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Abstract
Deep neural networks (DNNs) have become increasingly successful in applications 
from biology to cosmology to social science. Trained DNNs, moreover, correspond 
to models that ideally allow the prediction of new phenomena. Building in part on 
the literature on ‘eXplainable AI’ (XAI), I here argue that these models are instru-
mental in a sense that makes them non-explanatory, and that their automated gen-
eration is opaque in a unique way. This combination implies the possibility of an 
unprecedented gap between discovery and explanation: When unsupervised models 
are successfully used in exploratory contexts, scientists face a whole new challenge 
in forming the concepts required for understanding underlying mechanisms.

Keywords Machine learning · Opacity · Models · Explanation · Scientific 
understanding · Exploratory experimentation

1 Introduction

Deep neural networks (DNNs) are currently being praised for their astonishing util-
ity in applications ranging “from biology to cosmology to social science” (Jordan 
& Mitchell, 2015, p. 255). Popular-level accounts even go so far as to proclaim a 
“revolution in scientific research” (Royal Society and Alan Turing Institute, 2019, p. 
1), or that DNNs are “changing the way we do science”.1 At the same time, DNNs 
are notoriously associated with the label ‘black box’, which is usually meant to say 
that a DNN corresponds to “a function that is too complicated for any human to 
comprehend” (Rudin, 2019, p. 206).

Given this black box-nature, how can DNNs truly help us advance science? For, 
in the words of Raghu and Schmidt (2020, p. 27; original emphasis):
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Many standard applications of deep learning [...] focus on prediction—learn-
ing to output specific target values given an input. Scientific applications, on 
the other hand, are often focused on understanding—identifying underlying 
mechanisms giving rise to observed patterns in the data.

Given the close connection between understanding and explanation (de Regt, 2017; 
Grimm, 2010; Khalifa, 2017; Rudin, 2019; Strevens, 2008), scientists’ interest in 
what is usually called ‘eXplainable AI’ (XAI) should be rather high accordingly. 
But under one reading at least, “‘explanation’ here refers to an understanding of 
how a model works, as opposed to an explanation of how the world works” (Rudin, 
2019, p. 206). Hence, even if XAI succeeds, can we really expect an understanding 
of “underlying mechanisms” or “how the world works” from it?2

In this paper, I will offer a nuanced response to this question, by arguing for the 
following three theses: (i) Deep learning (DL) models, appropriately construed, are 
instrumental in a specific sense that sets them apart from many (though not all) tra-
ditional scientific models, including computer simulations (CSs). (ii) XAI concerns 
two distinct kinds of black box-ness, or opacity, and reducing one will not necessar-
ily aid in reducing the other. These may be seen as two dimensions to the opacity-
problem in DL—a notion I shall make precise below. (iii) This unique combination 
of opacity and instrumentality implies that we cannot generally expect to understand 
the mechanisms underlying (decisive patterns in) the data when these are success-
fully recognized and predicted by DL algorithms.3 In particular, when certain condi-
tions are jointly met, it is highly likely that DL allows new discoveries that scientist 
will have a hard time understanding.

The main goal of this paper is hence to make sense, from a philosophy of science 
point of view, of claims to DL revolutionizing or changing science. Establishing 
(i)–(iii) requires some conceptual effort though. First, I will distinguish three senses 
in which DNNs are models (Sect. 2.1), and distinguish the sense appropriate for my 
purposes. Subsequently (Sects. 2.3 and 2.4), I will then determine the relevant sense 
of instrumentality, and why it makes DL models non-explanatory.

Section  3 will define the notion, and argue for the existence, of two dimen-
sions to opacity in DL; the implication being that DNNs are opaque in a way that 
is not reducible to the (well-known) opacity of CSs. In Sect.  4, I will then show 
how DNNs’ instrumentality and opacity together can lead to unprecedented gaps 
between discovery and explanation. That, together with DL’s unprecedented success 
in handling big data, I call the DL predicament.

2 I will presuppose a kind of pluralism about ‘explanation’ here: Given, for instance, the quantum nature 
of the physics examples discussed below, causal explanation is probably not the right concept. But this is 
clearly different for the other, biological case study.
3 ‘Mechanism’ should be construed rather broadly here. For instance, the Higgs mechanism defies vari-
ous features typical of mechanisms (Lyre, 2008; Smeenk, 2006), but for most physicists still counts as 
sequence of steps that promotes an understanding of the underlying physics.
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2  Deep Learning Models

2.1  Three Senses of ‘Model’ in Deep Learning

In the DL literature, the use of ‘model’ and ‘representation’ abounds, but instances 
of DL are often equally referred to as ‘algorithms’ or simply ‘techniques’. This is 
rarely accompanied by an explication; something that has raised philosophers’ atten-
tion before (Humphreys, 2013; Napoletani et al., 2011).

Napoletani et al. (2011, p. 13) actually refrain from calling DNNs ‘models’ alto-
gether and solely use ‘technique’. Humphreys (2013,  p. 580), on the other hand, 
acknowledges the possibility of “simulating neural dynamics” with DNNs, but also 
urges to “keep separate uses of neural nets as simulation models from their use as 
techniques in computational science”, and additionally finds most neural nets to be 
“extremely crude models of real brains[...].”

The latter verdict is frequent in the literature (e.g. Chirimuuta, 2020; Goodfellow 
et al., 2016; Sullivan, 2019), not least because feed-forward processing and gradi-
ent descent are biologically implausible; although notions such as ‘distributed repre-
sentation’ or ‘representation learning’ suggest a stronger connection. Spiking neural 
nets could be more promising in this respect (e.g. Kasabov, 2019), and interest in the 
brain-DNN correspondence persists. However, assuming that we take the simulation 
of brain dynamics as the relevant sense in which DNNs can be models, we would be 
able to understand only biological brain processes by means of them.

There is a further notion of model applicable to the DL context:

Using [...] data we build a prediction model,[...] which will enable us to pre-
dict the outcome for new unseen objects. (Hastie et al., 2013, p. 2)

Fundamentally, Machine Learning is using algorithms to extract information 
from raw data and represent it in some type of model. We use this model to 
infer things about other data we have not yet modeled. (Patterson & Gibson, 
2017, p. 1; emphasis omitted)

The goal of modeling is to develop a parametrized mapping between the data 
domain and the response set. [...] In machine learning, the modeling, itself, 
may have several algorithms to derive a model; however, the term algorithm 
here refers to a learning algorithm. (Suthaharan, 2016, p. 7; original emphasis)

This notion of model as some parametrized input–output mapping is closely related 
to the universal approximation theorem, which in essence says that a DNN “can 
approximate virtually any function of interest to any desired degree of accuracy, 
provided sufficiently many hidden units are available” (Hornik et al., 1989). Newer 
theorems (Poggio et al., 2020) also show that this can be accomplished with gradi-
ent descent and in finite times.

Thus, a trained DNN may be considered a model in the sense of an input–out-
put mapping that characterizes patterns in the data, ideally capable of accurately 
predicting further points to that pattern, or even a new phenomenon. For instance, 
obtaining a single point in the output space could amount to the recognition that a 
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bunch of data indeed classify as indicative of a new token of some type of phenom-
enon of interest. An example of this kind is astrophysicists’ recent discovery of four 
new pulsars with the aid of a DNN called ‘SPINN’ (Morello et al., 2014).

However, the relation between output and new phenomena can also be more indi-
rect: If the task is statistical and the output is a label for classification, the distribu-
tion of data points into classes can reveal an unexpected excess of data that fall into 
a certain class. In turn, this might indicate a so far unknown phenomenon, respon-
sible for the data-excess. This situation obtains, for instance, in particle physics, as 
shall be discussed in more detail below.

Note that the learning algorithm involved in deriving this model may itself count 
as yet another model: Buckner (2018) points to the possibility of understanding con-
cept abstraction on the basis of deep convolutional nets, without drawing too close 
a parallel to either brain processes or most details of human cognition. Similarly, it 
may be possible to understand certain errors made by DNNs in analogy to errors 
made by humans under similar conditions (Buckner, 2021, for discussion). But the 
analogy between human and machine learning can only be taken so far; for instance, 
it remains an open question “whether current or future DNN architectures can imple-
ment compositional recursive grammar” (ibid, pp. 4–5). Thus, what happens during 
the training of DNNs can also serve as an abstract model of aspects of human learn-
ing, independently of the brain-machine (or a close mind-machine) analogy.

In sum, at least three distinct senses of ‘model’ should be distinguished here, 
which, so far as I can see, exhaust the use of ‘model’ in the DL literature: 

(a) DNNs as (crude) models of actual brains,
(b) the algorithms employed in DL as abstract, selective models of human learning, 

and
(c) the input–output mappings approximated through training as models of features 

pertaining to the data, such as their statistical distribution.

