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Abstract The increase disposals of fly ash from solid waste incinerator have becoming a

serious environmental problem in China. Levels of PAHs in fly ash from a selected full-scale

miscellaneous solid waste incinerator were determined by gas chromatograph/mass spec-

trometer. Content of trace elements and other major elements of fly ash were studied by

inductively coupled plasma-mass spectrometry and X-ray fluorescence spectrometry,

respectively. Experimental results showed that a high content of lead occurred in the collected

fly ash samples with the value of 35,037.90 lg/kg, but lower contents of total 16 PAHs, which

mainly smaller PAHs. This was different from previous studies regarding the levels of PAHs

in fly ash collected from the similar hospital waste incinerators. This survey indicated that the

emission factors are attributed to combustion temperatures, type of incinerator, and the

occurrences of elements in solid wastes. The total toxic equivalent quantities (TEQ) value of

PAHs, a potential toxicity risk assessment using index TEQ model, has been reached to

4.00 lg/kg in ash from this study, but may not suitable for the soil amendment. Therefore, a

further treatment of discharged ash and assessment of its environmental risk are unavoidable.

Keywords Environmental impact � PAHs � Fly ash � Hazardous solid waste

1 Introduction

China, one of the fastest developing countries, is the world’s largest solid waste generator

due to rapid industrialization and urbanization in the last two decades (Duan et al. 2008;
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Huang et al. 2006; Zhang et al. 2010). Take the industry solid waste (ISW), for example,

the total quantity has increased alarmingly year by year, which increased from 0.8 billion

tons in 1998 to 3.2 billion tons in 2011, according to the statistical records of the ISW

(China Statistical Yearbook 1998–2011). Statistic quantity of ISW was about 3.3 billion

tons in 2012 (Chinese Environmental Yearbook 2012). At present, more than half of total

ISW is reused in China (Fig. 1), while there is still vast majority of ISW-treated stock

subsequently discharged into the environment. Solid waste crisis is serious in China (Liu

et al. 2006; Tian et al. 2013). Due to the limited land available for landfills, incineration

is safe and effective option for waste management as it could significantly reduce the

volume and weight of waste and destroy pathogens and toxic organic compounds (Liu

et al. 2000b). However, fly ash is inevitable during waste incineration, accounting for

10–30 wt% of the original amount of waste (Tian et al. 2012; Zhang et al. 2008). Most of

them are characterized by high enrichment of toxic chemicals such as trace elements and

organic pollutants (Koukouzas et al. 2011; Tang et al. 2013; Wang et al. 2010). These

pollutants are likely to return into the environment and cause secondary pollution and

thus into the food web, if improper management (Dolk et al. 1998). For this reason, fly

ash is seen as hazardous materials and needs to specially manage in many countries

(Haugsten and Gustavson 2000). Polycyclic aromatic hydrocarbons (PAHs), one typical

persistent toxic substance, consist of 2–6 condensed aromatic rings (Directive 2000),

which are one of the main organic contaminants in fly ash particle that have been added

into the list of the priority pollutants and the emission standards by the World Health

Organization, as well as America, France, Germany, Japan, Netherlands, Sweden, and

Switzerland (Wilson and Jones 1993; OECD 1989; Environment Australia 1999; World

Health Organization 1985; WHO 2000; Wilson and Jones 1993). Large amount of study

about the PAH characteristics focused on coal, municipal solid wastes (MSW), biomass,

industrial hazardous, and medical wastes (Bozlaker et al. 2008; Johansson and van Bavel

2003b; Lee et al. 2002; Liu et al. 2001; McGrath et al. 2001). To the best of authors’

knowledge, however, only limited data are available in the research about the PAHs in

the fly ash from the miscellaneous waste combustion. In addition, no official standards

have been issued for PAHs in the fly ash and quite few contamination prevention

measures have been made for fly ash in China. Therefore, it is necessary to investigate

the PAH concentrations in miscellaneous waste combustion to fill this gap. In the present

work, we address this aspect by discussing the characteristics of fly ash from a miscel-

laneous solid waste incinerator in China.

Fig. 1 Situation of industrial solid wastes in China from 1999 to 2011
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2 Samples and methods

2.1 Basic information on incinerator and sampling

The investigation was carried out in a rotary kiln incinerator located in the east of China.

