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Abstract Climate change and degradation of ecosystem services functioning may

threaten the ability of current agricultural systems to keep up with demand for

adequate and inexpensive food and for clean water, waste disposal and other

broader ecosystem services. Human health is likely to be affected by changes

occurring across multiple geographic and time scales. Impacts range from

increasing transmissibility and the range of vectorborne diseases, such as malaria

and yellow fever, to undermining nutrition through deleterious impacts on food

production and concomitant increases in food prices. This paper uses case studies to

describe methods that make use of satellite remote sensing and Demographic and

Health Survey data to better understand individual-level human health and nutrition

outcomes. By bringing these diverse datasets together, the connection between
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environmental change and human health outcomes can be described through new

research and analysis.

Keywords DHS � NDVI � Environment � Health � Survey � Nutrition

Introduction

The past decade has seen a widespread acknowledgment of the profound impact

human activities have had on ecosystems and environmental functioning. These

impacts have been documented across many ecosystems and continents, and affect

nearly all areas of the earth, including those not inhabited by people (Steffen et al.

2011). Ecosystem services, or the benefits provided to humankind by the resources and

processes supplied when ecosystems function properly, have long been recognized as

critical to human survival. Ecosystems provide human populations with basic needs

such as clean drinking water, food, fuel, medicinal plants and buffering from natural

disasters. However, rapid changes in climate, land cover and plant and animal

community composition can affect the ability of an ecosystem to supply these

services; this ability is expected to be further strained in the future (Reid et al. 2005).

The loss of ecosystem services poses a considerable immediate and long-term

threat to achieving the millennium development goals of reducing poverty, hunger

and disease around the world (Reid et al. 2005). Ecosystem function can change on

both short- and long-time scales, with varying levels of resilience to perturbations

depending on the geographic and climate conditions where the ecosystem exists.

Altered ecosystem functioning may result in a reduction in the ability of human

communities to maintain agricultural systems, obtain sufficient or potable water, or

access affordable sources of energy without substantial technological and financial

investments (Aerts and Honnay 2011). Long-term trends in rainfall and temperature

affect how ecosystems function in the future (Dearing et al. 2012). In the short term,

ecosystems can be affected by extreme events such as fire, droughts, floods and

severe windstorms. These weather events can cause stress on both human and

broader ecosystem functioning and can be either narrowly confined or widespread

(Yu et al. 2003; Zhou et al. 2003).

Changes in climate and in broader ecosystem functioning may threaten the ability

of current agricultural systems to keep pace with growth in population and overall

demand for food, fiber and—increasingly—fuel (Dangour et al. 2012). In

developing countries, where poor people rely on locally produced food for the

majority of their caloric intake, shifts in climate and weather patterns can

dramatically reduce agricultural yields (Monfreda et al. 2008) and may have

widespread impacts on local economies (Dinar et al. 2008). Reductions in

agricultural productivity reduce overall economic activity and cause widespread

hardship due to the broad importance of agriculture in these countries. Reductions in

food availability and increases in local food prices negatively affect short-term food

security in many regions (Brown et al. 2009).

Farming communities are extremely adaptive to changes in climate and natural

resource conditions (Crane et al. 2011). As a result of this adaptation, observed
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changes in environmental conditions, such as those registered by remote sensing,

may not necessarily translate into changes in welfare (Mortimore and Turner 2005).

Nevertheless, identifying management responses to changes in productivity that

allow communities to maintain their health and welfare is a critical step toward

understanding how humans can adapt to a changing environment. Other strategies,

including seasonal migration and reliance on off-farm earnings, can help to maintain

welfare by allowing regions affected by environmental changes to earn incomes or

import goods from unaffected regions (Rain 1999). By exploring and measuring the

relationships between observed welfare and environmental dynamics, including

unexpected relationships, we can help improve policy responses.

Human health is also likely to be affected by climate and ecosystem

transformation occurring across multiple geographic and time scales (Kovats and

Haines 2005). These impacts range from increasing transmissibility and range of

vectorborne diseases, such as malaria and yellow fever, to undermining nutrition

through deleterious impacts on food production and concomitant economy-wide

increases in food prices.1

Little is known about how the specific drivers and interactions of climate and

ecosystem change, such as large weather events and other factors, may directly or

indirectly affect human health outcomes. This poor understanding primarily reflects

a lack of appropriate data with which to simultaneously measure climate and

ecosystem change on the one hand, and human health and well-being on the other

(Patz et al. 2004). However, recent advances in the collection and use of geospatial

data provide an opportunity to explore these linkages by bringing complementary

datasets together.

This paper describes methods that make use of satellite remote sensing and

population and health survey data, specifically the Demographic and Health Survey

(DHS), to better understand drivers of individual-level nutrition outcomes. To

illustrate how remotely sensed data can be linked to observations on human health

and nutrition, we present four case studies based on recent research from Africa and

Asia. Information on how ecosystems are changing and the short-term weather

events that are influencing long-term ecosystem functioning can be obtained from

satellite remote sensing information (Le Dizès et al. 2003; Nemani et al. 2003;

Potter et al. 2003; Zhou et al. 2003). These data provide measures of current

environmental status, as well as indicators of changes over time. In terms of human

well-being outcomes of interest, the DHS, implemented by ICF International,

provides a wide variety of parameters on the health and nutritional status of

individuals, including particularly vulnerable populations such as young children

and women of child-bearing age. By linking individual, household and community

information reported in these surveys to environmental drivers, including remotely

sensed information, we can provide new and improved analyses that may permit

researchers and policy makers to better understand the impacts of changes in

ecosystem functioning on specific human-focused outcomes, as well as the

importance of broader weather and climate events for human well-being.