Which of these, if any, is the sense relevant for understanding underlying mecha-
nisms? As pointed out above, if we took (a) to be the relevant sense, our understand-
ing would be limited to brain processes. The same applies to (b) and human learn-
ing. However, sense (c) is fairly general, and hence does not share these problematic 
features.

2.2  Prediction, Discovery, Explanation

It is exactly this mapping, established during the training phase, that provides DNNs 
with their predictive capabilities. To see this, recall that “[n]early all of deep learn-
ing is powered by [...] stochastic gradient descent” (Goodfellow et al., 2016, p. 147), 
which means the iterative minimization of a ‘loss function’ through several rounds 
of training (also called ‘epochs’). Hence, during the training, DNNs are forced to 
do better and better at some kind of task, regardless of whether given access to 
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class-labels (supervised learning)4 or clustering the data without such guidance 
(unsupervised learning).

But the training stage thus also amounts to an iterative fitting of the model to a 
training set: It proceeds by a successive change of free parameters in response to the 
‘loss’ experienced when offering a certain output for the data points encountered. 
If this is done carefully so as to avoid over- and underfitting to the training set (and 
with some tricks such as unsupervised pre-training of individual layers),5 a DNN 
can excel in handling so far unencountered examples.

Now once the training is over, the DNN’s parameters are fixed and the model in 
sense (c) is established. But letting a trained DNN loose on actual data of interest, it 
may be able to exploit the patterns encountered during training—of which the scien-
tist may be fully unaware—to successfully predict further points to that pattern. As 
we saw above, this ideally leads to the recognition of new, scientifically interesting 
phenomena such as pulsars, i.e., to new discoveries.6

Discovery, when connected to a theory, model, or method, is clearly intimately 
linked to that theory’s, model’s, or method’s predictions. For instance, Lakatos 
(1970, p. 116) makes an identification between a theory’s (verified) “excess empiri-
cal content over its predecessor (or rival)” and “the discovery of novel facts.” Simi-
larly, Maher (1988, p. 282; emph. added) argues that “successful prediction provides 
reason to think that a discovery method is reliable”.

Generally speaking, neural networks are capable of providing predictions in the 
strong sense of forecasting the occurrence of a novel, previously unobserved phe-
nomenon—which sometimes is to be construed in the more general sense of ‘use-
novelty’ (Worrall, 1985), here meaning that information about that phenomenon was 
not included in training and model-definition.

For instance, a shallow network for language processing was recently able to fore-
cast the discovery of novel thermoelectric materials from the textual content of sci-
entific papers (Tshitoyan et al., 2019). When benchmarked on historical papers pub-
lished before a certain date, between some 20–45% of the network’s top 50 predicted 
materials had been discovered with a span of some 3–18 years past that respective 
date (ibid., p. 97). Similarly, a combination of an unsupervised algorithm (k-means) 
for clustering spatio-temporal climate data into characteristic patterns with a (super-
vised) convolutional neural net was recently used to forecast the occurrence of cer-
tain weather patterns 5 days ahead, with an accuracy of some 90% (Chattopadhyay 
et al., 2020).

4 Supervised techniques comprise both classification and regression tasks. Given, however, that there 
is a close connection between both, and that the latter can sometimes even be treated as the continuum 
limit of the former (cf. Skansi, 2018, p. 61; fn. 14), I will not be too careful in distinguishing them in this 
paper.
5 Following a suggestion by an anonymous referee, I should note here that these ‘tricks’ by themselves 
can already decrease understanding. For instance, choosing the learning rate, i.e., the hyperparameter 
scaling the gradient in stochastic gradient descent, can not only drastically influence the training speed 
but also determine whether the training gets stuck. This latter effect is, however, poorly understood 
(Goodfellow et al., 2016, p. 417).
6 Caveat: I will always mean ‘discovery’ in the sense of ‘discovery of empirical phenomena’, not as in 
the theoretical discovery of some sort of mechanism or scientific hypothesis.
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However, we can gather from the above quote by Hastie et  al. (2013)7 that 
most ‘predictions’ made by (D)NNs are certainly to be understood in a consider-
ably weaker sense, namely as predicting a certain data point (or a set thereof) to 
fall under a certain class (or to be attached a certain value more generally), which, 
ideally, corresponds to the recognition of the presence of a type of phenomenon of 
interest (as with the pulsars discovered by SPINN). Moreover, for any prediction, 
strong or weak, to count as successful, and to thus provide a new discovery, it has 
to be confirmed by (further) empirical means; as was (obviously) the case with the 
thermoelectric materials and weather patterns, but also the candidate pulsars (cf. 
Morello et al., 2014, p. 1659).

Now following Douglas (2009, p. 458), we can hold predictive accuracy to also 
be a key marker of scientific explanations:

A scientific explanation will be expected to produce new, generally successful 
predictions. An explanation that is not in fact used to generate predictions, or 
whose predictions quickly and obviously fail, would be scientifically suspect.

Accordingly, I take it that in inquiring about underlying mechanisms, we are inquir-
ing about an explanatory model that matches the successful predictions of a DNN.8 
However, it will thus be the burden of this paper to first argue that the DL model 
in sense (c) (which shall always be meant by ‘the’ DL model below) is itself not 
explanatory.

2.3  Instrumentality of Deep Learning Models

What does a DL model actually represent? To approach this question, consider the 
simple, shallow (i.e., single-hidden-layer) network in Fig.  1. Its two input nodes 
may be collectively represented by the vector x = (x1, x2)

t . Similarly, h = (h1, h2)
t 

corresponds to the hidden layer, and may here be assumed to compute a function 
h = ���{Wx + b, 0} , where the vector-valued ‘max’ applies component-wise, W is 
a matrix of weights, and b a bias vector.

The edges leading from the input to the hidden layer in the diagram may be 
understood as transmitting the input with a certain weight, and the nodes as setting 
the received values off by a bias. The non-linear ‘max’-function corresponds to a 
given node’s activation upon receipt of the (weighted, biased) input. This repeats at 
the edges from h to the output-layer y, albeit with a weight-vector w , a single bias 
c, and no non-linearity. For a given set of weights and biases, the network in Fig. 1 
thus computes the function y(x) = w ⋅���{Wx + b, 0} + c.

7 See Goodfellow et al. (2016, pp. 98–102), Skansi (2018, pp. 51–56), Suthaharan (2016, pp. 130–141) 
for further evidence that this is a common use of ‘prediction’ in machine learning circles.
8 I find myself in good company with this verdict: Guidotti et al. (2018, p. 12), for instance, define what 
they call the ‘black box explanation problem’ as “providing a global explanation of the black box model 
through an interpretable and transparent model [that] should be both able to mimic the behavior of the 
black box and [...] should also be understandable by humans.”
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For a more complex network, there would be several hidden layers, vectors would 
usually be longer, activations could be different non-linearities, and the output vec-
torial. But the general description would not change: The network would still corre-
spond to a function y(x) = y◦h(n)◦⋯◦h(1)(x).

Assuming now that xi ∈ {0, 1} , weights and biases can be changed by a learning 
algorithm such that y(x) spits out 1 exactly if one input is 1 and the other is 0, and 
0 otherwise.9 It thus provides a model of the exclusive or (Goodfellow et al., 2016, 
Sect. 6.1). However, even interpreting y(x) in this fashion requires prior conceptual-
ization of the data in terms of truth values.

Features of ambiguity in scientific models are certainly nothing new: Any math-
ematical model, when conceived of purely as a formal structure, admits of multiple 
interpretations. But for traditional models, the interpretation is achieved by assign-
ing meanings to its mathematical symbols. Now as was pointed out above, we could 
interpret weights, biases and activations in terms of properties of axons and neurons, 
or maybe the relevance associated to the entries of x by a learner; but that would 
lead us to interpreted models in sense (a) or (b), not (c).

To see the difference more clearly, turn to Fig.  2. The mathematical model 
depicted in (a) is, famously, that of a damped harmonic oscillator. In the first 
instance, the variable X represents the height of the oscillation, t a parameter (such 
as time) along which the oscillatory pattern spreads, the derivative(s) to the changes 
of the oscillation over time (or the changes of these changes, respectively), � (indi-
rectly) to the damping, and � to the frequency of oscillations (and so indirectly to 
the period).

However, multiple real world systems (approximately) realize these relations: X 
could represent the position of a mass attached to a spring, and then � would, for 
instance, represent the friction that applies to spring and mass. But X could also rep-
resent, say, such things as the concentration of a chemical in a sample (for X = 0 a 
baseline concentration), (a smoothing of) the number of individuals in a population 
(with similar meaning for X = 0 ), and various other things. Furthermore, the param-
eter t need not even represent time, but could just as well be (say) some non-linear 
function thereof. With all these changes in interpretation, the meaning of the model 
as a whole would be changed.