The incinerator began operation during the outbreak of severe acute respiratory syndrome

(SARS) in 2003 with the capacity of 6,000 t/year solid waste (Table 1). Solid waste

incinerated is very heterogeneous and mainly consists of hospital waste (HW; 65 %) and

industries hazardous waste (35 %). The incinerator is equipped with an air pollution

control device of bag filter as shown schematically in Fig. 2. To obtain representative

samples, fly ash samples were taken directly from the hopper of the bag filter when the

system tuning to a stable condition on five successive days; then, five fly ash samples were

kept in vacuum-sealed bags before analysis.

2.2 Methods

All the samples for trace element analysis were crushed and ground to pass a 200-mesh

sieve after dried at 105 �C for 24 h. Physicochemical parameters including particle size

distribution and specific surface were determined by laser diffraction particle size analyzer

(Better BT 2003) and nitrogen adsorption–desorption isotherms, respectively.

Content of trace elements in fly ash was determined by inductively coupled plasma-

mass spectrometry (ICP-MS) after digestion by an acid mixture of HNO3:HCl:HF (3:1:1)

in closed vessels with microwave oven. The chemical composition was determined by

Table 1 Operational conditions and parameters of the incinerator

Operation beginning year 2003

Operation (h/day) 24

Type Rotary kiln incinerator

Annual capacity (t/year) 6,000

Furnace temperature (�C) First combustion chamber: 600–800

Second combustion chamber: 850–1,000

Input waste Combustible industrial waste 35 %

Medical waste 65 %

APC devices Fabric filters

Fig. 2 Schematic diagram of the solid waste incinerator
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X-ray fluorescence spectrometry (XRF) following the method ASTM D4326-2001. The

accuracy of the analytical method was determined by analyzing standard reference material

NBS1633b. The recovery rates of the trace element were within the certificate values.

Method for PAH analysis is consistent with the previous analysis process, which has

been described previously (Liu et al. 2012). Samples were dried at 30 �C for 24 h, crushed

and sieved through a 200-mesh sieve. About 15 g of pretreated sample was extracted in a

Soxhlet extractor with 250 mL dichloromethane for 48 h. Two grams of activated copper

piece was added to remove sulfur. The extract was preconcentrated to a volume of 1 mL by

rotary evaporation, and its solvent was exchanged for hexane. The concentrated solution

(*2 mL) was injected to pass through a purifying tube packed with silica gel and neutral

alumina. After eluting with 70 mL of the methylene dichloride-hexane (3:7 v/v) mixture,

the PAH fractions were concentrated to 1.5 mL under a gentle stream of N2.

Determination of PAHs was conducted on a Shimadzu model 2010 GC–MS instrument

equipped with an AOC-20i autoinjector (Shimadzu, Japan), using electron impact mode

(70 eV) in the selected ion monitoring mode. The DB-5 column of 60 m 9 0.25 mm inner

diameter (0.25 lm film thickness) was used. The GC temperature increased from 60 to

200 �C at 5 �C/min, to 250 �C at 2 �C/min, and then to 290 �C at 20 �C/min and further

hold for 20 min at 290 �C. The carrier gas Helium (99.9999 % purity) was used as carrier

gas at a constant flow rate of 1.0 ml/min.

The quantitative analysis was done by the internal calibration method (five-point cali-

bration), and PAH identification was performed by comparison of their retention time with

standards. A mixture of internal standards 2-fluoro-1, 1-biphenyl, p-terhenyl-d14 and

dibenzo(a,h)anthracene-d14 was added to the sample just before injection. 2-Fluoro-1 and

1-biphenyl were used for Naph, Acy, Acen, and Flu; p-terhenyl-d14 was used for Phen,

Anth, Flan, Pyr, B[a]A, Chry, B[b]F, B[k]F, and B[a]P; dibenzo(a,h)anthracene-d 14 was

used for IP, DB[ah]A, and B[ghi]P.

Reagent blanks, duplicate samples, and the standard additions were analyzed along with

samples through the procedures of extraction and cleanup. Reagent blank samples con-

tained no detectable amounts of the monitoring PAHs. Surrogate standards containing five

deuterated PAHs (naphthalene-d8, acenaphthene-d10, phenanthrene-d10, chrysene-d12,

and perylene-d12) were added to all samples before extraction to determine the recovery

rate of the analysis process. The surrogate recoveries were 67.2 ± 4.52 % for naphthalene-

d8; 75.4 ± 4.67 % for acenaphthene-d10; 88.1 ± 6.41 % for phenanthrene-d10;

94.8 ± 4.35 % for chrysene-d12; and 98.5 ± 6.59 % for perylene-d12 with fly ash sam-

ples. Meanwhile, recoveries of 16 PAHs in the NIST1941 reference sample were between

80 and 120 % of the certified values provided by the NIST.