1 Ecologically coupled diseases and economy-wide impacts are important, but beyond the scope of

analysis and discussion in this paper, which focuses on local changes.
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The objective of this paper is to describe a methodological approach to linking

satellite remote sensing data and DHS population and health data. We discuss key

conceptual and data-related considerations, and then present four case studies of

recent analyses that have used these methods to examine research questions at the

nexus of environmental/climate change and human health, nutrition and well-being.

We conclude by summarizing the benefits and challenges that come with using these

two different types of data and suggest avenues for future research.

Literature review and conceptual framework

Understanding the connections between human health and environmental change

requires hypotheses that link landscape and geophysical characteristics with

population outcomes and health at relevant spatial and temporal scales (Axinn and

Ghimire 2011). Previous work has focused on connecting land use and land cover

information derived from remote sensing to household-derived decisions in the few

locations where household surveys have been conducted. This broad literature

focuses on household decision making and often uses household surveys conducted

by the authors themselves (Chowdhury 2007; Fox et al. 2004; Geoghegan et al.

1998). These and other studies have explored connections between household

characteristics and land use, but do not focus specifically on health or health

outcomes resulting from environmental change or climate variability. Here, we are

interested in asking specific questions about health and nutrition outcomes. These

include nutritional status, morbidity and mortality. We also explore how researchers

might extend the connections we observe locally to entire countries or regions. This

paper thus contributes to the literature by providing specific methods that can be

used to link geographic information, especially remotely sensed information, to data

on health, nutrition and demographic processes in communities and households.

Figure 1 shows short- and long-term interactions between environmental change

and health. Food availability and access, mediated by nutrition levels and disease

burden, are determinants of health and nutrition outcomes. In the short term,

temperature, precipitation and extreme events influence food availability. The

impact of agriculturally relevant weather is mediated by such factors as whether an

individual or household purchases locally or regionally grown food, or food grown

in geographically distant locations and delivered via national or international food

markets and systems. Farm households that rely primarily on the food they produce

are extremely vulnerable to weather-related production declines. Farm households

that produce food for the market are affected by weather through impacts on

income. Those that produce both for own consumption and the market are affected

via both channels. Social safety nets provided by families, communities, national

governments and aid agencies mediate the impact of changing food and income

availability on health and nutrition outcomes. In the long run, ecosystem functioning

and climate will affect health and nutrition outcomes through changing the

resilience and productivity of agricultural and livestock systems, the supply of clean

drinking water and safe decomposition of wastes. Interactions between long-term

environmental change and short-term agricultural impacts are complex and
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conditioned by environmental and market characteristics, local population changes

and the local environmental impacts of specific household livelihood strategies.

The pathways by which changes in the climate precipitate changes in ecosystems

and human health and well-being tend to travel through food production and

consumption. We therefore focus our discussion on two food security-related

components of this framework: agricultural production and ecosystem services

provision.

Agriculture and health

Agriculture is primarily focused on producing food for human consumption and

feed for livestock, but it also generates a range of other intermediate inputs such as

cotton, silk, wool, rubber, oil, fuel and medical drugs (Dangour et al. 2012). The

agricultural sector is an important source of employment, earnings and foreign

exchange, particularly in low-income countries where up to 80 % of the total

workforce may be engaged in agriculture (WorldBank 2013). When large-scale

reductions in yields occur in any one season, the impact can be felt not only by

farmers, but also by wage laborers, truck drivers, market workers and urban

consumers. Capturing variation in agricultural production to facilitate understanding

of the scope of these impacts requires spatially and temporally explicit information

and a clear understanding of how changes in agricultural activity affect population

health and nutrition.

Fig. 1 Conceptual framework linking short- and long-term observable parameters to human health and
nutrition outcomes
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Ecosystem services provision and health

Changes in the broader natural resource base, such as intact forests with a diverse

catalog of animal and plant life, clean water and high-quality pastures for livestock,

contribute in important ways to human health outcomes. Forests provide a broad

range of resources that contribute to improved nutrition outcomes. These include

wild animal meat to augment protein and fat in the diets of the rural poor (Golden

et al. 2011), diversity of diet and the consumption of vitamin A containing foods

(Johnson et al. 2013), and improved clean water sources, resulting in reduced

diarrheal disease. Diarrheal diseases are often food- or waterborne and have acute

impacts on child nutritional status. Diarrhea is the second leading cause of mortality

in children under 5 years of age and is responsible for the deaths of 1.5 million

children annually (WHO 2009). Children who are malnourished are mostly at risk of

life-threatening diarrhea, and children with diarrhea are more likely to suffer

malnutrition as a result (Young and Jaspars 2006).

Another way in which environmental change affects household food security is

by altering the supply and quality of heating and cooking fuels. Between 2 and 3

billion people, or roughly 40 % of the world’s population are completely dependent

on biomass as their primary fuel for cooking and heating (Openshaw 2011; WHO

2006a). East Africa is particularly dependent on biomass fuels. Rapid land use

change is reducing the supply of high-quality biomass in many areas, and

particularly in parts of Sub-Saharan Africa. These shortages cause households to

shift collection away from forests toward locations such as farms and fields. These

sources typically yield much lower per hectare quantities of biomass. As Jagger and

Shively (2014) demonstrate for Uganda, such changes in the supply of locally

available biomass fuels have implications for household fuel use and the exposure

of women and children to harmful gasses and particulate matter associated with the

incomplete combustion of low-quality biomass. These changes can have indirect

effects on how women and children use their time, the number of meals that are

cooked and the types of foods that are prepared. All can affect overall food security

as well as health and nutrition outcomes.

Livestock and pastures also are important contributors to nutrition outcomes

(Smith et al. 2013). Climate-related degradation of pastures, for example a shift

from high-quality, perennial forbs and grasses to inedible plants that cannot support

many animals, is a threat to human health outcomes and the livelihoods of pastoral

peoples (De Bruijn and van Dijk 2003; Kahsay 2003). Reliance on protein and

income-generating resources from livestock mean that severe weather shocks can

cause widespread loss of income for the households who own them (Delgado et al.