Now the meaning of the output y of the shallow network depicted in Fig. 2b will 
certainly covary with the interpretation of x as either, say, simple propositions to be 
combined into complex ones, activations of diodes in a circuit, or the more general 
(non-)occurrences of two mutually exclusive events. But the same is not true about 
the non-linearity h or the parameters � = (W, b,w, c) . For a DL model, weights and 
biases are merely parameters to be adjusted automatically during training and h rep-
resents a hyperparameter to be chosen in advance. Beyond that, they are in general 
not assigned any specific meaning at all: Just consider how for a deep network with 
some hundreds or even thousands of nodes, no scientist will presumably be able—or 
even bother—to sort out what each and every weight and bias might represent.

9 Notably, this is possible only with at least one hidden layer, because the function to be learned is not 
linearly separable (Buckner, 2019; Goodfellow et al., 2016; Minsky & Papert, 1969).



50 F. J. Boge 

1 3

Accordingly, it is not immediately clear what (hyper)parameters should be taken 
to represent about the curve in Fig. 2b, and certainly even less so as to what they rep-
resent about the system whose behavior is in turn represented by that curve. Given 
this apparent meaninglessness of the parameters, I submit that, in contrast to tradi-
tional mathematical models, the interpretation of a DL model stems entirely from 
the conceptualization of input and output. Without this conceptualization, prior to 
the training stage, we would not be able to recognize the meaning of a DNN’s pre-
dictions at all.

An anonymous referee has confronted me with an interesting objection in this 
connection. First of all, none of the above implies that a DNN’s (hyper)parame-
ters cannot be assigned a meaning at all: In DNNs used for image recognition, for 
instance, specific nodes can be associated, via their activations, with specific fea-
tures of the images the network operates on, such as edges or hues. Secondly, a 
large chunk of the technical literature is devoted to making such associated features 
explicit, and so it seems possible to think that a DNN has itself developed an internal 
model of patterns in the data at the end of the training, which model could be quite 
directly understanding-conveying.

I appreciate the point. However, I should here make explicit the stance on mod-
els I employ, which is strictly speaking incompatible with the foregoing assessment. 
Like, e.g., Potochnik (2017), I view models not as disembodied platonic entities, but 
rather, as epistemic devices used by cognizing, conscious agents. Furthermore, I am 
highly skeptical of the notion that (at least at present) DNNs can be literally viewed 
as such agents. Hence, unless explicitly constructed by the scientists using the DNN, 
that internal model is literally nowhere, or rather, does not really exist. Put differ-
ently, talk of a model internal to the DNN must on my view be seen as a metaphor 
for the fact that interpreting the DNN in the right ways can suggest a way forward to 
new models that can promote understanding.

A comparison to traditional statistical models also suggests itself at this point, 
at least when these are used in a fully data-driven way, and not generated on the 
basis of a conceptual model or background theory of the entity or process under 
study. Statistical models may be generally identified with parametrized distributions, 
and of course their parameters are (under the aforementioned circumstances at least) 
equally used to fit a given model to data. The major commonality between tradi-
tional statistics and DL is that, in general, the meaning of these parameters has to do 
rather with properties of the data than with the underlying mechanisms generating 
them.

However, the parameters of statistical distributions usually at least have clear 
meanings as, say, the most probable value or a characteristic width, whereas it is 

Fig. 1  Shallow neural network 
capable of learning the exclusive 
or

h1x1

h2x2

y
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unclear that DL parameters have a representational function at all, as we saw above. 
Usually (though maybe not always) traditional statistics and DL also operate at dif-
ferent levels of generality10 and are employed for different purposes:

statistical methods have a long-standing focus on inference, which is achieved 
through the creation and fitting of a project-specific probability model. [...] 
By contrast, DL concentrates on prediction by using general-purpose learn-
ing algorithms to find patterns in often rich and unwieldy data (Bzdok et al., 
2018, p. 233; emph. added).

The choice of a class of DL models from which to choose, i.e., the general type 
of parameterized function to be adapted during the training, is effected by means 
of hyperparameters: those parameters, like number of layers, nodes, or even choice 
of activations, determining the general architecture and those, like learning rate or 
batch size, determining the training process.11 The difference in generality attested 
by Bzdok et al. (2018) thus amounts to the fact that a DNN-architecture and its train-
ing are usually chosen with a general kind of task in mind, not the detailed properties 
of a single, concrete data set to be evaluated.

In contrast, for classical statistical models, the choice is usually dictated by far 
narrower concerns:

Fig. 2  Differences between the interpretation of classical mathematical models (a) and DL models (b)

10 There are no ‘free lunches’ though (Wolpert & Macready, 1997), and present DL also still falls short 
of providing anything like ‘general intelligence’ in the sense of a domain-general ability to recognize and 
exploit patterns at a human-like level (e.g. Lyre, 2020, for a recent assessment).
11 See, for instance, https:// towar dsdat ascie nce. com/ what- are- hyper param eters- and- how- to- tune- the- 
hyper param eters- in-a- deep- neural- netwo rk- d0604 91758 4a for an excellent overview.

https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-the-hyperparameters-in-a-deep-neural-network-d0604917584a
https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-the-hyperparameters-in-a-deep-neural-network-d0604917584a
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The choice of a class of models, gamma, lognormal, Weibull, is initially based 
on the shape of the data[...]. The question arises as how this decision can 
be explicitly incorporated in the analysis. A Bayesian ‘solution’ would be to 
include all ‘reasonable’ models and then to base the decision on the relative 
likelihoods. A frequentist approach would be to perform a goodness-of-fit test 
for several possible models. (Davies, 2014, 44; emph. added)

The choice of a goodness-of-fit metric must be based on the properties of both the 
data as well as the considered distributions (e.g., continuous vs. discrete). Similarly, 
likelihood-based methods can choose among different information criteria (AIC, 
BIC, etc.) that mediate in different ways between fit and simplicity (Sober, 2002). 
However, choosing the ‘reasonable’ statistical models, as well as the criteria for 
selecting among them, thus already requires a respectable amount of insight into the 
structure of the data.

As pointed out above, fixing a class of DL models by means of hyperparame-
ters in contrast rather requires empirical knowledge about performance in a certain 
kind of task, as well as considerations of speed and the ability to generalize from 
the training set. Only then is the chosen architecture used to “find patterns in often 
rich and unwieldy data” (Bzdok et al., 2018, p. 233; emph. added). In addition, the 
choice of an eventual model is effected by an automated learning algorithm—an all 
but trivial point when it comes to DNNs’ ability to promote an understanding of the 
data-generating mechanisms, as we shall see.

Finally, consider another class of traditional, tunable models with relatively low 
conceptual content, sometimes called ‘phenomenological’ in the philosophical lit-
erature (e.g. Bokulich, 2011; Craver, 2006). To give an example: The Rydberg for-
mula, �−1 = R(n−2

1
− n−2

2
) ( n1, n2 positive integers with n2 > n1 ), ‘saves the phenom-

ena’ (spectral lines), but unlike Bohr’s atom model is not rich enough in theoretical 
elements to offer an explanation of their occurrence (Bokulich, 2011, p. 41 ff.; Mas-
simi, 2005, p. 36; Wilholt, 2005, p. 155).

According to Bokulich (2011, p. 44), phenomenological models are “only of 
instrumental value to the scientist”, often “constructed via an ad hoc fitting of the 
model to the empirical data”, and “useful for making predictions, but [...] do not 
purport to give us any genuine insight into the way the world is.” Most of these 
things appear to be true of DL models. However, ‘phenomenological’ has too many 
different meanings (Suárez & Cartwright, 2008, p. 70) and there is also no clear, 
prior association between DL models and ‘phenomena’. In that respect, DL models 
are certainly closer to what Harris (2003, p. 1510) calls ‘data models’. However, via 
the output variable y , the functions instantiated by DNNs add information that cer-
tainly transcends a mere cleaning and interpolation of data points. Hence, they are 
also not data models in Harris’ sense.

To properly classify DL models, I hence suggest to focus on a particular aspect 
recognized by Bokulich, and call them instrumental. As we saw above, the spe-
cific sense of instrumentality here is that of being instrumental-qua-devoid of 
content—call that ‘c-instrumental’: Most elements in formal representations of 
a DL model need not be assigned any meaning at all in order for the model to 
have predictive value. This notion I take to subsume, next to DL models, also 



53

1 3

Two Dimensions of Opacity and the Deep Learning Predicament  

phenomneological models (at least on some reading of the term), as well as statis-
tical models (at least when not derived from some conceptually rich theory).