3 Results and discussion

3.1 Physiochemical properties of collected fly ash

The particle size was determined by laser diffraction particle size analyzer (Better BT

2003), and the result was given in Fig. 3. The particle sizes of most ash were within a range

of 0.079–30.67 lm, accounting for more than 90 wt% of the total ash mass. The average

particle size was 9.85 lm. Similar ranges of ash particle size have been found in previous

studies. For example, Cobo et al. (2009) reported that about 75 wt% of the total mass of fly

ash collected from the bag house of a hazardous waste incinerator. Nagib and Inoue (2000)

found about 80 wt% of the total mass of fly ash from the MSW incinerator has particle size
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\20 lm. Moreover, the fly ash is characterized by tri-modal particle size distribution,

which includes a smallest ultrafine region centered at approximately 0.2 lm, a fine frag-

mentation centered at 8 lm, and a bulk fragmentation region for particles of approximately

15 lm diameter. The smallest fly ash particle was formed mainly by solid–vapor–particle

processes, including vaporization, nucleation, condensation, and coagulation of inorganic

constituents in the waste (Xu et al. 2011). The central mode may attribute to the coagulated

fine particles or micrometer-size fuel materials (Yu et al. 2009). Fusion and coalescence of

the inorganic material in the fuel should be mainly responsible for the coarse-mode

formation.

The nitrogen adsorption–desorption isotherms of this fly ash are shown in Fig. 4. Based

on the IUPAC classification, the adsorption isotherms of this ash attribute to the Type II

adsorption, indicating a presence of micropores (larger than 2 nm). As presented in

Table 2, the SBET of ash particle size was found to be 3.92 m2/g and also suggests the

porosity of particles.

The chemical composition of ash samples was analyzed using XRF, and the result was

illustrated in Table 3; SiO2 was the most abundant component in ash sample followed by

A12O3 and Fe2O3. The least abundant major components were MnO, SO3, and P2O5.

Higher content of SiO2 makes a more fixed structure to restrain trace element from

leaching (Song et al. 2004).

3.2 Trace element in fly ash

Although trace elements have much less proportions in view of the unit mass of fly ash, the

large amount production of fly ash from solid waste incinerator will significantly increase

amounts and risks of the released trace elements into the environment. This generally

occurs during the landfilling disposal under natural conditions. The mean content of

selected 10 trace elements in fly ash is shown in Table 3. Higher contents of volatile trace

elements were found to be bound to the collected ash that was consistent with the results

reported in previous works (Cobo et al. 2009; Eighmy et al. 1995). Especially, lead is an

element with the highest content in all the samples in this study, and its content in the ash

Fig. 3 Typical particle size distribution of the fly ash
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reaches 35,037.90 lg/kg. This may due to the different physicochemical properties of

elements and their content in the solid waste (Chang et al. 2009). Increasing the com-

bustion temperatures, some low-boiling point trace elements, such as Zn, Pb, Cd, and Cu,

preferably volatilized in combustion zone and formed the uniform small particles and then

condensed on the fly ash in the decreasing temperature flue gas convective pass to stack

(Song et al. 2004). In China, there has not been setup of regulation in trace elements in fly

ash from specific HWs. Based on the available standard issued by the California EPA,

Fig. 4 Adsorption–desorption isotherms of fly ash

Table 2 Particle size distribution of size fractionated fly ash

Undersize (%) D10 (lm) D50 (lm) D90 (lm) AMD (lm) Surface area (m2/g)

\10 lm \50 lm \100 lm

50.58 96.91 100.00 2.15 10.02 31.03 15.65 0.53

D10 10 % of the particles is smaller than this diameter (lm); D50 50 % of the particles is smaller than this
diameter (lm); D90 90 % of the particles is smaller than this diameter (lm); AMD average mean diameter
(lm)

Table 3 Content of major and trace element in fly ash

Major
elements

Fe2O3 MnO TiO2 CaO K2O SO3 P2O5 SiO2 Al2O3 Na2O MgO Total

Fly ash
(%)

4.72 0.099 10.904 8.27 0.83 1.74 0.325 47.66 6.39 8.03 1.32 90.29

Trace elements Co Ni Mn Pb Cr Cd As B Cu V

Fly ash (lg/kg) 25.92 24.11 562.6 35,037.90 260.70 2.94 4.90 24.71 2,918.6 3.90
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which is 5,000 lg/kg, the content of Pb in the current fly ash far more exceeds this

regulatory thresholds. Therefore, fly ash in the incinerator should be properly disposed to

reduce its environmental risks; otherwise, it may affect humans by the food chain.