1999). These same shocks can further degrade already stressed pastoral ecosystems,

resulting in the collapse of their ability to support high numbers of animals (Thiam

2003; Wessels et al. 2004).

Livelihoods as a logical link between environmental change and health

Understanding how individuals and households earn their livelihoods is important

for constructing appropriate hypotheses regarding the potential impact of
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environmental change on human health and nutrition. Additionally, local geogra-

phy, which affects both the options for production (via climate, soils, etc.) and

options for marketing and trade (via roads, proximity to urban centers, etc.), affects

household consumption. Items produced and collected by households may be

directly consumed, traded/exchanged for other items through barter or sold in the

market or through marketing chains. Consumption options are constrained both by

availability, i.e., what can be produced or purchased in local markets, and by

household purchasing power (FEG 2013). Understanding the range of household

livelihood strategies allows a better interpretation of the potential impact of

environmental change on a region. As an example, if the population of a region is

primarily employed in the manufacturing sector, local changes in rainfall patterns

are unlikely to have the same direct impacts on the health and nutrition of the

children of wage earners as on the children of subsistence or semi-subsistence

farmers.

Livelihood zones, which can be defined operationally and mapped as regions

with similar geography, natural and man-made assets, methods of production, and

patterns of marketing and trade of goods and services represent an important

mediator of the relationship between environmental conditions and human

development outcomes.2 Similarly, appropriate economic information is necessary

when hypothesizing about and measuring relationships between environmental

dynamics and health outcomes. If the price of a primary cash crop has declined

dramatically in a location where a child resides, or the price of basic foodstuffs has

increased, this information ideally should be brought into an analysis of child

nutrition outcomes since such changes may have important effects on local food

availability and food consumption. Understanding how the broader economic

situation interacts with the environment is central to appropriately interpreting the

impact of environmental change on human health outcomes (Brown et al. 2009).

However, despite the importance of the characteristics and strength of a local or

national economy, specific household-level data on economic activity, income and

expenditures are typically more relevant for child nutrition outcomes.

Data

Connecting environmental change to human health impacts requires locally specific,

dated and geolocated datasets that can be linked quantitatively. Proxies and

indicators of environmental features or changes, and health and population

characteristics, can be used to identify broad patterns, trends and potential risks.

However, isolating small-scale linkages, e.g., at individual, household and

2 The USAID Famine Early Warning Systems Network and the UN World food program have funded

livelihood zone mapping for the most food-insecure regions. These maps are produced using expert

elicitation and knowledge of a region; production involves six steps, beginning with a general

disaggregating or zoning of geographic areas according to similar livelihood patterns and access to

markets. Step two involves classifying households into common wealth groups and asset ownership. Once

the wealth groups are determined, focus group interviews are conducted with members of households in

each group to estimate food access, income and expenditures FEWSNET (2009).
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community levels, requires specific, localized information in which specific

parameters of interest are provided with accurate latitude–longitude information.

In this section, we describe the DHS and the geospatial and remotely sensed data

that have been used thus far to examine the relationship between environmental

change and human health and nutrition outcomes.

Demographic and Health Surveys (DHSs)

The DHS are the gold standard source of comparative quantitative data on

population, health and nutrition indicators across developing countries (see Table 1

for a comprehensive list of topics covered by the DHS). They are nationally and

sub-nationally representative household surveys with large sample sizes that

provide detailed information on these topics at a point in time, obtained by

interviewing eligible respondents in selected households. Data collection typically

focuses on women aged 15–49, men aged 15–59 and children below 5 years of age.

The datasets also include information on household and other socioeconomic

characteristics.

Table 1 Standard population and health topics covered in the Demographic and Health Surveys

Questionnaire topics Reported indicators

Anemia Prevalence of anemia, iron supplementation

Child health Vaccinations, childhood illness, newborn care

Domestic violence Prevalence of domestic violence and consequences of violence

Education Literacy, attendance, highest level achieved

Environmental health Water, sanitation, cooking fuel

Family planning knowledge and use of contraceptives, unmet need for family planning

Female genital mutilation Prevalence of and attitudes about female genital mutilation

Fertility and fertility preference Total fertility rate, desired family size, marriage, sexual activity

HIV/AIDS knowledge,

attitudes and behavior

Knowledge of HIV prevention, misconceptions, stigma, higher-risk

sexual behavior, previous HIV testing

HIV serostatus Prevalence of HIV by demographic and behavioral characteristics

Household and respondent

characteristics

Electricity, housing quality, possessions, education and school

attendance, age, sex and employment

Infant and child mortality Infant, child and under five mortality rates

Malaria Ownership and use of mosquito nets, prevalence and treatment of fever,

indoor residual spraying for mosquitoes, rapid diagnostic testing and

parasitaemia

Maternal health Antenatal, delivery and postnatal care

Maternal mortality Maternal mortality ratio

Nutrition Child feeding practices, vitamin supplementation, anthropometry and

salt iodization

Tobacco use Tobacco use, exposure to second-hand smoke

Wealth index Asset-based relative wealth index

Women’s empowerment Gender attitudes, women’s decision making power

Other modules Fistula, health expenditures
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Demographic and Health Survey (DHS) data are collected from probability

samples selected using a stratified two-stage cluster design. In the first stage,

enumeration areas (EAs) are drawn generally from the most recent census files. In

the second stage, a sample of 25–35 households is drawn from an updated list of

households within each enumeration area. This group of households constitutes the

sampling cluster.

