://app.biore
nder.com/biorender-templates.
The dashed light-yellow lines
show how sebum travels from
the sebaceous gland to the skin
surface. The dashed black lines
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our current understanding of sebum composition and the
state-of-the-art technologies globally used for sebum sam-
pling. Finally, an evaluation of the applications of sebum
is performed regarding clinical research, drug monitoring,
and human biomonitoring, to provide a commentary of the
opportunities of using sebum as a diagnostic biofluid in the
future.

2 What is sebum?

Sebum is a light yellow, lipid-rich fluid produced by the
sebaceous glands through the holocrine secretion of sebo-
cytes (Firooz et al., 2015; Honari et al., 2014; Zouboulis
et al., 2016), the major cells within the sebaceous glands
(Niemann & Horsley, 2012; Zouboulis et al., 2016). After
production, sebum is discharged into the sebaceous duct
and then travels along the hair follicle onto the skin surface
(Fig. 2) (Nicolaou & Harwood, 2016). This process takes
approximately 2-3 weeks (Nicolaou & Harwood, 2016).
The role of sebum in skin barrier function is not completely
understood; however, it is generally accepted as key in main-
taining skin homeostasis, lubrication, thermoregulation, and
protection from environmental stressors, pathogens, and
contaminants by producing either proinflammatory or anti-
inflammatory cytokines, chemokines, interleukins, phero-
mones, free fatty acids, and hormones (Dumas & Ntambi,
2018; Honari et al., 2014; Luca & Valacchi, 2010; Nicolaou
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& Harwood, 2016; Niemann & Horsley, 2012; Picardo et al.,
2015; Shamloul & Khachemoune, 2021; Smith & Thiboutot,
2008).

Sebum can be found all over the body except for the
palms of the hands and soles of the feet due to the lack of
sebaceous glands there (Borda & Wikramanayake, 2015;
Smith & Thiboutot, 2008). The largest number of glands and
the most sebum-rich parts of the body are the face (T-zone),
back, and upper chest, where the number of glands ranges
from 400 to 900 glands/cm? (Borda & Wikramanayake,
2015; Smith & Thiboutot, 2008; Thody & Shuster, 1989).
The rate of sebum production varies between individuals due
to many factors, such as sex, age, ethnicity, diet, tempera-
ture, and circadian rhythm (Table 1). These are all important
aspects to consider for sampling purposes and in the experi-
mental design. Generally, over three hours, a rate of less
than 0.5 mg/10 cm? is associated with dry skin (Bolognia
et al., 2018), approximately 1 mg/10 cm? is the adult aver-
age (Plewig & Kligman, 2000), and 1.5-4.0 mg/10 cm? is
associated with seborrhoea (Bolognia et al., 2018).

The relative composition of sebum is 30-50% triacylg-
lycerols/diacylglycerols, 15-30% free fatty acids, 12-20%
squalene, 26-30% wax esters, 3—6% cholesterol esters, and
1.5-2.5% cholesterol (Fig. 3) (Picardo et al., 2009; Smith &
Thiboutot, 2008). With most logPs > 5 (Aldana et al., 2020),
these compounds are predominantly hydrophobic with little/
no evidence in literature, to the best of our knowledge, of
hydrophilic metabolites in sebum. It should be noted that the
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Fig. 3 Example compounds

present in human sebum of the

different classes: triacylglyc-

erol (TAG), fatty acid (FA), HyC
squalene, wax ester (WE), cho-

lesterol, and cholesterol ester

1-Palmitoyl-2-oleoyl-3-linoleoyl-rac-glycerol (CgsH

HO'
0] Cholesterol (C,;H,:0)

CHj

Cholesteryl stearate (C,5Hg,0,)

Hac/\/\/\/\/\/\/\/\)LOH

Linoleic acid (C,gH,,0,,FA 18:2)

