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This Special Issue explores plant-soil interactions in global
biodiversity hotspots and highlights the extent to which
these interactions may play a role in explaining the
megadiversity of these hotspots. On a global scale, biodi-
versity hotspots are mainly located where high relief
(mountains) and high geodiversity (variety in geology
and soils) intersect, especially in tropical and
Mediterranean climate regions. Factors causing spatial
heterogeneity of temperature and precipitation often fur-
ther increase the number of plant species per unit area.
Meta-analyses indicate about twenty global biodiversity
hotspots with >3000 plant species per 10,000 km? (Mutke
and Barthlott 2005; Barthlott et al. 2007). The top five
localities with >5000 species per 10,000 km? covering
just 0.2 % of the Earth’s land area surface, but harbouring
6.2 % of total plant diversity, are: i) Costa Rica-Choco; ii)
Atlantic Brazil; iii) Tropical Eastern Andes; iv) Northern
Borneo; and v) New Guinea (Barthlott et al. 2005).
Although most biodiversity hotspots are in moist tropical
regions, there are also regions with a Mediterranean cli-
mate that are extremely species-rich: the South African
Cape (fynbos), California (chaparral) in the United States,
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and the sandplains (kwongkan) of south-western Australia.
Some islands are also global centres of diversity and
endemicity, notably New Caledonia, Madagascar and the
islands of the Malesian archipelago.

Soil fertility has been posited as a key driver for plant
diversification through resource competition to access lim-
iting nutrients, and there is abundant evidence for increas-
ing plant diversity with decreasing soil nutrient status,
especially in the case of phosphorus (Huston 1979, 1980;
Lambers et al. 2010; Blanck et al. 2011; Olde Venterink
2011; Pekin et al. 2012). The ‘biogeochemical niche’ hy-
pothesis proposes that plants competing in the same habitat
with co-existing plant species use essential elements differ-
ently (Garten 1978; Pefiuelas et al. 2009, 2013; Sulpice
et al. 2014; Chimphango et al. 2015; Lambers et al. 2015).
Such resource partitioning relates to evolved efficiency in
uptake, symbiotic relationships and specialised metabolic
functioning, as well as opportunistic use of micro-scale
habitat and soil chemical gradients. Different nutrient-
acquisition strategies as a consequence could promote niche
differentiation and hence reduce competition for limiting
resources (Fyllas et al. 2009). A recent study conducted in
the kwongkan of south-western Australia showed, however,
that variation in plant diversity is not explained by local
resource heterogeneity/partitioning and soil fertility along a
gradient, but rather determined by environmental filtering
driven by decreasing phosphorus availability and soil acid-
ification during long-term pedogenesis, and this highlights
that long-term evolutionary processes shape present-day
species pools (Laliberté et al. 2014).

An example in case of nutrient-limited soils are those
derived from ultramafic geology, characterised by an
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unusual geochemistry with low calcium/magnesium
quotients, limited phosphorus and potassium availabili-
ty and concomitantly high concentrations of nickel (Van
der Ent et al. 2016a). These soils can impose edaphic
stresses that may favour the evolution of plant species
by promoting divergence, as a result of the insular
occurrence of these soils, ultimately leading to adapted
specialistic plants and endemism (Whittaker 1954;
Rajakaruna 2004; O’Dell and Rajakaruna 2011). In
many hotspots, such as in California and New
Caledonia, the presence of ultramafic soils contributes
disproportionally to concentrating the local levels of
plant diversity (Harrison et al. 2006; Isnard et al.
2016). This is reflected in this Special issue, with four
articles focussing on ultramafic ecosystem in the biodi-
versity hotspots of New Caledonia, Northern Borneo
and the Mediterranean Basin. Elsewhere, other types
of geodiversity have also provided evolutionary forces
driving plant diversification, for example in Brazil, in
the rock outcrops of the Brazilian Atlantic Rainforest
(do Carmo and Jacobi 2016) and in the campos
rupestres (Silveira et al. (2016).

Patterns of biodiversity are highly scale-dependent,
and particularly high levels of diversity often coincide
with habitat patchiness and species turnover (f3-
diversity) along gradients (Harrison and Inouye 2002).
This is exemplified by the case of Mount Kinabalu in
Northern Borneo, which has more than 5000 vascular
plant species in less than 1200 km? (Beaman 2005). A
large-scale ecological study shows that within climatic
zones on this mountain the distribution of plant species
is linked to soil chemistry with stunted vegetation and
elevational floristic compression on chemically-adverse
ultramafic soils (van der Ent et al. 2016b). Where the
effects of high-altitude and nutrient-poor soil combine in
tropical rainforest, gymnosperms may compete with
angiosperm trees facilitated through high insolation
(Sawada et al. 2016). Elsewhere in Southeast Asia, on
Hainan Island (China), a large-scale plot study by Jianga
et al. (2016) emphasised the importance of soil and
microclimatic factors for driving diversity in lowland
and montane (semi-deciduous) forests. In the Brazilian
Atlantic rainforest, outcrops of a different geological
origin also enhance the plant megadiversity through
promoting edaphic and topographic gradients, resulting
in high «- and especially (3-diversity (do Carmo and
Jacobi 2016). In Brazil, such local fine-scale variation in
soil nutrient and/or moisture availability influences ra-
dial growth of the dominant tree species, Dalbergia