The DHS does not generally follow specific households or children over time, or

provide historical information on household variables, even though many of the

nutrition-relevant variables of interest in the DHS surveys [such as low height for age

(HAZ), and low weight for height (WHZ)] may be shaped by events that occurred

months or years prior to child measurement. This adds additional value to efforts to

link remotely sensed environmental information to nutrition outcomes. Historical

remotely sensed data provides insight into broader resource availability. If current

conditions differ from historical, this gives an indication of a loss of ecosystem

services due to the human impact on the region or potentially to climate change.

Demographic and Health Survey (DHS) observations are weighted to be

representative at the national level, according to urban/rural residence and at the

provincial level (departments, states). More than 300 DHS surveys have been

implemented in over 90 countries since the inception of the United States Agency

for International Development (USAID)-funded project in 1984 (see Fig. 2).3

Since the mid-1990s, DHS has collected geographic information in most

surveyed countries at the level of the cluster. The latitude and longitude of each

household cluster allows the connection of environmental information to the survey

results. During DHS fieldwork activities, the global position system (GPS)

coordinates for the approximate center of the populated area surveyed (cluster

centroid) are collected using handheld GPS units. During data processing, GPS

coordinates are displaced to ensure that respondent confidentiality is maintained.

The displacement is randomly applied so that rural points contain a minimum of 0

and a maximum of 5 km of positional error. Urban points contain a minimum of 0

and a maximum of 2 km of error. A further 1 % of the rural sample points are offset

a minimum of 0 and a maximum of 10 km. This random shift eliminates the

possibility of calculating exact distances from the cluster to other locations of

interest and requires that a buffer of some type is used when linking the DHS and

landscape/geophysical data.

Geographic and remote sensing information

Biophysical parameters observed with satellite remote sensing can be used to help

verify and test the potential drivers that influence observable human health and

demographic outcomes. Remotely sensed data are direct measures of the light or

electromagnetic radiation reflected from objects on the earth or from the earth itself.

These measures occur on spatial scales of sub-1 m to tens of kilometers and in

temporal resolution from hourly to annual and decadal measures. The direct

measures of reflected energy are interpreted to produce categorical representations

3 More information about the DHS surveys can be found at http://measuredhs.com.
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of the earth surface that represent the type of surface (land or water; soil or

vegetation; etc.) or some phenomena (e.g., rainfall, fire) occurring at the surface.

These categorical representations relate to specific biophysical parameters. For

example, the normalized difference vegetation index (NDVI) is a ratio of the light

reflected in the red portion (RED) of the electromagnetic spectrum versus the light

reflected in the near-infrared (NIR) (Tucker 1979). The equation for NDVI is:

NDVI ¼ NIR� REDð Þ= NIRþ REDð Þ:

The index provides a measure of the greenness of the ground cover, which can be

used as a proxy for the productivity and yield of a cereal crop (Brown and de Beurs

2008; Hicke et al. 2004; Prince et al. 2001; Reynolds et al. 2000; Shuttleworth and

Wallace 2009). In this paper, we use vegetation data from the moderate resolution

imaging spectroradiometer (MODIS), whose data start in 2000, and the advanced

very high resolution radiometer (AVHRR) whose data start in 1981. One can

analyze many consecutive measurements of NDVI over weeks, months or years to

gain an understanding of how vegetation is performing in a region over time.

Representative NDVI data for Nepal are graphed in Fig. 3.

Table 2 lists remote sensing datasets that are currently available and which can

be used to assess various impacts of environmental change and dynamics. These

datasets can be used to assess short- and long-term changes in ecosystem

functioning, including the effect of weather extremes, land cover change and species

shifts due to ecosystem changes.

Fig. 2 Map of the coverage of the Demographic and Health Surveys project
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Table 2 Available remotely sensed and modeled data that provide indicators that could be linked to

human health and nutrition

Sensor Measurements Time Resolution

Observed data

AVHRR Vegetation density/greenness, land

surface temperature

30? years

Daily repeat

1981–2013

1–8 km

MODIS Forest cover (loss/gain), land cover,

vegetation density/greenness, land

surface temp and evapotranspiration

13? years

Daily

2000–2013

250 m–1 km

Landsat Land cover, cover change (forest

loss/gain, desertification)

40? years

16 Day repeat

1970–2013

30–90 m

VIIRS Vegetation density/greenness, land

surface temp

1? year

Daily

2012–2013

375–750 m

Dataset name Measurements Resolution

Modeled data

MERRA Precipitation, temperature, wind,

evapotranspiration and pressure

3 Hourly data 1/2�

NASA land data assimilation Precipitation, temperature, wind,

evapotranspiration and pressure

Daily data 1/4� and 1�

IPCC Predicted climate variables such as

temperature, precipitation, etc.

Monthly data 3�

0
.0

01
.0

02
.0

03

de
ns

ity

0 200 400 600 800 1000

ndvi

Mountains Hills Terai

Fig. 3 Distribution of average NDVI values (91000) for the month of September for the three major
agroecological zones in Nepal, 2000–2011
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For a broader regional view, remotely sensed data can be combined to produce

land cover type (forest, agriculture, desert, etc.). These types of products are usually

produced infrequently (annually to decadally) and give an overview of the region

and the functioning of its ecosystems. The land cover products can be linked to the

other remotely sensed parameters to produce measures of the ‘‘state’’ of a land cover

type. For example, one could extract all of the NDVI values over a certain time

period for areas that are categorized as ‘‘forest.’’ Analyzing this dataset could

provide indicators of forest health or variability in forest health.