2.4  Instrumentality and Understanding

The intended sense of instrumentality here is not to be conflated with another 
sense prominent in the models-debate. This other sense refers to the employment 
of unrealistic assumptions (see Basso et al., 2017, p. 424). Call that ‘r-instrumen-
tal’. However, whether the employment of such assumptions cannot lead to more 
than predictive and instrumental value remains a controversial issue (ibid.).

An often discussed example is Schelling’s model of segregation (Schelling, 
1971), in which the housing and moving behavior of two different kinds of agents 
(e.g.: blacks and whites) is modeled by (e.g.) black and white dots on a chess 
board-like arrangement with filled and vacant fields.

As Schelling demonstrated, even modest preferences of model-agents for 
equally-colored neighbors suffice to produce segregation patterns. However, 
in the 1970s it was not clear whether the model could be adequately linked to 
empirical evidence, and it actually builds on various unrealistic assumptions (e.g. 
Reutlinger et al., 2018, pp. 1076–1077). Accordingly, the model’s status is con-
troversial: Does it deliver an explanation of how actual segregation patterns arise, 
or a mere ‘how-possibly’ explanation?

In any case, it is agreed upon that the model provides some sense of under-
standing, by demonstrating that institutional racism does not have to be assumed 
in order to explain segregation (Grüne-Yanoff, 2013,  pp. 855–856). On top of 
that, the distinction between how-possibly and potential how-actually explana-
tions has been put into question by Bokulich (2014, p. 335), who shows that how-
possibly explanations sometimes correspond to how-actually explanations when 
several details are abstracted away. Finally, today there is some amount of evi-
dence in support of a mechanism relevantly similar to Schelling’s (Card et  al., 
2008; Clark, 1991; McCrea, 2009).

The point, then, is that, regardless of its many unrealistic assumptions, Schell-
ing’s model does offer a (possible, or potentially actual) explanation of segrega-
tion patterns, and so arguably provides understanding.

A demarcation against c-instrumental DL models trades on a particular under-
standing of ‘understanding’, and it is instructive to consider several details of 
de Regt’s (2017, p. 31 ff.) celebrated account of understanding in this connec-
tion. De Regt takes understanding on the basis of models to be possible if they 
are explanatory qua representational (also Giere, 2006, Chapter 4). A similarly 
important role for representation is reserved by Morrison (1999, p. 63):

The reason that models are explanatory is that in representing [their target] 
systems they exhibit certain kinds of structural dependencies. The model 
shows us how particular bits of the system are integrated and fit together in 
such a way that the system’s behaviour can be explained.
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Hence, establishing ways in which to represent a certain target by means of a model 
allows us to map the relations established in the model onto relations pertaining, for 
all we know, to the target, and so, if the model’s behavior matches that of the target 
in relevant respects (e.g., segregation patterns emerge), we may infer an explanation 
of the observed target-behavior from the model (e.g., in terms of moving behavior 
being in part determined by preferences for neighborhood-composition).

However, note that data themselves are usually assumed to have “some sort of 
representational content”, and their “curation and classification [...] involves inter-
pretative decisions” (Leonelli, 2019, pp. 4, 11; emph. added). Hence, does the rela-
tion established by a DL model not equally represent something about the underly-
ing mechanisms?

This is, in a way, certainly correct. But it merely points us to the fact that repre-
sentation is not all when it comes to explanation and understanding. In de Regt’s 
account, for representational models to explain, they must also be constructed under 
the principles of an intelligible theory, where a theory is intelligible if it has cer-
tain qualities that “provide conceptual tools for achieving understanding” (de Regt, 
2017, p. 118; emph. added).12 Among these tools, de Regt (2017, p. 115) lists “visu-
alization, mathematical abstraction, and causality [as] prime examples.” An example 
for the use of mathematical abstraction is the development of an “intuitive feeling 
for how quantum-mechanical systems in two-slit-like situations behave, by familiar-
ity with the linear character of the Schrödinger equation.” (ibid., p. 113) Hence, it 
does not (necessarily) concern straightforward deductive use of mathematics, but (in 
general) rather heuristic qualitative reasoning with mathematical concepts.

Clearly, replacing ‘understanding’ by a notion such as ‘intelligibility’ or ‘grasp-
ing’ (Strevens, 2013) looks like replacing one unanalyzed, primitive notion with 
another one which is just as opaque. However, de Regt spells out the intelligibility 
of a theory in terms of “qualities [...] that facilitate the use of the theory” (de Regt, 
2017, p. 40; emph. added), and Reutlinger et al. (2018, pp. 1084–1085) equally offer 
a use-oriented, empirically accessible explication of Strevens’ notion of grasping.

It is not my aim to reconstruct or defend these accounts in further detail here. 
Rather, I take away the general lesson that understanding the mechanisms in a tar-
geted domain on the basis of models requires that these models contain representa-
tions that are conceptually rich enough to make those mechanisms intelligible.

Assuming a notion of understanding along these lines, it is straightforward to 
see why a trained DNN is instrumental in ways that can impair understanding. Just 
recall the discussion following Fig. 2: The elements of the model that could be used 
as representations are weights, biases, and activations. But for the sake of (c), these 
are merely adjustable parameters devoid of content, not representations that help us 
conceptualize some underlying mechanisms by facilitating visualization, qualitative 

12 The focus on theories may not do full justice to understanding from models: Morrison famously 
emphasizes their (partial) autonomy. Nevertheless, Morrison and Morgan (1999, p. 31) also hold a “pro-
cess of interpreting, conceptualising and integrating” that goes in during model construction ultimately 
responsible for understanding.
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mathematical reasoning, or causal inference.13 Hence, c-instrumentality, in contrast 
to r-instrumentality, directly threatens scientific understanding.

Without a doubt, it is possible to understand something about underlying mecha-
nisms on the basis of the outputs of a DNN though. Hence, what is required to facili-
tate that understanding? I believe that the following three steps are crucial in that 
respect: (I) The conceptualization of input and output, prior to training; (II) estab-
lishing what the (trained) DL model represents, on account of (I); and (III) connect-
ing that represented something to underlying mechanisms on the basis of further 
background knowledge.

An example might be helpful here. For reasons to become clear, particle physics 
provides an excellent case study for my purposes, so I will turn to it several times. 
Beside the fact that particle physics has been an “early proving ground” (Cho, 2017) 
for machine learning in general, physicists at CERN face more than 200 petabyte of 
stored data from the LHC in their analyses—‘big data science’ indeed.

A typical problem is the definition of likelihood-ratios for hypothesis testing, 
because the theory is intractable and the high dimensionality of the feature space 
(multiple particles with energies, momenta, charges, etc.) does not allow the genera-
tion of enough simulated data for approximation (Baldi et al., 2014).

A DNN can reduce dimensionality by replacing data with a class identity (‘sig-
nal’ or ‘background’). Classification is a ‘supervised’ task, meaning that a DNN 
learns based on labelled data. If labels are defined by parameterized cuts in the fea-
ture space (e.g.: energy above a certain threshold), whose optimum position is then 
learned by performing stochastic gradient descent, the DNN can approximate a like-
lihood-ratio by providing a proportion of signal to background data. If the meaning 
of the cuts is well-understood, moreover, the distribution of data across the signal/
background-divide can then reveal whether it is somewhat justified to assume that a 
sought for particle has been produced.14

To see how (I)–(III) apply here, first note that there are several ‘levels’ of data 
in particle physics: raw data strictly speaking correspond to the “byte-stream of the 
readout from detector electronics” (Albertsson et al., 2018, p. 19). However, these 
are usually interpreted immediately as indicating the energy deposited by a parti-
cle in a specific component of th detector while traversing it. Data referred to as 
reconstructed in particle physics correspond to tracks gathered from these isolated 
interactions, and already obtain a vastly richer interpretation: The shape of these 
tracks across different layers of the detector allows the attribution of features such 
as particle type, momentum transverse, and angles relative, to the beam direction, or 
even ‘missing’ energy physically expected but not measured (signifying a neutrino). 
Finally, certain higher-level features, defined as usually non-linear functions from 
the (interpreted) reconstructed data, can be used as data for DL algorithms as well.15

13 For evidence that this is in line with standard views of much of the XAI community, just consider the 
quote in Fn. 8 again.
14 For a detailed treatment, see Voss (2013).
15 However, even the lowest level conceptualization in terms of energies deposited in detector com-
ponents at a given time need not in any way be submitted to the algorithm in order for it to perform 



56 F. J. Boge 

1 3

As can be seen, several conceptual steps are involved in data-preparation, prior 
to subjecting them to analysis. Similarly, slicing the input-space in such a way that 
some data count as ‘signal-like’, i.e., typical of decay chains containing the relevant 
particle, some as ‘background-like’, involves a conceptual step. Actually, however, 
even the data-taking already involves conceptual steps. As Harris (2003, p. 1512) 
has famously pointed out, many “instruments do not produce uninterpreted [...] 
data”, and this is in a way also true of LHC-detectors: A sophisticated trigger system 
is required to select manageable amounts but the selection criteria installed in the 
three trigger-levels are based on physics hypotheses (Karaca, 2018, Sect. 4). Alto-
gether, this covers step (I).