10006 TAG 52:3)

HiC \/\/\/\/\/\/\/\H/O\/\/\/\/\/\/CHS

sebum composition observed is dependent on the sampling
method used. For instance, it is known that sebaceous tria-
cylglycerols undergo partial hydrolysis into free fatty acids
and diacylglycerols by bacterial lipases; therefore, sampling
before or after this hydrolysis would impact the overall com-
position (Downing et al., 1969; Wertz, 2018). These seba-
ceous lipids are produced through dermal substrate-enzyme
reactions and uptake from blood circulation. The composi-
tion of human sebum differs markedly compared to other
mammalian species (Nikkari, 1974; Picardo et al., 2009;
Smith & Thiboutot, 2008; Stewart et al., 1991).

The most characteristic products of sebum are squalene
and wax esters. They are almost exclusively found in sebum,
although small amounts of them have been detected in saliva
(Brasser et al., 2011; Picardo et al., 2009). Squalene is an
intermediate in the biosynthetic pathway producing choles-
terol. In the sebaceous gland, the completion of this process
is halted as squalene does not undergo further transformation
into lanosterol. Due to the uniqueness of its accumulation
in sebum, it may be considered a marker for sebocyte dif-
ferentiation and thus for sebum production (Picardo et al.,
2009). It is worth noting that squalene has been shown to
rapidly oxidise due to a lack of dietary vitamin E or through
exposure to sunlight, cigarette smoke, dust, ozone, and other
air pollutants (Curpen et al., 2020; Pham et al., 2015; Ste-
faniak et al., 2010).

Many studies have shown that sebum composition and
production vary between individuals (“inter-variability”)
but are relatively constant within individuals (“intra-vari-
ability”’) (Downing et al., 1969; Green et al., 1984). Dif-
ferences in sebum composition have been attributed to
(but not limited to) sex, age, ethnicity, diet, and hormones
(Table 1). Sebum profiles also change depending on what
anatomical site it is sampled from due to the different vola-
tile compounds, bacterial, fungal, and viral colonies present
(Table 1). This literature review showed a lack of studies of
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O Lauryl palmitoleate (C,;H;,0,;WE 28:1)

the effects of circadian rhythm, menstrual cycle, seasonal
variation, and fasting on sebum composition (Table 1).
The degree to which all of these factors influence sebum is
poorly understood and requires additional work to under-
stand the baseline sebum to allow any meaningful clinical
interpretation of results.

Studying the correlation between sebum and blood could
prove invaluable in physiological understanding and bio-
marker discovery. The sebaceous glands express the fatty
acid transport protein (FATP) and low-density lipoprotein
(LDL) receptors that are responsible for the uptake of lipids
from blood circulation for the hypothesised elimination via
sebum secretion (Fig. 2) (Dumas & Ntambi, 2018; Shetage
et al., 2018; Villas-Bdas et al., 2011; Zhou et al., 2012). This
lipid elimination is supported by several experimental obser-
vations; for instance, a diet high in fats and carbohydrates
causes an increase in sebum production (Kim et al., 2010;
Macdonald, 1964; Pochi et al., 1970; Wilkinson, 1966),
the incorporation of free fatty acids into sebum is reduced
by 20% at the beginning of fasting (Downing et al., 1972;
Pochi et al., 1970), and that inhibition of sebum production
using isotretinoin resulted in significantly increased plasma
triacylglycerol and cholesterol levels (Bershad et al., 1985;
Zech et al., 1983). This suggests that there is the potential
that biomarker trends previously identified in blood could
be similarly observed in sebum.