Interpreted remotely sensed data products come in two general forms. Discrete

variables provide a specific numeric value in the data file that refers to a specific

condition on the ground (e.g., 1 = forest, 2 = water, etc.). Continuous variables are

defined over a range of values (e.g., 0–100 % forest cover), and values reported in

the data files refer to a gradation along that continuum. The different applications of

these data types will be discussed in detail in the following sections. Remotely

sensed data have historically been used to describe the physical condition of a place

at a specific point in time or over a specific interval. They have also been used to

establish baseline conditions for models of environmental factors such as hydrology

or climate. The data record of biophysical parameters is growing and provides an

opportunity to exploit the increasing length of this data record to provide a measure

of the ecosystem services available in a given region and how those services may be

changing through time. Linking this information to information available in the

DHS on specific individuals provides an opportunity to uncover associations

between environmental conditions and human health and nutrition outcomes.

Other data sources

As mentioned above, specific household-level data are important to understanding

the nutrition outcomes of children. Such data may include the range of economic

activities undertaken by a household, its choice of crops, the overall level of

agricultural production, or income and expenditures. All are typically relevant for

understanding child nutrition outcomes. However, the DHS surveys do not include

very much detail on many of the relevant variables in this category.

Such data are often available through data collection efforts of national

governments or through The World Bank’s Living Standards Measurement Surveys.

Increasingly, such data are being made available with geolocator information, which

introduces opportunities for connecting them, albeit approximately, to DHS and

remotely sensed data. In addition, an increasing number of household panel surveys

are being made available. These surveys, which follow individuals or households

over time at regular intervals, open up the opportunity to measure the changes and

volatility in economic variables, which may be especially relevant to child nutrition.

Discrete and continuous remote sensing variables

Discrete variables represent the earth’s surface with values that can be directly

mapped to a specific feature or type of feature. In most cases, these are land cover

classifications but can also be used for many binary representations such as presence
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or absence of a feature, change or phenomena (such as fire). Land cover

classification of remotely sensed data has been performed since the first earth

observing satellites started collecting data. There are many different schemes

tailored to specific communities but all share a common heritage and utilize various

thresholds of the physical measurements to create boundaries between different

geographic regions. The regions can be forest patches, roads/impervious surfaces,

agriculture fields, water, savanna, etc. The number and type of categories are

defined by the purpose of the map, but there has been effort to centralize this into a

common method through the IGBP (Townshend 1992) and the Land Cover

Classification System (LCCS) a hierarchical system that allows a user to pick how

many levels of distinction she wishes to represent, using a common set of terms to

describe the classes (Bartholome and Belward 2004; DiGregorio and Jansen 2000).

Most of the products generated from remotely sensed data are continuous

variables from the actual direct measurements of radiance and reflectance, to

derived indices such as NDVI or leaf area index (LAI), and finally to land cover

representations such as the vegetation continuous fields (VCFs) from moderate

resolution imaging spectroradiometer (MODIS). Continuous variables work by

defining a range of values that will define a phenomenon (Carroll et al. 2011). The

VCF product is percent cover so the valid range is 0–100 %. Where discrete values

provide definitive boundaries between features, the continuous variables allow for

gradations between features since there are greater numbers of values to assign.

The importance of resolution, scale and time in remote sensing

All remotely sensed data are characterized by three type of resolution: ‘‘spatial,’’

‘‘spectral’’ and ‘‘temporal.’’ These dimensions define the qualities of the data itself.

Spectral resolution describes the wavelengths of the electromagnetic spectrum that

the sensor measured. This can range from sub-visible through thermal, microwave

and radar. Spatial resolution describes the minimum unit on the ground that was

observed by the sensor. 30 m spatial resolution indicates that each measurement

represents an area on the ground that is 30 m on a side or 30 m2. Coarser spatial

resolution (e.g., 250 m, 8,000 m) typically indicates that the measurements

represent more than one type of feature on the ground. For example, data points

with course spatial resolution typically encompass a landscape mosaic that might

include trees, grass, agricultural fields, waterways and roads. Temporal resolution

describes how much time a data point represents and when it was collected. It could

consist of a single image from 1 day, or it might represent the average of a set of

images collected over many days. In most cases, there is a trade-off between spatial

and temporal resolution: sensors with coarser spatial resolution typically see the

same location on earth with greater temporal frequency.

Methods for geographically linking environmental change to health outcomes

Using satellite data to observe environmental threats requires a clear theoretical

connection between the biophysical variable and the environmental threat to human
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health. The following provides a survey of how remote sensing can be used to

estimate environmental changes that are relevant to health impacts.

Linking household clusters to environmental parameters

Linking the cluster centroid to remote sensing information requires a statistical

approach that uses a quantitative assessment of the landscape. The random

displacement of the DHS data prevents direct measures of the exact locations of

households or children, but does not prevent one from identifying more general

relationships between overall conditions, availability of resources and outcomes. In

this case, it is useful to rely on the first law of geography, which states that

‘‘everything is related to everything else, but near things are more related than

distant things’’ (Tobler 1970).

In a recently completed study, the MODIS VCF percent tree cover product

(Hansen et al. 2002, 2003, 2005) was used to characterize the density of forest cover

for DHS sampling clusters in Malawi. The native spatial resolution of the VCF is

250 m, which means that every value is relative to a spot on the ground that is

250 m2. Interannual variability in the remotely sensed data can result in fluctuations

in the output values in the VCF (and all annual remote sensing products). To

account for this, the study collapsed VCF data and used an average value to generate

a single product to link with the DHS observations. Johnson et al. (2013) computed

an average across 3 years of data (2008–2010) to observe close to the sample date of

the DHS to represent the forest cover for the relevant time period represented in the

DHS. This method is potentially more robust to short-term fluctuations in remotely

sensed data than relying upon a single year of observed data (Johnson et al. 2013).

To account for the locational displacement of the DHS observational units, the

VCF and other remotely sensed data are typically aggregated to a commensurate

resolution by exact averaging. For example, in Johnson et al. (2013), each

observation within a 5-km grid cell was summed and divided by the total number of

observations within the 5-km grid, excluding any observations of water within the

5-km grid cell. The DHS points were then overlaid with the percent tree cover. The

value of percent tree cover that the point fell within was selected to represent the

cover type for this point. This method provides a measure of the conditions in the

general area of the sample survey location.