3.3 Content of PAHs in fly ash

PAHs are a group of semi-volatile organic compounds that consist of 2–6 condensed

aromatic rings (Kong et al. 2011; Sun et al. 2006; Yang et al. 2002). Many of these

compounds are known as carcinogenic, mutagenic, and teratogenic. Some PAHs adsorbed

on ash can cause serious environmental pollution and can persistent in the environment for

months due to their stable structure if they evaporate into the atmosphere (Liu et al. 2000a,

2008). That’s why the US Environmental Protection Agency has issued a list of priority

pollutants to be monitored in the environment, including 16 PAHs according to their

toxicity (Callahan 1979; Ravindra et al. 2001).

The total content and individual contents of the 16 USEPA priority PAHs found in the

fly ash samples are summarized in Table 4. The results showed that the total content of

PAHs was 2,444.90 lg/kg, PAHs of five to six rings (Big PAHs) were not detected, and the

content of most toxic PAH (B[a]P) was not found. PAHs with two to four rings (small

Table 4 Concentrations of PAHs in fly ash samples (lg/kg)

Congener (lg/kg) Fly ash (N = 5) TEFa TEQ

Mean ± SD Range

Naphthalene 1,940.64 ± 7.40 1,930.36–1,949.23 0.001 1.941

Acenaphthylene 143.94 ± 12.71 124.11–154.21 0.001 0.144

Acenaphthene 46.05 ± 8.31 33.60–54.77 0.001 0.046

Fluorene 42.39 ± 11.74 33.80–65.40 0.001 0.042

Phenanthrene 49.81 ± 3.71 44.31–53.70 0.001 0.050

Anthracene 42.07 ± 3.81 40.05–49.12 0.01 0.421

Fluoranthene 57.04 ± 6.86 44.16–59.70 0.001 0.057

Pyrene 57.65 ± 5.60 50.58–65.03 0.001 0.058

Benz[a]anthraceneb 3.83 ± 0.66 3.17–4.92 0.1 0.383

Chryseneb 58.71 ± 5.76 50.15–63.58 0.01 0.587

Benzo[b]fluorantheneb 1.38 ± 0.50 0.93–2.19 0.1 0.139

Benzo[k]fluorantheneb 1.34 ± 0.51 1.22–2.32 0.1 0.134

Benzo[a]pyreneb ND ND 1 0.000

Indeno[123-cd]pyreneb ND ND 5.000 0.000

Dibenz[a,h]anthraceneb ND ND 0.001 0.000

Benzo[g,h,i]perylene ND ND 0.100 0.000

RPAHsc 2,444.85 4.002

RPAHscarc
d 65.26

ND not detectable
a PAHs toxic equivalency factor with respect to BaP (Nisbet and LaGoy 1992)
b Carcinogenic PAH compounds
c Sum concentration of 16 PAH compounds
d Sum concentration of 7 carcinogenic PAH compounds
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PAHs) have been identified in fly ash samples. Naphthalene is the most abundant PAH

present in samples with a content of 1,940.64 lg/kg. The content of the 7 USEPA car-

cinogenic PAHs (RPAHscarc: BaA, CHR, BbF, BkF, BaP, IcdP, and DahA) was 65.28 lg/kg

and accounted for 2.7 % of the total PAH content in mass.

Emission of PAHs from solid waste was determined by the combustion conditions of

incinerators, mainly referring to temperatures, retention times, and incinerator structures

(Singh and Prakash 2007). In a low-temperature stage (below 800 �C), the major pathway

for the formation of PAHs is pyrolysis of solid wastes, resulting in the formation of small

PAHs. While the large PAHs are produced during the deep degradation and/or combination

of small PAHs in a higher temperature (Wheatley and Sadhra 2004; Yan et al. 2004; Zhao

et al. 2000), study of Singh and Prakash (2007) acclaimed the highest content of total

PAHs in fly ash at 1,000 �C.

As for the current rotary kiln incinerator, lower combustion temperature was applied

(850 �C) in the first combustion chamber. This may partly explain better prevention of

PAHs during combustion of solid wastes. Studies of Van Caneghem et al. (2010, 2014)

were shown that the PCBs (polychlorinated biphenyls) in rotary kiln have been destroyed

effectively during incineration by mass balance method. Li et al. (2004) also confirmed the

increase of PAHs content, especially small PAHs, upon the increase of combustion tem-

perature. Thus, he suggested two-stage combustion of solid wastes. Temperature in the first

combustion chamber was about 800 �C, and it was followed up by the second combustion

chamber, controlling the temperature at about 1,000 �C and residence time at 2 s for a

complete combustion of the vaporizing PAHs from the first chamber. The basic procedure

occurrence of PAHs generated in ash, as shown in Table 4. Small PAHs have higher

stability and can travel over a longer distance due to their higher boiling point comparing

to large PAHs (Chen et al. 2003; Lai et al. 2007; Liu et al. 2000a; Tsai et al. 2002).