3 Current sampling and extraction
procedures

Sebum sampling has a long history with early scientific stud-
ies in circa 1910 extracting skin lipids from long johns worn
for extended periods (Strauss & Pochi, 1961). Since then,
a multitude of non-invasive sebum sampling techniques
have been developed with their relative advantages and
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Table3 A summary of the main challenges associated with skin surface sampling and author-recommended mitigation strategies that can be

performed to control them

Challenges with  Potential mitigation strategies

skin surface

sampling Choice and

Establishment
of endogenous

internal markers

Strict control of
sampling condi-
tions

technique

development of
sebum sampling

Collection
of repli-
cates

Better under-
standing of
downstream
sampling biases

Collection of
metadata through
questionnaires
and medical
history

Baselin-
ing sebum
studies

Surface rough- v v
ness that can
impact the
adhesion of
the sampling
medium

Variable contribu- v/ v v
tions from
the stratum
corneum (cor-
neocyte debris
and proteolytic
products of
filaggrin), seba-
ceous glands
(sebum), and
sweat glands
(sweat) to the
samples

Intra- and inter- v/ v
variability in
sebum composi-
tion and sebum
production rate

Exogenous con- vV v
tamination from
cosmetics, dirt,
and pollutants
Sampling and v v
extraction bias
introduced
during sample
preparation
Reproducibility v/ v v
and repeatabil-
ity of sample
collection

disadvantages (Table 2). Sebum is sampled either directly
from the skin or from the headspace over the skin. For
untargeted profiling, it is ideal for the sampling process to
be chemically unselective to collect the largest number of
analytes and generate the most comprehensive sample signa-
ture. Unfortunately, due to the diversity in structure, polarity,
and volatility of the compounds present, this is not possible
using a single sampling method and these sampling biases
should be considered in the study design and the interpreta-
tion of results.

Currently, there is no standardised sampling and extrac-
tion approach for sebum. There is a growing demand for the

harmonisation of analytical methods across research groups
to establish quality standards and enable reliable interlabora-
tory comparison of results. The challenges associated with
sebum sampling (and by extension skin surface sampling)
have been summarised in Table 3, where the main areas
requiring substantial work are sampling reproducibility,
standardisation, and understanding population-scale bio-
logical variability (discussed previously). Reproducibility
is typically seen in research articles through the application
of strict in-house sampling conditions by experts, e.g., room
temperature, relative humidity, sampling pressure, sampling
area, time, and washing, and replicate determinations that
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allow variation assessments, such as coefficients of varia-
tion (%CV).

As sebum is lipid-rich, the standardisation of analyte
responses post-collection is typically performed through the
use of commercially available lipid standards from AVANTI
Polar Lipids through the LIPID MAPS initiative to aid quan-
tification and identification (Wenk, 2010); however, a key
problem that requires addressing is the standardisation of
the sebum collection itself. The inter-variability of sebum
production rates means that every individual over a given
time and condition will have differing amounts of sebum
on their skin. Due to the small volumes collected and the
potential simultaneous loss of sampling medium on skin
contact, gravimetric determinations of sebum are difficult
and most modern studies do not collect this information.
This means that sample volume remains uncontrolled during
sampling unlike other biofluids, such as blood, urine, or bile.
An innovative solution to this would be establishing internal
standard markers within sebum that could standardise col-
lection. Key requirements of this molecular marker include
specificity to sebum, representation across all populations,
stability, and detectability on chosen analytical platforms.
To further understand the relative contributions from the
sebaceous glands (sebum), sweat glands (sweat), and stra-
tum corneum (corneocyte debris and proteolytic products of
filaggrin) for a given sample, internal markers for each can
be established. Two papers by Ludovici et al. and Michael-
Jubeli et al. explore the uses of squalene and free fatty acids
for sebum markers, and cholesterol and cholesterol sulfate
for stratum corneum (Ludovici et al., 2018; Michael-Jubeli
et al., 2011). For clinical research, the use of these mark-
ers could also minimise false negatives as shown by Ismail
et al., who used endogenous sweat markers to verify the
suitability of fingerprint sweat collection for tuberculosis
treatment adherence purposes (Ismail et al., 2022).

The standardiszation of sebum collection would aid the
next steps of baselining sebum, addressing sampling con-
sistency issues, and accounting for exogenous contamina-
tion. This is because it would enable the following: (1) nor-
malisation of analyte responses that could better intra- and
inter-variability, (2) quantification of metabolites (absolute
or semi-quantitative), and (3) assessments of sample and
instrument suitability post-analysis, i.e., sensitivity and
quality of collection. Sampling and sample quality would
become more controlled, which as a result, would give
researchers more confidence in their output data and con-
clusions, particularly for evaluating any outlier results.