Statistical models to link health outcomes to environmental change

The DHS surveys focus attention on measurements of child health and nutritional

status. These are generally characterized by three anthropometric measures: height-

for-age, weight-for-height and weight-for-age. When evaluating populations of

children, Z scores are used for anthropometric measurements. Underlying growth

measures to compute Z scores are collected for all eligible children and expressed in

terms of the dispersion of the child health indicator as standard deviations around a

reference population mean. The Z score is calculated as:
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zi ¼
xi � �x

rx

where xi is the individual observation and �x and rx are the median and the standard

deviation of the reference population. Z scores are linear and independent of sex.

Normal growth patterns of children under the age of five who are well-nourished

exhibit similar heights and weights, despite geographic, ethnic and cultural differ-

ences (Habicht et al. 1974). Any departure from this distribution of optimal growth,

therefore, can be attributed to socioeconomic and environmental factors. Z scores

are typically calculated using WHO’s current child growth standards reference

population median and standard deviation. A child’s height-for-age Z score (HAZ)

reflects impacts of health and/or nutritional conditions on growth and development

during gestation and exogenous factors that affect the child after birth. A low HAZ

value (i.e., stunting) is associated with a number of long-term causal factors such as

insufficient food intake and an unhealthy physical environment. A low HAZ value is

generally accepted as a strong indicator of long-term nutritional deficiency and/or

repeated illness. A child’s weight-for-height Z score (WHZ) is a shorter-term

measure of nutritional status that is sensitive to more recent and severe events.

Substantial weight loss is usually a consequence of recent disease or illness and/or

lack of food. Finally, a child’s weight-for-age Z score (WAZ) is a combination of

height-for-age and weight-for-height, and measures both chronic and acute mal-

nutrition (Puffer and Serrano 1973). Children are considered stunted, wasted or

underweight, respectively, if their height-for-age, weight-for-height and weight-for-

age Z scores are below -2.0. If a Z score falls below -3.0, a child is considered

severely stunted, wasted or underweight (WHO 2006b).4

Because the DHS data are collected with attention to community clusters, it is not

always appropriate to treat individuals within the same community as independent

in statistical analyses. Individuals may share many of the same traits—both

observed and unobserved characteristics—and may tend to have similar corre-

sponding environmental data because locations close to each other have more

similar environmental parameters than places geographically distant. To account for

the lack of independence among these observations as well as to incorporate the fact

that rainfall, agriculture, temperature and other environmental variables may impact

individuals through their impact on the community, multi-level models are ideal.5 A

multi-level or hierarchical modeling strategy allows the analyst to account for

variance between individuals as well as between community clusters. Multi-level

models can be structured to accommodate a categorical variable, for example

4 HAZ and WHZ are frequently used in combination as dependent variables in linear regressions. If these

outcome variables are studied simultaneously with different sets of regressors, and if disturbance terms in

the two regressions are correlated (as is likely), gains in efficiency can be obtained by estimating the pair

of regressions as a system, using seemingly unrelated regression (SUR) models Greene (2008). Correlated

errors could arise, for example, if measurement errors in Z-scores arise from mismeasurement of child

age, which influences both variables.
5 These types of models are referred to by several different names—random effects models, regressions

with varying intercepts, hierarchical models, etc. (see Gelman and Hill 2006 for an in-depth discussion of

these methods) Gelman and Hill (2006).
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stunted versus not stunted or low birth weight versus normal birth weight.

Categorical variables are often used to characterize health and population outcomes.

Environmental region, ecological zone or community cluster can be treated as a

random effect in a regression model, while other variables measured at the level of

the individual or the household can be treated as fixed effects. This strategy can be

used to account for variations in economic parameters such as inflation rate and

potential unmeasured variation in factors related to pricing or politics, which may

have relevance on a larger spatial scale like the livelihood zone or a political

jurisdiction. Additionally, environmental outcomes like drought or drought risk can

be used as a random effect. Because the context—environmental or economic—is

often conceived of at a larger spatial scale than the household, multi-level models

provide an excellent empirical strategy for incorporating variation due to differences

within and across different groups of interest.

Linking data at appropriate points in time

A weight-for-height Z score is an inherently short-term indicator of acute food

shortage or compromised health. In contrast, a height-for-age Z score is a longer-

term indicator of chronic food shortage or compromised health. Because these

nutrition indicators may reflect environmental conditions that prevailed during

different time periods in the child’s history, it may prove advantageous during

analysis to explicitly link remotely sensed data to nutrition-sensitive periods in the

child’s life. Furthermore, if environmental outcomes are hypothesized to reflect

agronomic conditions, such as growing conditions in a local area, it may be

necessary to account for the crop calendar and relevant growing periods for the most

commonly grown crops in the vicinity of a household.

Fig. 4 Example nutritional timeline for two identically aged children living in two different
agroecological zones
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Figure 4 provides a diagram that highlights these issues via a timeline, where

arrows indicate relevant nutritionally sensitive periods in the life of a representative

child. As an example, consider two children with identical birth dates who are

measured in 2011 at the age of 5 years. For these children, the relevant period for a

short-term nutritional indicator such as WHZ (wasting) might be the month

immediately prior to anthropometric measurement. In contrast, for the same

children, the relevant period for a long-term nutritional indicator such as HAZ

(stunting) might extend well beyond the most recent 12-month period and could

include the first year of life or even the period immediately prior to birth, when the

mother’s gestational health is paramount to the child’s development. By extension,

the nutritional outcomes of children of different ages residing in the same location

may be sensitive to remotely sensed data with different time stamps. Moreover,

children of similar ages, but residing in locations where the crops most important to

the household differ, may have nutritional profiles that are sensitive to slightly

different periods in the calendar, due to differences in growing periods. Such

differences for the children in this simple example are indicated by the circles in

Fig. 4, which illustrate different, location-specific growing periods critical to food

production and nutritional intake.