As pointed out above, Baldi et al. (2014) used DNNs to approximate likelihood-
ratios. Hence step (II) consists in training a DNN with appropriately labeled data in 
such a way that it can be interpreted as approximating this ratio. But that would not 
be possible had the data not been conceptualized in terms of physics variables and 
meaningful cuts.

Finally, step (III) means interpreting an excess of signal over background data in 
terms of the sought for particle. Clearly, this is only possible based on (II), together 
with the fact that likelihoods are probabilities conditioned on relevant hypotheses. 
For illustration, see Fig. 3. Note also the involvement of further explanatory models 
emphasized therein.

As we saw already in the simple network of Fig. 1, the interpretation of the func-
tion approximated covaries with the conceptualization of the input.16 A suitable 
learning algorithm could always approximate some given input–output mapping. 
But it would be impossible to tell what that mapping represents if the meaning of the 
data was left unspecified. Similarly, for being able to explain the predicted outputs in 
terms of, say, connections, building blocks, and currents in a circuit, we would first 
need to recognize that the DL model predicts activations that match an XOR gate.

I take it that this analysis in terms of steps (I)–(III) is an assessment of under-
standing from DL, or the possibility of a want thereof, compatible with Sullivan’s 
recent appraisal of what she calls ‘link uncertainty’, i.e., the “lack of scientific 
and empirical evidence supporting the link that connects the model to the target 

Footnote 15 (continued)
accurately: advances in image recognition suggest that it may be possible to harvest successes using raw 
detector data directly (Albertsson et al., 2018, p. 8).
16 An anonymous referee has pointed out to me that, in the words of LeCun et al. (2015, p. 439), “Deep 
neural networks exploit the property that many natural signals are compositional hierarchies, in which 
higher level features are obtained by composing lower level ones. In images, local combinations of edges 
form motifs, motifs assemble into parts, and parts form objects.” I appreciate the point, and aspects con-
cerning the structure of the data and their processing by DNNs will become important later when I con-
sider questions of opacity. However, for now note that when a data vector is fed to a (convolutional) 
DNN, this data vector only represents an image insofar as we interpret it to refer to colors and hues dis-
tributed across a 2D pixel grid. Furthermore, if we reinterpret both the input and output vector to (say) an 
autoencoder as representing (say) the properties of atoms distributed across a crystal lattice, that would 
immediately also change what y(x) represents: In the first case, it would represent the salient, or ‘cru-
cial’ features of the image (as specified by the reconstruction loss-function); in the second case, it would 
rather represent an emergent property of the crystal, which is only visible as soon as most of the detail is 
abstracted away (so far as compatible with that same loss function).
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phenomenon” (Sullivan, 2019, p. 8). Because of the dependence on (I) and, espe-
cially, (III), the DL model on its own is conceptually too poor to provide an under-
standing of underlying mechanisms: Only if, via (I) and (II), a connection can be 
made to those mechanisms in a final step, (III), will a DL-success promote an under-
standing of them.

3  Two Dimensions of Opacity

3.1  Opacity: From Computer Simulations to Deep Learning

Much of what has been said about r-instrumental models straightforwardly extends 
to CSs. A common analysis has the generation of a CS start from what Morrison 
(2015) calls a conceptual model. Such a model then (usually) needs to be discre-
tized, and translated into computer code, to serve as a proper basis for the steps 
undergone by the computer.

Analyses of the modeling steps involved in devising a CS of this general type are 
now fairly common, and found, in varying detail and explicitness, in e.g. Winsberg 
(1999, 2010), Humphreys (2004), Beisbart (2012), Hasse and Lenhard (2017), Boge 
(2019b), or Durán (2020).

However, several modifications to this general scheme have been suggested in the 
literature as well: Hasse and Lenhard (2017), for instance, amend the sequence by 
an explicit acknowledgement of loops in the modeling process. That does not impair 
the general type of account though, for it simply means the iteration of several steps 
in the modeling chain, stimulated by comparison between simulated and observed 
data.

Some observations by Lenhard and Winsberg (2010) are more troubling: In com-
plex simulations, as used in climate science, models become highly entrenched. 
Hence, a linear sequence which facilitates explanations does not seem applicable. 
Nevertheless, Boge and Zeitnitz (2020) identify (close to) linear substructures in a 
similarly complex simulation environment, and argue that these remain applicable 
as a descriptive account of initial modeling steps.

The point is not that this immediately restores a straightforward path to expla-
nation and understanding from CSs. Depending on the complex relations between 
these substructures, as well as the meaning and use of various parameters in each of 
them (see Hasse & Lenhard, 2017), it can still be very hard to infer anything even 
remotely explanatory from the results of a CS.

The upshot rather is that none of these modifications impairs the observation that 
the initial modeling step in a CS consists in a conceptualization of the target: If the 
target is a complex system such as the earth’s global climate or a scattering event at 
the Large Hadron Collider, it may be necessary to conceptualize parts of the target 
individually first and then connect them up—which can, over an iterative process of 
mutual readjustment, lead to entrenchment and take scientists away from the initial 
meaning of individual models. But the first steps in designing a CS are nevertheless 
very different from the first steps in designing a DL model.
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Now it is also clear that designing a CS often requires additional assumptions 
that may introduce (further) artefacts. In the words of Lenhard (2019, p. 224):

Simulation [...] works with relatively ‘weak’ objects [...] that are, to an 
important extent, codefined by modeling decision, adjustments, and discre-
tizations.

Codefinition by modeling choices is nothing special in CSs, as was pointed out 
already above (also Frigg & Reiss, 2009, p. 598 ff.). Similarly, discretization is cru-
cial for CSs, but numerical techniques were introduced long before the first CS was 
run. But some adjustments are certainly special in CSs: A prominent example is 
the so-called ‘Arakawa operator’ (Lenhard, 2007; Winsberg 2010), which was intro-
duced to fix the instability of the atmosphere in a global climate simulation of the 
1950s, on the pains of introducing the deliberately unphysical assumption of con-
served kinetic energy (known to also dissipate as heat). The reason for this instabil-
ity was, however, not mathematical but computational: Digital computers can only 
handle finite-place approximations to decimal numbers.

This example underscores that, next to entrenchment-problems, unrealistic 
assumptions can become so dominant that a CS might loose explanatory value. The 
difference to DL really is that this situation can at least in principle be improved 
upon by (i) tracking the relations between partial models in detail, (ii) using more 
realistic assumptions, when improved hard- and software allow this, (iii) using a less 
distorting discretization method under the same conditions, and so forth. Whenever 

Fig. 3  Illustration of steps (I)–(III) in the particle case, here illustrated with raw instead of reconstructed 
data (see fn. 15). Horizontal arrows indicate (formal) modeling steps; vertical arrows indicate concep-
tual/interpretive steps. Raw data image taken from https:// cds. cern. ch/ record/ 14097 59/ files/ event 67hir es. 
png (©CERN 2011)

https://cds.cern.ch/record/1409759/files/event67hires.png
https://cds.cern.ch/record/1409759/files/event67hires.png
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this is possible and the amount of r-instrumentality can be (assessed and) contained 
in this way, scientists become able to infer explanations directly from CSs.17

The difference between CS and DL may be summarized as follows: The former 
begins with a conceptualization of the target, and from that predicts ‘hypothetical 
data’. The latter begins with a conceptualization of data, and from that equally pre-
dicts new, hypothetical data. A deeper connection to the target needs to be estab-
lished post hoc in DL, whereas it is made (or at least attempted) ante hoc in CS. 
Arguably, this carries over to a major difference in explanatory potential.

However, there is also a major commonality: Both CSs and DL have been recog-
nized for their opacity (cf., in particular, Burrell, 2016; Humphreys, 2009). Follow-
ing Humphreys’ seminal definition, I take this to mean the following:

a process is epistemically opaque relative to a cognitive agent X at time t just 
in case X does not know at t all of the epistemically relevant elements of the 
process. (Humphreys, 2009, p. 618)

I take it for granted that epistemic opacity is relative to an agent and involves a lack 
of knowledge. The process in both cases is the computational process, and its opac-
ity is usually traced back to the complexity of the algorithm (cf. Burrell, 2016, p. 5; 
Humphreys, 2009, p. 619).