Because of this, small PAHs usually cause higher risks than big PAHs although they have

little carcinogenicity effect.

Comparing with the earlier study by Wild et al. (1992), it was found the amount of 16

PAHs in fly ash from coal combustion and MSW incinerators was 354 and 227 lg/kg,

respectively. Results of similar studies (Chen et al. 2003; Lee et al. 2002; Levendis et al.

2001; Zhao et al. 2008) of PAH contents in fly ash from HW incinerators are shown in

Fig. 5. The content of PHAs in fly ash in this study was higher than in coal fly ash and MSW

fly ash and much lower than in HW fly ash in other studies. This difference can possible

interpreted as the higher calorific value of solid waste in this study with more content of

plastic, accounting for 13–18 % in medical waste (Chen et al. 2013; Fang et al. 2005).
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Fig. 5 Comparison of 16 PAH
contents in fly ashes from
hospital waste (HW) incinerators
between this study and the
literature (lg/kg)
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Another factor that may cause the high PAHs in the ash is the inherently higher PAH content

in the waste components (Wheatley and Sadhra 2004). Meanwhile, the presence of Pb in fly

ash may facilitate the formation of PAH, which have been discussed by Wey et al. (2000).

3.4 Potential toxicity risk assessment for PAHs in fly ash

Since no environmental standards for PAHs in ash are established in China, standards

developed in Swedish and Dutch were adopted to evaluate the PAH contamination.

Guidelines for PAHs in land-use limit have been developed by Swedish EPA, Netherland

EPA, and Canada EPA, and for sensitive land use, the limits are set to 300, 120, and

500 lg/kg, respectively (Johansson and van Bavel 2003a; Canada EPA 2003; Swedish

EPA 2002). Also, a standard carried out by Dutch shows the target value as 1,000 lg/kg

for 10 PAHs (naphthalene, anthracene, phenanthrene, fluoranthene, benzo(a)anthracene,

chrysene, benzo(a)pyrene, benzo(g,h,i)perylene, benzo(k)fluoranthene, and indeno(1,2,3-

c,d)pyrene) of unaffected soil and 4,000 lg/kg for soil that required restore (Van Brum-

melen et al. 1996). Thus, the content of PAHs for fly ash in this study has not exceeded the

limits of sensitive land use, but exceeded the limit of Dutch EPA for about 2 times.

Therefore, integrated utilization of the fly ash in this study should be performed with

caution.

Index toxic equivalent quantities (TEQ) associated with PAHs are used to evaluate the

potential health risk of PAHs to ecosystems and human beings. Value of TEQi was cal-

culated for each PAH according to the content in the sample and its toxic equivalency

factor from the literature (Nisbet and LaGoy 1992). The total TEQ value was calculated by

TEQ ¼
P
ðTEQiÞ ¼

P
ðC PAHi � TEF PAHiÞ, and the results are listed in Table 4. From

the study of Nisbet and Lagoy, benzo(a)pyrene and Dibenz(a,h)anthracene are the two

most potent carcinogenic PAHs, although they were not detected in the current study. The

total TEQ value was 4.00 lg/kg, which is lower than the value of 15 lg/kg for soil by

USEPA (2012).

4 Conclusion

The average particle size of discharged fly ash from the incinerator is 9.85 lm, ranging

from 0.079 to 30.67 lm, which accounting for more than 90 wt% of the total ash mass.

The collected fly ash has only a minimal specific surface area of 3.92 m2/g and a negligible

porosity. Chemical characteristics, using XRF and ICP-MS, revealed the most abundant

component is SiO2 and Pb is a trace element in the highest content with the value of

35,037.90 lg/kg. Fly ash in this study presented a different levels and patterns of PAHs,

for having lower content of total 16 PAHs, and mainly consists of small PAHs, comparing

with HW ash. These differences would contribute to the combustion temperature and the

high content of lead in solid waste. The amount of PAHs in fly ash did not exceed the

guidelines for sensitive land use. However, the ash should be regulated carefully before

disposition for the high content of lead.
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