Results: case studies

Moisture conditions and mortality in West Africa

Connecting NDVI with DHS information can help policy makers understand the

consequences of a variable environment on childhood mortality and nutrition.

Because the DHS data are based on independent observations of individual children,

the impact of environmental dynamics can be assessed. A study from West Africa

linked NDVI in the growing season prior to the reference child’s date of birth to

child nutritional status (stunting and wasting) and child survival in 4 countries:

Benin, Burkina Faso, Guinea and Mali. The association between environmental

conditions (as proxied by vegetative growth) and child survival and nutritional

outcomes was assessed using multivariate methods. Nutritional status and survival

data, as well as other individual-level characteristics, were drawn from the

Demographic and Health Surveys (2001 in the case of Benin, 2003 for Burkina

Faso, 2005 for Guinea and 2001 and 2006 for Mali). We used different years and

different countries to compare the impact of growing conditions across multiple

countries and agro-ecosystems (Johnson and Brown 2010).

The methods used were a one-way ANOVA with a bivariate analysis of the

relationship between NDVI and the outcome variables of interest. For our

multivariate analysis, a logistic regression was used to examine the correlation

between our independent variable of interest (NDVI) and our selected outcome

variables, while controlling for confounding factors for which data were available.

Results were expressed in odds ratios that indicate the associations between the

independent and dependent variables without attributing causality.
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The study is unique because of its multi-country design and its use of satellite

data to assess drought. West Africa is expected to be particularly hard-hit by the

effects of climate change due to the region’s dependence on rainfed agriculture as a

primary livelihood and poor regional capacity to adapt to changing conditions. By

using observations of children’s nutrition and health parameters of stunting, wasting

and mortality, the study aimed to understand the broad implications of environ-

mental change that persist even in the face of enormous investment by local,

national and international aid and emergency response programs.

Ecosystem services and health outcomes: the example of Malawi forests

Following on the definition provided above, one way to model the factors associated

with child malnutrition is to study the proportion of children below the WHO

Z score cutoff for malnutrition. A study in Malawi (Johnson et al. 2013) used DHS

data to assess the impact of deforestation on human health. The VCF product was

used to estimate forest cover and decadal change in forest cover for the sampled

DHS cluster (Hansen et al. 2003). We used binomial logistic regression to predict

the odds of selected outcomes, holding constant potentially confounding variables.

We focused on associations between biodiversity-related predictor variables and

selected dichotomous outcomes (diverse diet = 1, else = 0; consumption of

vitamin A-rich foods = 1, else = 0; experience of diarrhea in the past

2 weeks = 1, else = 0). We found that deforestation was associated with poor

dietary diversity (few vitamin A rich fruits or vegetables) and increased incidence of

diarrhea during the previous 2 weeks before the DHS instrument was administered.

Because deforestation was defined as a change in percent tree cover over a decade

(2000–2010), the long-term change in ecosystem services provided by these trees

could be evaluated. By using the satellite data to evaluate deforestation in a

comprehensive and spatially explicit manner, the study revealed systematic

relationships that otherwise would be difficult to observe.

Food prices, agricultural productivity and children’s birth weight in Kenya

In a Kenyan study, Grace et al. (2013) examined the birth weights of infants, a

health outcome that reflects a woman’s nutritional status during pregnancy. The

retrospective nature of the DHS allowed the researchers to examine birth weights, as

recalled by the mother, of her most recently born children. Birth weights were

classified as healthy or low birth weight using the WHO cutoff value of 2,500 g.

Community NDVI and local maize prices were associated with each birth for each

of the 12 months preceding each birth—the preconception and pregnancy periods.

NDVI served as a measure of food production (food availability) in the community,

while maize prices, provided by the Famine Early Warning Systems Network and

USAID, served as indicators of food availability. Maize price data were only

available for a small selection of major markets in Kenya. Because the livelihood

zone data provided by FEWS NET reflects the dominant strategy used to produce

food and household income in an area and are constructed with attention to markets,

these zones were used to group community clusters. In other words, all communities
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that were located within a specific livelihood zone were assumed to be subject to the

same price patterns represented by those of the major markets in the zone. The

researchers assumed that an increase in maize price in one livelihood zone would

reduce access to one of the most important food items relied on by Kenya’s poor for

all residents in that livelihood zone. This price increase would indicate a general

reduction in food access of the populations most likely to face food insecurity

(Grace et al. 2013).

Multi-level regression analysis was used with livelihood zone as the random

effect (or nesting variable). The results ultimately revealed that prices have an

impact on birth weight outcomes but only as they interact with NDVI. When NDVI,

a measure of local food production, is high, then there are fewer cases of low birth

weight. Furthermore, the likelihood of low birth weight is especially reduced when

NDVI is high and when prices are low. Prices on their own, however, had little

impact on birth weight outcomes in the analysis (Grace et al. 2013).

Agricultural productivity and child stunting in the agro-ecosystems of Nepal

Remotely sensed data were incorporated in a study of agriculture and child nutrition

outcomes in Nepal (Sununtnasuk 2013). In Nepal, sources of nutrition are often

determined by local agricultural conditions because poor infrastructure, harsh

terrain and high transportation costs frustrate efforts to redistribute food from food-

surplus to food-deficit areas. NDVI measures were matched to data from the 2011

Nepal DHS. The combined data were used in a series of Probit regressions to

evaluate whether interannual variability in weather and its impact on food

production was correlated with a child’s probability of being stunted or wasted

(Sununtnasuk 2013). The hypothesis motivating this analysis was that NDVI values

might help to predict vegetation patterns which could translate to food availability

and, ultimately, consumption patterns of household members (Sununtnasuk 2013).