Now in DL, this is partly also conditioned on a “mismatch between mathemati-
cal optimization in high-dimensionality characteristic of Deep Learning and the 
demands of human-scale reasoning and styles of semantic interpretation” (Bur-
rell, 2016, p. 2). This is underscored, for instance, by the existence of ‘adversarial’ 
examples in image recognition, wherein a small, dedicated perturbation of an image, 
which is imperceptible to humans, can lead to a radical misidentification (Goodfel-
low et al., 2014). To some extent, these can be explained by considering the ‘learn-
ing context’ and the limitations imposed by the finite classification made available 
to the network, but there are certainly also many features that remain puzzling (e.g. 
Buckner, 2020, 2021, for discussion).

The point hence is that, despite some abstract analogies between human and 
Deep Learning, it is in important respects opaque how the machine learns. Call that 
h-opacity. H-opacity concerns the way in which a DNN automatically alters the 
instantiated function in response to data. However, by that token it effectively just 
adds to complexity-related opacity:18

Though a Deep Learning algorithm can be implemented simply in such a way 
that its logic is almost fully comprehensible, in practice, such an instance is 

17 E.g. Boge (2019a) or Durán (2017, 2020) for recent accounts of how this is possible. Note that no spe-
cific notion of explanation is presupposed here; Boge (2019a) discusses examples wherein a deductive-
nomological and a functional explanation are being inferred from CSs, respectively.
18 In fact, depending on the agent in question, h-opacity may concern all three forms of transparency in 
complex computational systems identified by Creel (2020), i.e., “functional transparency, or knowledge 
of the algorithmic functioning of the whole[;] structural transparency, or knowledge of how the algo-
rithm was realized [...]; and [...] run transparency, or knowledge of the program as it was actually run in 
a particular instance, including the hardware and input data used [...].” (ibid., p. 569) I take it, however, 
that functional transparency is the main target of XAI, w.r.t. h-opacity.
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unlikely to be particularly useful. Deep Learning models that prove useful [...] 
possess a degree of unavoidable complexity. (Burrell, 2016, p. 5)

Since h-opacity thus concerns the complexity associated with the algorithm (includ-
ing the learning-prescription), it is continuous with the opacity of CS. But it is 
unclear whether, or to what extent, this sort of opacity impairs understanding:

In order to gain understanding of [...] mechanisms of segregation, one does 
not need to know whether Schelling’s model was implemented using a func-
tional, object-oriented, or actor-based language[...]. More drastically, [...] one 
does not even need to know whether the model was implemented on a com-
puter system at all or whether it was implemented on a checkerboard[...]. Thus, 
implementation back-boxing in itself does not undermine our ability to explain 
or understand phenomena. (Sullivan, 2019, pp. 12–13)

This assessment resonates well with various proposals on the opacity of CSs. For 
instance, Durán (2018, p. 108; emph. added) argues that “researchers are only inter-
ested in a limited amount of information that counts for the justification of results.”

For Durán, this allows disputing the epistemic relevance of the unknown ele-
ments, and so whether CSs are even interestingly opaque at all. Similarly (Lenhard, 
2006, pp. 611–613), who embraces CSs’ opacity and considers it “a major obstacle 
to explanatory potential” (Lenhard, 2019, p. 224), still acknowledges that CSs pro-
mote understanding:

a researcher can acquire a kind of orientation within the model [...] based 
on experience of the model’s behavior [....] mediated by the calculating 
machine[...], whereas the model itself remains epistemically opaque. (Lenhard, 
2006, p. 613)

Regardless of which side we take in this debate in detail, the tenor which is common 
to all these positions clearly carries over to DL’s h-opacity: In order to gain under-
standing of underlying mechanisms from DL, we need not understand the training or 
the learning algorithm in full detail (Sullivan, 2019). However, whatever potentially 
prevents understanding in DL, in the sense of a disconnect with underlying, data-
generating mechanisms, must therefore be something else.

3.2  What Was Learned?

H-opacity is one sense in which DL can be a black box, but does it exhaust DL’s 
black box-nature? Consider the following assessment by Raghu and Schmidt (2020, 
p. 27):

Interpretability methods are sometimes equated to a fully understandable, step-
by-step explanation of the model’s decision process. [...] Instead, research in 
interpretability focuses on a much broader suite of techniques that can provide 
insights ranging from (rough) feature attributions—determining what input 
features matter the most, to model inspection—determining what causes cer-
tain neurons in the network to fire.
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Notice that ‘interpretability’ is used synonymous with ‘explainability’ here. In con-
trast to the quote by Rudin (2019) from the introduction, however, we see that more 
may be at stake with‘explanability’ than merely understanding how the machine 
works.

Actually, Raghu and Schmidt acknowledge a “rough split in the type of interpret-
ability method”, according to whether it focuses on model interpretation or feature 
attribution. In a very similar vein, I shall here argue that there are two independent 
dimensions to the opacity-problem in DL, of which h-opacity is one, and which only 
roughly coincide with this (rough) split.

The second dimension concerns the question of what was learned by the machine. 
Call that w-opacity. As I shall show, w-opacity is, ultimately, the distinctive factor 
which sets DL apart from all traditional models and, eventually, impairs our ability 
to acquire scientific understanding in a special way.

In the next section, I will offer a criterion for the existence of two dimensions, 
and demonstrate how it applies in practice. The purpose is to show that w-opacity 
is non-reducible to h-opacity (which is continuous with CSs’ opacity), and so that 
there is a novel challenge. Subsequently, I will argue that this unique combination 
of c-instrumentality and w-opacity is likely to lead to an unprecedented gap between 
scientific discovery and understanding, at least when DL is used under certain con-
ditions of interest in several sciences.

First, however, I should make precise the sense of opacity here. For that pur-
pose, recall the four central elements of Humphreys’ definition: a process, an agent, 
unknown elements of the process, and the epistemic relevance of the unknowns for 
the agent.

The agent could at present be essentially any member of the scientific commu-
nity: Even computer scientist are mostly aware that DNNs are remarkable, but nei-
ther generally understand their functioning nor what it is about given scientific data 
that drives their success. This is why XAI is such a hot topic.

In fact, the unknowns are what makes w-opacity (and DL, accordingly) special: 
They correspond to automatically discovered insights; complex, non-obvious fea-
tures that can be abstracted from the data and allow the machine to discriminate. 
Their existence is an empirical matter, so I will provide examples below.

It is these very features that drive predictive success but, as the examples will 
show, at the same time yield the greatest prospects for understanding. They are 
hence epistemically relevant.

What may be least obvious is the process involved. It would be tempting to refer 
to the underlying mechanisms themselves, for they of course generate those non-
obvious features. However, that would conflate steps (II) and (III): In a sense, it is 
always ‘opaque’ what gives rise to novel data, until (or unless) explanatory models 
are available. That has nothing to do with DL per se.19

19 Additionally, even data-production involves a human component (Hacking, 1992), as do storing, prep-
aration, and dissemination (Leonelli, 2016). Hence, the features in question could be artefacts of data-
generation and handling, or stem from an ill-chosen format for the purposes at hand. Before exploring 
underlying mechanisms, these and similar issues need to be sorted out.
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As a matter of fact, it is easy to recognize the very same process involved in 
h-opacity as involved also in w-opacity. This is what it means that there are two 
dimensions to ‘the’ opacity-problem in DL, instead of two problems. When a DNN 
learns to approximate a desired function, it is hence not only opaque how, pre-
cisely, it achieves this goal: It is also opaque what it is about the data that drives this 
process.

For illustration, we may return to the physics case study. Baldi et al. (2014) actu-
ally performed a benchmark, aimed at estimating the potential of DNNs to discover 
new physics. DNNs here significantly outperformed shallow networks and boosted 
decision trees on well-understood, simulated data. However, by how much the per-
formance differed was highly dependent on the kind of input.

As was noted above, physicists distinguish between ‘low-level’ and ‘high-level’ 
features: The former are more or less directly inferred from (the distribution of) 
electrical signals in the detector, the latter constructed as (usually non-linear) func-
tions of the former. An example of a low-level feature, to recall, is the momentum-
component transverse to the beam pipe associated with a particle track, and one of 
a high-level feature is the reconstructed (invariant) mass of a particle that decayed 
before interacting with the detector.

The surprising result of Baldi et  al. (2014) was that the DNN always outper-
formed the other algorithms when given access only to the low-level features, and 
had a modest additional increase when given access also to the high-level features. 
The other algorithms instead exhibited major differences in performance between 
these situations. From this, Baldi et al. (2014, p. 7; emph. added) concluded “that 
[DNNs] are automatically discovering the insight contained in the high-level 
features.”

These automatically discovered high-level features are a clear instance of the 
unknown ‘whats’, but their existence is by no means restricted to particle physics. 
In the life sciences, for example,20 DNNs have recently excelled in predicting pro-
tein structures from amino acid data, in the form of distances between amino acid 
residues. The researchers here also inquired “how the network arrives at its distance 
predictions”, hoping to further “understanding of the folding mechanisms” (Senior 
et al., 2020, p. 714).