@ Springer

nigra (Pontara et al. 2016). However, ostensibly homog-
enous habitats, notably old climatically-buffered infer-
tile landscapes (OCBILs), are also exceptionally spe-
cies-rich, the fynbos of the Cape Floristic Region and the
kwongkan of south-western Australia are famous exam-
ples (Allsopp et al. 2014; Lambers 2014), but campos
rupestres fall in the same category (Silveira et al. 2016;
Oliveira et al. 2015, 2016).

The role of cluster roots and functionally similar root
structures and of root architecture in severely
phosphorus-impoverished landscapes is explored in
two articles focussing on Eucalyptus and a Proteaceae
from Australia and Brazil, respectively. Experimental
evidence shows that the root architecture and biomass
allocation of Eucalyptus species reflects that of edaphic
adaptations of specialised species, even when grown
under common conditions (Hamer et al. 2016). This
may have implications for the ability of edaphic special-
ists to acclimate to changes in their environment, espe-
cially climate change. Another edaphic root adaptation
is the formation of cluster roots, which are generally
associated with a burst of carboxylate exudation to
enhance phosphorus uptake in phosphorus-limited en-
vironments (Shane and Lambers 2005). Cluster roots are
best known from the sandplains of south-western
Australia; their formation is suppressed at elevated
phosphorus supply, in response to elevated leaf phos-
phorus concentration (Shane et al. 2003). However,
studies with a Brazilian Proteaceae demonstrated that,
unusually, cluster-root formation and foliar phosphorus
concentration do not depend on the amount of phospho-
rus supplied under experimental conditions (de Britto
et al. 2016). Root mycorrhizal associations are another
adaptation of plants growing on nutrient-impoverished
soils, and their effect on legume trees in French Guiana
is the subject of the work presented by Brearley et al.
(2016). Rhizobacterial communities were also investi-
gated in an extreme microhabitat: the roots of nickel-
hyperaccumulating plants (Alvarez-Lopez et al. 2016).
The results of that study exhibit that even under toxic
conditions the diversity of microbes associated with
hyperaccumulating roots may be high with selective
enrichment of nickel-tolerant bacteria. One especially
intriguing example of edaphic specialisation is the evo-
lution of carnivorous plants in the genus Nepenthes from
the pitcher-plant family (Nepenthaceae). In the Old
World this genus is known for its many narrow en-
demics, restricted to severely nutrient-limited soils, of-
ten on isolated mountain peaks and ultramafic outcrops
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(van der Ent et al. 2016¢). The roles of climate, soils and
vicariance in shaping the diversity and distribution of
Nepenthes in Southeast Asia are reviewed in an article
by Clarke and Moran (2016).

Perhaps the most extreme example of plant-soil in-
teractions occurs on metalliferous soils (Baker et al.
2010). The copper-cobalt outcrops of the Katangan
Province in the Democratic Republic of the Congo are
the richest location for metallophytes (plants growing in
metalliferous soils) in the world, with over 600 species
described to date (Faucon et al. 2010; Ilunga et al.
2013). The levels of endemism are especially remark-
able and illustrate how challenging soil conditions can
favour the evolution of edaphic endemics (Faucon et al.
2016). These mineralised outcrops are, however, under
enormous pressure from the mining industry, which
extract the resources contained in this region. Several
articles in this Special Issue stress concerns for contin-
ued existence of highly-diverse edaphic floras, due to
resource extraction, climate change, and land clearing.
Priority setting is necessary to respond to global biodi-
versity threats, and there have been concerted efforts to
shortlist major biodiversity hotspots, defined as biogeo-
graphic regions with >1500 endemic vascular plant
species and less than 30 % of original primary habitat
remaining (Myers et al. 2000). This ultimately led to a
compilation of 35 hotspots that combined cover 17.3 %
of the global land surface but contain 44 % of all known
species of vascular plants and 77 % of all endemic plant
species (Myers 2003; Myers et al. 2000; Mittermeier
etal. 2004, 2011; Williams et al. 2011). In many hotspots,
the strong link with geodiversity, epitomised by the oc-
currence of (edaphic) endemics, makes the local diversity
especially threatened by habitat destruction and distur-
bances, as specialised species may be unable to survive
under other conditions (Jacobi et al. 2011). Another threat
may arise from limited investment in sexual reproduction
in some endangered plants that are adapted to
phosphorus-impoverished conditions which makes them
more vulnerable to extinction (Fujita et al. 2014).
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