The subsequent work required for baselining sebum and
addressing exogenous contamination (of all forms, e.g.,
environmental, cosmetics, dirt, and chemicals) should not
be understated as they both require data gathering and/or
sharing activities of big data at population scales. This is an
area that requires community effort once sebum analyses are

@ Springer

more standardised and harmonised to allow interlaboratory
collaborative activities, such as the creation of a universal
sebum standard and/or a common sebum database. This
would help sebum catch up to the level of understanding we
have for biofluids such as plasma and serum.

Performing this literature review revealed polymeric
films to be the most popular sebum sampling technique,
accounting for 25.0% of the total number of publications
presented inTable 2.> The merits of this sampling technique
include chemical stability, point-of-care potential, and wide
sebaceous analyte coverage; however, it is expensive and
its incompatibility with some solvents, such as chloroform
and dichloromethane, limits the downstream extraction of
the sample. Considering sampling speed, cost, and analyte
coverage (Table 2), using silica plates and cotton tools could
be preferable and can be purchased for less than 1/10 of the
cost of commercially available polymeric film. The material
integrity and/or pre-washing and activation steps required
for absorbent papers, sponges, hydrogels, and gauze make
these techniques laborious and less robust in practice (Clarys
& Barel, 1995; Cunliffe & Shuster, 1969; Jones et al., 1951;
Shetage et al., 2014). Headspace sampling techniques are
susceptible to environmental contamination, requiring either
cumbersome housing or more rigorous data interpretation.

The non-invasive and superficial nature of sebum sam-
pling makes it suited for both home sampling and wear-
able technology. Home sampling using pre-packaged Kkits
allows individuals to take a sample at any location, send it
to a laboratory for testing, and then receive a result in the
next couple of days. Home sampling is not only convenient,
easier, and more accessible for patients, but it also provides
major cost savings by increasing the testing capacity with-
out major investments in existing services and removing the
need of trained personnel to perform the sampling. Prior to
this, test manufacturers would need to adequately demon-
strate the reliability, stability, and robustness of their chosen
sebum biomarkers; their quality should be independent of
confounding factors, such as user error, environmental expo-
sure, and variable transport times at different storage condi-
tions. Here, a sebum internal marker could help normalise
and check the eligibility of samples in terms of sensitivity
and make-up upon receipt. Clear instructions and secure
packaging should minimise contamination. Despite this, the
improved uptake and patient engagement with home sam-
pling tests should outweigh any performance risks given that

2 The references in Table 2 are, to the best of our ability, exhaustive
of all sebum or skin metabolomics analyses (not including sweat or
stratum corneum analysis) found across the Web of Science, Scopus,
and Google Scholar search engines (12th January 2023). A percent-
age was calculated by dividing the number of publications for poly-
meric film by the total number of publications of all skin analyses
reported in Table 2, then multiplying by 100.
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clinical performance has been assessed (Tidy et al., 2018).
The power of home sampling has been exemplified through
both the COVID-19 pandemic (Guglielmi, 2020; Humphreys
et al., 2022) and HIV testing (Johnson et al., 2017; Krause
et al., 2013; McGuire et al., 2021; WHO, 2020). Sampling
via commercially available cotton tools, tapes, and poly-
meric films are readily adaptable for home sampling. Table 2
shows some ‘wearable’ sampling approaches, such as nylon
socks and Teflon sleeves, that have been successful in their
target applications, but potentially aspire to future wearable
technology. With an increased understanding of sebum and
its components, real-time sampling and health monitoring
is plausible.