Don’t be misguided by the ‘how’ though: though: Senior et al. used integrated 
gradients to map out “input features that affect the network’s predictions” (Sen-
ior et al., 2020, p. 714; emph. added), and from this concluded that “the network 
is using intermediate predictions to discover important interactions and channel-
ling information from related residues” (ibid.; emph. added). For instance, for 
pairs of residues in direct contact, “all of the highest attribution pairs are pairs 
within or between the secondary structure that one or both of the output pair(s) 
are members of.” (ibid.) Hence, attribution maps suggested that the DNN exploits 

20 A similar point is also made by López-Rubio (2020) about visual categories in convolutional and 
generative-adversarial networks used for image-recognition and production respectively. Note also that 
López-Rubio (2020, p. 1; emp. added) is careful to describe the corresponding states as being “inter-
preted by humans as complex visual categories”.
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information on protein sub-structures, somehow contained (but not plainly vis-
ible) in amino acid-data.

Now, certainly, information on the location of residues with secondary protein 
structure is vastly more informative regarding the production of the protein that 
corresponds to the spatially ordered amino acids in terms of a folding mechanism 
than the mere statement of that spatial information. Similarly, the information 
that a particle with given mass must have been produced as an intermediate state 
in a decay chain is vastly more informative regarding the production of particle 
tracks in terms of an elementary scattering process on the sub-nuclear level than 
the mere statement of those tracks. This illustrates quite vividly why the com-
plex features learned by DNNs, but hidden from plain sight, should be considered 
epistemically relevant.

These examples establish the sense in which DNNs are not just h- but also 
w-opaque—something that connects more closely to questions of understand-
ing ‘the world’ rather than ‘the machine’. ‘But’, you may insist, ‘is it not equally 
opaque what features of initializations to a CS drive its success?’ I believe this to 
be a confusion: Due to the interplay between target-conceptualization and cod-
ing, all information about what makes initial values play out in terms of specific 
simulation outputs is contained in the algorithm, not the data used for initializa-
tion. As far as I can tell, there really is no pendant for w-opacity in CSs or other 
scientific models.

3.3  Independence

As was pointed out above, recognising h- and w-opacity as two dimensions means 
showing the non-reducibility of the latter to the former. For dimensions usually 
characterize independent features: The dimension of a vector space, say, corre-
sponds to the maximum number of linearly independent vectors in that space.

This captures the relevant intuition, but is rather uninformative for showing the 
dimensions’ existence. For that, we need a criterion, like the following: 

(C0)  Two features of opacity to some process shall be considered independent in 
case they can be addressed independently.

The intuitive appeal of (C0 ) may be seen in terms of a mathematical metaphor: If 
we consider the total opacity Op of some process p to be a function of two variables, 
Op(h,w) , then we can see their independence if we are able to keep one fixed while 
investigating changes of Op under variations of the other. As we shall see below, 
something quite similar actually happens in certain studies on DNNs’ opacity.

However, (C0 ) is too unspecific to be used in practice. For that purpose, I sug-
gest to pay attention to the means by which opacity is addressed. Following the 
above discussion, these means correspond to variables either characterizing the DL 
method (weights, biases, choice of activation, etc.) or the DL task (higher-level fea-
tures, protein sub-structures, visual categories, etc.). Hence, refine (C0 ) as follows: 
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(C1)  Two features of opacity to some process shall be considered independent in 
case they can be addressed by means of disjoint sets of variables that make 
reference to distinct features of the process, respectively.

Hence, if the opacity of process p can be addressed by variables that make refer-
ence to one set of features of p, and equally by whole other variables that make ref-
erence to a completely different set of features of p, I take it that this means address-
ing different dimensions of p’s opacity in each case.

Using (C1 ), it is sufficient to prove the existence of explainability-methods utiliz-
ing variables that refer to features relevant solely for addressing either kind of opac-
ity respectively, as shall be done below. First note, however, that I do not claim that 
all or even most XAI-studies can be sorted according to the h/w-distinction. In fact, 
many studies address both dimensions at once, even if in unequal proportion. In this 
sense, there is indeed only a “rough split in the type of interpretability method”.21 
But that doesn’t impair talk of two dimensions: In terms of the earlier mathematical 
metaphor, this is just like saying that for many p from the class of DL algorithms, 
most methods reach points of low Op(h,w) by climbing down a path that reduces 
both h and w (Fig. 4 for illustration).

To see the existence of the dimensions now, first consider the study by Schwartz-
Ziv and Tishby (2017). The authors used an information-theoretic framework to 
address the fact that “there is still no comprehensive understanding of the optimiza-
tion process or the internal organization of DNNs” (Schwartz-Ziv & Tishby, 2017, 
p. 1). What Schwartz-Ziv and Tishby (2017) did was map out the paths followed by 
hidden layers in what they called the ‘information plane’, i.e., the plane defined by 
treating the mutual information I(h(n);x) and I(h(n);y) between hidden layers h(n) and 
input x or targeted output y in a supervised task as axes of a Cartesian coordinate 
system.

A central result was that (tested) DNNs go through two phases in which they 
develop a representation that is in a sense informationally optimal. In the first phase, 
the network increases the information layers have on the desired output; in the sec-
ond phase, information on the input is reduced, so as to remove ‘redundancies’ (cf. 
Schwartz-Ziv & Tishby, 2017, p. 3).

The details are not terribly important; neither is the fact that the validity of this 
result is “critically influenced by the nonlinearities employed by the network” (Saxe 
et  al., 2019, p. 14), or only shown to hold for a certain range of connected tasks. 
What is important is that, firstly, the study contributed to an understanding of how 
certain DNNs learn to achieve successful performance.

Secondly, the nature of input and desired output was irrelevant to seeing two 
phases: Schwartz-Ziv and Tishby (2017) used dots distributed across a sphere, 
which could stand in for various real-world patterns. More precisely, these patterns 
were used as representatives for an equivalence class of tasks related by invertible 

21 Saliency maps, e.g., approximate the weights adjusted by the network during training to map out sali-
ent features of the input (cf. Simonyan et al., 2013). To get a handle on w-opacity, it is thus sometimes 
even useful to reduce h-opacity first.
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transformations (Schwartz-Ziv & Tishby, 2017, p. 4). x and y thus figured as fixed 
parameters to the study, not variables. On the other hand, changing mutual informa-
tions characterise the dynamics of hidden layers—not the data.

Now contrast this with another study from particle physics, entitled What is the 
Machine Learning? (Chang et  al., 2018). Chang et  al. considered an extension of 
the Standard Model (SM) by a new boson that couples to SM-particles. Two dis-
tinct versions of the boson were considered: one coupling to right-handed and left-
handed SM-particles identically and the other exclusively to left-handed ones.

Again, the physics-details are not terribly important; the only thing that matters is 
that the different coupling strengths predict different angular distributions of meas-
urable particles, which can be assessed in terms of a quantity called the rapidity 
difference.

More interesting are the details of the method employed by Chang et  al. What 
they did was weight all statistical distributions for a range of measurable quantities 
point-wise by the inverse height of the distribution of some particular, chosen varia-
ble at that point, thus removing all the information on that quantity from these distri-
butions and flattening its own distribution into a uniform one. This they called ‘data 
planing’, in analogy to the smoothing of a surface in woodwork. In consequence, 
performance-drops were studied.

Besides the rapidity difference, also the reconstructed invariant mass of the par-
ticle was planed for. In the symmetric case (coupling to left- and right-handed parti-
cles identically), planing away the mass-information already obliterated the DNN’s 
ability to discriminate. In the asymmetric case (coupling to left-handed particles 
only), the DNN remained at least somewhat able to discriminate signal from back-
ground data, so long as only the mass was planed for. When both rapidity difference 
and mass were planed for, however, predictions amounted to guesswork in this case 
as well.

This result concurs with the fact that DNNs rely on higher-order information that 
they abstract from the data autonomously. However, crucial for the question of two 
dimensions is that, firstly, the physical quantities planed away are obvious instances 
of (potentially unknown) ‘whats’.

Secondly, for the sake of seeing which physical quantities yielded the discrimi-
nation-power, it was irrelevant how the network evolved during training. These facts 
figured as fixed parameters of the study. Physics variables characterizing the data, 
together with (global) performance-measures, conveyed insight into the reasons for 
success.

Now recall that (C1 ) urges us to pay attention to the means (more precisely: vari-
ables) by which a given feature of opacity is addressed. Given that Schwartz-Ziv 
and Tishby (2017) used some arbitrary input from a broad equivalence class and a 
dummy-output to be achieved (i.e., some randomly chosen binary classification of 
patterns), the amount of information contained in a DNN’s hidden layers on these 
during any given training epoch was used exclusively to characterize (the dynam-
ics undergone by) the architecture. In contrast, neither physics variables nor global 
performance measures make any reference to that architecture at all. I hence take it 
that these two studies demonstrate convincingly that there are aspects of opacity in 
DL for which (C1 ) is fulfilled. In other words: W-opacity constitutes an independent 
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dimension to the opacity of DL, and may therefore create an independent epistemic 
problem (as I believe it does).