Because losses in height-for-age relative to the global reference group are rarely

fully recovered after the second year, leaving the effects of stunting largely

irreversible, only children above the age of two were considered for analysis. The

nationally representative sample included 1,412 children who were above the age of

24 months at the time of the DHS survey. The binary response variable was

recorded as one if the observed child was stunted (HAZ \ -2.0) and zero if the

child was not stunted (HAZ [ -2.0). Transforming the continuous Z scores into a

binary indicator resulted in a loss of information; however, the objective of the

analysis was to examine the relationship between NDVI measures in determining

child stunting, and not the partial effects of these on Z score outcomes. NDVI values

were measured as anomalies, i.e., differences between monthly NDVI values

(constructed from daily observations) and the long-term average NDVI for that

month computed over a longer period (in this case July 2002 to May 2012). To more

carefully connect NDVI values to critical period in the child’s development, they

were matched to children according to local, crop-specific agricultural calendars,

along the lines illustrated in Fig. 4. In other words, NDVI anomalies were connected

to children on the basis of those months that were likely to have been most

important for crops grown in the cluster in which the household resided. Several
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different time periods were considered in the regression analysis. Results from

regressions that included a full set of control variables measured at the child,

household and community level indicated that positive NDVI anomalies for harvest

months during the time a child was in utero were associated with modest, but

statistically significant reductions in the probability of stunting (Sununtnasuk 2013).

Conclusions and recommendations

Changing climate and ecosystem transformations often occurs simultaneously with

many other societal, economic and geopolitical changes in the communities residing

in these ecosystems. Discerning the impact of environmental change on human

health and nutrition outcomes will require separating the effects of changing

environment from the many other factors that can affect these outcomes.

Recommendations for improved data for analysis of impact of environmental

change on human health and nutrition outcomes include:

• Surveys that incorporate observations of nutrition outcomes using standard

approaches to better understand the impact of environmental change and

extreme events;

• Household surveys that have a protocol for allowing undisplaced GIS data to be

linked to external datasets, including remote sensing products, without loss of

confidentiality of survey respondents, and without loss of spatial accuracy; Use

of satellite remote sensing that permits spatially explicit and temporally frequent

observations of environmental change and functioning together with nutrition

information; and

• Exploration of hypotheses of environmental impact on nutrition outcomes for a

variety of regions and cultures.

Important differences in nutritional status have been documented among villages

within the same locality. For this reason, remote sensing data, with their high levels

of geographic specificity, could improve targeting of development and intervention

programs focused on reducing rural poverty. Differences in water supply may have

accounted for local village-wise differences in children’s anthropometric status in

northern Nigeria (Tomkins et al. 1978). Lack of clean drinking water, in addition to

measles vaccination rates, helped to explain statistically significant differences

among villages in mortality rates during the Darfur famine in 1984 and 1985 (De

Waal 1989). These examples show the potential of using spatially explicit

information to identify environmentally driven threats to human welfare.

Having appropriate mapping of livelihood zones, perhaps in addition to or even

instead of the frequently used political boundaries, will enable the clustering of

households into groups where dependence on the environment is more homogenous.

Small area estimation techniques can be used to improve the estimation of critical

human health outcomes in regions where the sample size from a household survey

may be too small to accurately estimate the impact (Fay and Herriot 1979). Using

spatially explicit satellite remote sensing of important parameters may allow
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researchers to create estimators of health outcomes that have increased accuracy and

spatial specificity.

Differential impacts of annual seasonal hunger also have been documented

anthropometrically on relatively fine spatial scales. Seasonal nutritional impacts on

children differed significantly between two neighboring villages in Tanzania

(Wandel and Holmboe-Ottesen 1992). Seasonality in food availability (Brown and

de Beurs 2008; Husak et al. 2013) and in food prices and thus food access (Becquey

et al. 2012; Devereux 2012; Sagn 1998) can have important impacts on food

security outcomes, which vary depending on where an individual resides (Hillbruner

and Egan 2008). Remote sensing science can provide links between season

nutritional stress and land cover, and its differential response to climate variability

at a resolution that can resolve differences in fields, communities and regions.

Many factors contribute to child nutrition outcomes. Some are more easily observed

and measured than others. Going forward, researchers will need to find ways to

incorporate variables such as food prices, food quality, time allocation and measures of

isolation and risk. Expanding the set of explanatory variables including in these

analyses will be critical to understanding the impact of an environmental stressor in a

specific location. In addition, how vulnerable a community or household might be to a

particular environmental extreme captured with satellite data may depend on the

resilience of households and communities and their ability to draw resources from

elsewhere. Adding these additional and nuanced features to datasets will be

challenging, since they are often disparate in the spatial and temporal resolutions.

The pace at which environmental transformation is occurring is rapid. For this

reason, demonstrating clear, documentable connections between observed change

and human health and nutrition outcomes will enable focused policies and

humanitarian investments that appropriately link the health, nutrition, food security

and environmental sectors. Without acknowledgment and exploration of these

linkages, each sector alone is unlikely to make substantive progress on their goals.

This has long been recognized, but little progress has been made in integrating

metrics and programs seeking to improve environmental performance or health

outcomes.

Interdisciplinary work requires interdisciplinary teams, and without substantial

efforts to integrate expertise across multiple disciplines, this work will not be

possible. Effectively analyzing the impact of environmental change requires joint

quantitative analysis of human health and nutrition, the environment and economic

performance. This requires expertise across all sectors at the beginning of a study,

and approaches that incorporate and ground-truth the most precise data collected at

appropriate spatial and temporal scales. Creatively combining and validating

existing data, and improving and coordinating the collection of future data, are

research imperatives.
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