After the sample has been collected, it typically under-
goes pre-treatment before analysis, which will introduce
further bias. The combined sample collection and its sub-
sequent extraction is a bottleneck in metabolomics due to
the large structural diversities of metabolites in biological
matrices. Solvent extractions are the gold standard in metab-
olomics sample pre-treatment. Most of the metabolomics lit-
erature uses soluble organic solvents or biphasic liquid-lig-
uid extractions that rely on analyte partitioning between an
aqueous and organic phase. The most widely used solvent
extraction systems are the biphasic chloroform/methanol/
water mixtures, i.e., the “Folch” (Folch et al., 1957) and
“Bligh and Dyer” (Bligh & Dyer, 1959) protocols; how-
ever, these classical methods are being challenged by new
liquid extraction methods, such as the biphasic “Matyash”
(Matyash et al., 2008) or “BUME” (Lofgren et al., 2012)
protocols, or alternatively monophasic alcoholic solutions
using isopropanol, methanol, or ethanol, due to reduced tox-
icity, costs, and ease of use (Gil et al., 2018; Pellegrino et al.,
2014; Sarafian et al., 2014; Satomi et al., 2017; Wong et al.,
2019). Further, monophasic methods have greater automa-
tion potential, but precaution needs to be taken to avoid pre-
cipitation of lipid classes, such as triacylglycerols (Kofeler
et al., 2021). Alternative popular pre-treatment approaches
that are more targeted include derivatisation, e.g., esteri-
fication, silylation, or charge-switch derivatisation, and
solid-phase extraction (SPE). Subsequently, the final treated
extract is typically subjected to evaporation and reconsti-
tution prior to the introduction to the analytical platform.
Modern methods typically employ liquid chromatography or
gas chromatography coupled to high-resolution mass spec-
trometry (HRMS) for untargeted profiling or tandem mass
spectrometry (MS/MS) for targeted quantitative analyses.
A review of the research articles in Table 2 published after
1999 (n=60) reveal gas chromatography-mass spectrometry
(GC-MS) and reverse-phase liquid chromatography-mass
spectrometry (RPLC-MS) to be most popular techniques for
sebum analysis, accounting for 43.3% and 23.3% of total
publications, respectively. Further discussion of the down-
stream metabolomics workflow is out of scope of this review

but has been reviewed elsewhere (Alonso et al., 2015; Cui
et al., 2018; Dudzik et al., 2018; Schrimpe-Rutledge et al.,
2016).

An emerging area that avoids the sampling biases
imposed by either the sebum sampling technique or the labo-
rious sample pre-treatment mentioned above is ambient ioni-
sation mass spectrometry (AIMS) with/without direct skin
analysis. The use of AIMS directly after sample collection
by media (Table 2), such as swabs (Bouslimani et al., 2015;
Sarkar et al., 2021) or filter paper (Motoyama & Kihara,
2017), skips the need for solvent extraction; whereas, direct
skin analysis, using a harmless ionisation technique for skin,
allows real-time in-situ analysis of sebum, potentially cap-
turing metabolites in their native, localised environments
to low detection limits (Cho et al., 2021; Cooks et al.,
2015; Huang et al., 2010, 2011). Both AIMS approaches
allow a high sample throughput (<5 s from collection to
data generation (Cho et al., 2021; Zhao et al., 2008) but do
not allow molecular separation prior to detection. Consid-
ering the successes of AIMS for biological skin analyses
in forensic science (Justes et al., 2007; Zhao et al., 2008),
drug development (Cho et al., 2022; Katona et al., 2011),
and cosmetic science (Motoyama & Kihara 2017), as well
as continuous developments regarding probes (Fatou et al.,
2018; Meisenbichler et al., 2020; Shamraeva et al., 2022)
and portable mass spectrometers (Burns et al., 2022; Hen-
dricks et al., 2014; Li et al., 2014; Mulligan et al., 2006),
this is an exciting area to watch. For more information, the
following reviews are recommended (Feider et al., 2019;
Kuo et al., 2020).

4 Applications

As sebum coats the skin surface, it continuously interacts
with the host and the external environment. This makes it a
versatile yet complicated biofluid that simultaneously col-
lects information from multiple angles: (1) a biological snap-
shot regarding one’s physiological state inside the body via
endogenous metabolites, (2) impacts of exogenous chemi-
cals inside the body via “semi-endogenous” metabolites,
and (3) general exposure to exogenous chemicals outside the
body via exogenous metabolites. Examples across a variety
of clinical activities, such as disease diagnostics, treatment
monitoring, forensics, and environmental monitoring, are
presented in Table 4.

Due to the interface between sebum and blood circula-
tion, sebum analysis has a vast untapped potential for non-
invasive biomarker discovery. The identification of a sin-
gle, unique biomarker specific to a disease is unlikely, and
therefore, it is more common to diagnose using a combina-
tion of compounds in the form of a fingerprint. For exam-
ple, by swabbing with medical gauze on the upper back,
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a ‘compound biomarker panel’ of eicosane, hippuric acid,
octadecanal, and perillic aldehyde discriminated Parkinson’s
patients from healthy controls using GC-MS (Trivedi et al.,
2019). Currently, Parkinson’s disease lacks a clear objec-
tive diagnostic test where it relies on a medical history and
physical examination, so this breakthrough study highlights
the potential to shift to earlier and more accurate detection.
Another study concerning malaria that used Teflon sleeves
to collect arm and foot VOCs identified biomarker panels
of <22 VOCs using GC-MS to differentiate symptomatic
and asymptomatic malaria infection from healthy controls
(Moraes et al., 2018). This outperformed the currently avail-
able rapid diagnostic tests as it stratified malaria infection to
a higher sensitivity, whereby low-level infections would be
missed by microscopy. For some diseases, such as COVID-
19 (Delafiori et al., 2021; Spick et al., 2021) and leprosy
(Lima et al., 2015), biomarkers have been identified in
sebum that could replace the swabbing and biopsies cur-
rently employed, respectively.

Sebomics has also been applied for drug monitoring and
forensic purposes. For instance, Joseph et al. collected fore-
head samples using polymeric film to study the pharmacoki-
netics of cocaine and codeine in sebum on GC-MS (Joseph
et al., 1998). Here, cocaine and codeine administered via
subcutaneous injection and oral administration, respectively,
were shown to be detected in sebum only 1-2 h after dosing
and continued to be detected for 1-2 days. The presence of
both drugs in sebum at this rate is a surprising result given
that the sebum secretion process takes weeks, highlighting
the missing understanding of how analytes transfer across
biological matrices, i.e., sebum, sweat, and blood. Another
group used agarose hydrogel micro patch-arrayed pads
analysed by AIMS to study the spatiotemporal dispersion
of topical drugs in vivo, using nicotine and scopolamine
for proof of concept (Dutkiewicz et al., 2015). Kintz et al.
detected cannabinoids in impaired drivers using a cotton pad
spiked with water/isopropanol (1:1) on their foreheads with
GC-MS, highlighting a potential to move away from urine
testing that has an unsuitably long window (several days) for
the retrospective detection of illicit drugs to potential rapid
roadside testing (Kintz et al., 2000).

An in vitro study using artificial sebum on pig skin con-
firmed that sebum could theoretically trap organic chemi-
cal vapours in vivo after topical exposure (Wakefield et al.,
2008). Additionally, Wakefield et al. have demonstrated
through an in vitro study using artificial sebum that sebum
uptakes both benzene and methanol upon vapour expo-
sure (Wakefield et al., 2008). This is suspected to occur
through the preferential partitioning of lipophilic environ-
mental chemicals from nature into sebum and therefore,
sebum could potentially be used as a human biomonitor-
ing matrix. Misra et al. performed multi-omics involving
metabolomics by tape stripping women’s cheeks across two

Chinese cities of different pollution levels to investigate the
effects of environmental pollution on metabolic pathways
using RPLC-MS and HILIC-MS. Interestingly, a possi-
ble metabolite linked to the air pollutant caprolactam was
found in the skin of women exposed to higher pollution lev-
els (Misra et al., 2021), potentially demonstrating sebum’s
absorptive properties towards exogenous chemicals. Alter-
natively, by using headspace-trapping technologies that limit
environmental exposure as to create a well-controlled sebum
sampling environment, such as passive flux samplers and
housed SPME fibres, the metabolic products of skin secre-
tions due to exogenous chemical exposure can be studied.
Sekine et al. detected numerous smoking-related metabolites
in human skin gas compositions of non-smokers exposed to
second-hand smoking by GC-MS using passive flux sam-
plers (Sekine et al. 2018).

5 Concluding remarks and future
perspectives

Metabolomics analyses have a critical role in clinical diag-
nostics. The reflection of molecular phenotype of humans for
disease and health is captured by the measurements of small
molecules found in biofluids. The value of a biofluid can be
determined by how easy it is to collect and process, what
information it holds, how that information can be under-
stood, and what it tells us about the molecular make-up. As
shown by its applications across clinical, forensic, and envi-
ronmental studies, the versatility of sebum for metabolomics
lends itself to improving current practices regarding clinical
observations and human biomonitoring. Being influenced by
both endogenous and exogenous processes, sebum offers a
comprehensive, unique fingerprint of an individual’s physi-
ology and environmental exposure.

As a novel biofluid, the major challenge currently limit-
ing its wider application is the lack of standardisation of the
sebum collection itself. A lack of quantitative information
for the volume collected hinders the meaningful quantita-
tion of the metabolites measured. Consequently, any com-
prehensive analyte response normalisation to account for
errors and any post-analysis sample suitability assessments
are lacking. Here, the establishment of endogenous internal
markers, such as squalene or select fatty acids for sebum, is
a possible solution. This does not slow down the progress of
qualitative or semi-quantitative sebum studies, but impedes
the progress of quantitative studies, resulting in limited
gains addressing the other difficulties associated with skin
surface sampling, such as biological variability, sampling
consistency, variable contributions from stratum corneum,
sebaceous glands, and sweat glands, and finally exogenous
contamination. This understanding about sebum and its con-
trolled sampling is mandatory for any future translation of
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a sebum-based metabolomics workflow to clinical settings,
where the sampling procedures are typically distanced from
the method developers, i.e., going from in-house metabo-
lomics experts to healthcare professionals, necessitating
robust and reliable end-to-end workflows.

Sebum has a huge potential beyond skin research due to
currently available metabolomics resources. Understanding
how one’s physiological state affects or reflects on the skin
metabolome via the sebaceous glands itself or by interac-
tions with sebaceous secretion, will open doors for simpler
biomonitoring. Sebum acting as a sink to environmental
metabolites has applications awaiting to be explored, such
as biosecurity, cross-border migration, localised exposure to
harmful substances, and high-throughput population screen-
ing. These applications will be possible with rapid advances
in volatile headspace and lipidomics method development as
well as the ability of the metabolomics community to anno-
tate unknown species better. A key issue with skin surface
analysis that remains unsolved is attributing the source of
the metabolites found on the skin surface before meaningful
biological interpretation.

With the global movement towards home sampling and
digital healthcare, particularly emphasised through the
COVID-19 pandemic, sebum can accommodate this shift
due to its non-invasive, superficial, and readily available
nature. Further development in wearable sebum technology,
e.g., smart/fitness trackers, is considered likely that could
revolutionise not only health and exposure monitoring, but
also doctor-patient relationships by providing 24/7 acces-
sible digital data. The implications of this shift to sebum
include (but are not limited to) improved remote patient
monitoring and personalised care in terms of wearable
technology, and increased cost savings, resource efficiency,
and patient accessibility by home sampling kits. While
laboratory-based analysis is reliable and accurate, with
advancement in wearable technologies, biosensors tailored
to health monitoring by detection and quantitation of sebum
metabolites to extrapolate prognostics are not too distant. We
anticipate that developments in this exciting area will deliver
novel clinical applications over the next decade.
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