4  The Deep Learning Predicament

4.1  The Utility of Unsupervised Learning

I have argued that DL models are c-instrumental and opaque in a unique sense, but 
it is not clear yet what follows from this for scientific understanding. As we saw in 
Sect.  2.4, if steps (I)–(III) are executed skilfully, DL will promote understanding. 
In this section, I will finally demonstrate that (I)–(III) cannot always be realistically 
executed.

An important first step for seeing this is to realize that in the above examples it 
was straightforwardly possible to recognize the hidden, complex features exploited 
by DNNs (the unknown ‘whats’) because these were benchmark-studies. In the pro-
tein case, structures had been determined experimentally beforehand; in both parti-
cle studies, the data came from CSs, and so were well-understood in terms of con-
ceptual physics models. In these studies, researchers were hence in possession of 
rich information about the targeted objects and used that information to tackles the 
question of what the network had learned.

Now the situation is clearly different when the goal is genuine discovery: As was 
pointed out in Sect. 2.2, DNNs can make predictions as to the occurrence or obser-
vation of future or so far unobserved events (strong prediction) or of a certain data 
point (or a set thereof) qualifying as indicative of a certain type of phenomenon 
(weak prediction). However, if, unlike in the pulsar example, the phenomenon is 
predicted to be of a novel type, it may not just be unclear what features of the data 
give rise to the prediction: It may even be unclear how to identify these.

Before turning to a realistic scenario in which this can happen, let me first point 
out that unsupervised learning plays a special role in this connection. The contrast 

Fig. 4  Illustration of the metaphor explaining the difference between dimensions of opacity and the 
rough split between explainability methods. Dashed lines symbolize a surface of values Op takes on over 
the h − w quarter-plane. The dotted line indicates a path traced out by an explainability method
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between supervised and unsupervised DL roughly corresponds to classification22 
versus clustering (Suthaharan, 2016,  pp. 7–8): In a supervised task, training-data 
are labelled, and so the model learns to sort new data into pre-defined classes. Unsu-
pervised models simply group together data based on structures encountered during 
training.

The usefulness of either depends on the kind of application: “Some domains, 
such as natural language processing, are known to benefit tremendously from unsu-
pervised learning techniques” (Goodfellow et  al., 2016, p. 412), and this is likely 
also true of searches for new phenomena in particle physics.

Deep autoencoders have in fact been trained in a weakly supervised fashion on 
particle data (cf. Farina et al., 2020), meaning that they learn to recognize only data 
labeled ‘background’ (i.e., ‘not of interest’), and everything else is lumped into a 
catch-all ‘anomaly’-class. It is thus possible to discover traces of new particles with-
out relying on predictions from theory (which may not be available at all).

However, a major drawback to this approach is “the reliance on accurate back-
ground-only samples for training” (Farina et al., 2020, p. 6). It would be natural to 
employ CSs in producing those samples, but “[t]his would work only insofar as the 
[CS] accurately represents the background in the data[...][and] artifacts special to 
the [CS] are not learned by the autoencoder.” (ibid.)23

Surprisingly, in an unsupervised benchmark by Farina et  al., “the autoencoder 
still succeeds in detecting anomalies in the test set even though they are present in 
the training set[...] as long as [it] does not see ‘too many’ anomalies in the course 
of its training[...]” (Farina et  al., 2020, p. 7). Hence, unsupervised DNNs trained 
on supposedly well-understood data might able to recognize rare but poorly under-
stood events. Moreover, because they are not subject to the same theoretical bias as 
(weakly) supervised models, they have a greater discovery-potential in that respect.

4.2  Unsupervised Exploration: Discovery Without Understanding?

Now consider the conditions under which remarkable discoveries are quite often 
made: Exploratory phases, which are not strongly guided by theory. Exploratory 
experimentation has been recognized for being special in many ways; most impor-
tantly in that “[t]he typical context of exploratory experimentation is the formation 
of [...] conceptual frameworks.” (Steinle, 1997, p. S71; emph. added)

As an example, Steinle (1997, p. S72) discusses Faraday’s introduction of the 
concept of magnetic force-lines, which ultimately lead to Maxwell’s electrodynam-
ics.24 As we now know, this was an important step towards major scientific progress. 
But it took “two [...] decades” until even Faraday’s “concept was fully developed” 
(ibid.).

It now comes in handy that we have chosen particle physics as a major case 
study, for it is about to enter an exploratory phase: Despite its predictive success, the 

22 ... and regression; cf., however, Fn. 4.
23 Cf. Farina et al. (2020, p. 6) for similar problems with more data-driven approaches.
24 See, however, Steinle (2016, Chapt. 7), for a wealth of further examples.
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SM neither includes gravity nor dark matter, cannot explain neutrino oscillations, 
and has suspicious ‘fine-tuning’ properties. At the same time, many of the SM’s 
favoured extensions have been ruled out by evidence, and future theoretical devel-
opments are far from obvious. Accordingly, the preamble of the 2020 update of the 
European strategy for particle physics emphasizes “the exploration of a new realm 
of energies” (European Strategy Group, 2020, p. 5).

Now recall, however, how physicists struggled greatly to make sense of the ‘par-
ticle zoo’ discovered in the 20th century. The discovery of muons, for instance, was 
famously greeted with the query “Who ordered that?” by Isidor Isaac Rabi. It is 
hence perfectly conceivable that the upcoming exploratory phase will reveal sub-
tle traces of further unexpected particles. But now the following question arises: if 
such a discovery was powered by an unsupervised DNN, would physicists be able to 
make sense of it?

Given everything that was said so far, I believe that this is far from clear, and that 
highly similar problems may arise in other data-heavy sciences. For instance, con-
sider the following verdicts from the earth science community:

Unsupervised learning may aid the discovery of novel relationships[...] across 
the different dimensions of climate modelling [...]. A subsequent challenge 
for the Earth System community would be where an unsupervised approach 
reveals new system connections, requiring mechanistic understanding. (Hunt-
ingford et al., 2019, p. 5)

[D]eep learning will soon be the leading method for classifying and predicting 
space-time structures in the geosciences. More challenging is to gain under-
standing in addition to optimal prediction, and to achieve models that have 
maximally learned from data, while still taking into account physical and bio-
logical knowledge. (Reichstein et al., 2019, p. 200)

To see where precisely the problems originate, first recall the difference between 
unsupervised and (semi-)supervised learning discussed in the previous section. In 
terms of underlying mechanisms, this difference plays out as follows: In a discovery 
based on supervised DNNs, the labels stem from a conceptualization of the target. 
Ideally, this will allow researchers to bypass w-opacity, because steps (II) and (III) 
will be fixed by some explanatory models’ suggesting those labels.

Weakly supervised DNNs rely only on ‘negative’ labels, unsupervised ones on no 
labels at all. Thus, in both cases, the connection to underlying mechanisms becomes 
severed. In the unsupervised case, however, these observations extend even to mod-
els explaining the non-anomalous data. Thus unsupervised models not only yield 
the greatest discovery potential, but at the same time also the greatest disconnect to 
prior knowledge of data-generating mechanisms.

Now, if an unsupervised DNN (weakly)25 predicts the presence of a novel phe-
nomenon, physicists would certainly have several aces up their sleeves. They might 

25 Of course, it cannot be excluded that a DNN analyzing, say, the overall pattern of how known parti-
cles distribute across the existing data will be able to predict further particles at higher energies, i.e., to 
predict particles in the strong sense. However, at present, this seems to be mere speculation.
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try to match it to existing proposals for new physics by adjusting certain free param-
eters in the corresponding physics-models. Or they might reassess their understand-
ing of the background-physics in the domain where a significant anomaly is being 
indicated, with the goal of seeing whether the prediction was spurious.

However, absent any plausible physics model or reason for doubting the DNN’s 
prediction, a real problem for explanation and understanding would arise from such 
an event. To see this clearly, consider also the importance of background theories 
in exploration (e.g. Franklin, 2005). The distinction Franklin makes between ‘back-
ground’ and ‘local’ theories in biology parallels similar distinctions made by Wal-
lace (2020) and Karaca (2013) in physics. In detail, background theories determine 
the general structure of mechanisms in biology, or the structure of state spaces in 
physics, whereas local theories determine only the concrete ingredients to a particu-
lar mechanism or the state space for the problem at hand. In exploration, moreover, 
background theories “direct inquirers to the kinds of properties that could possibly 
have a [...] role in their local investigations[...]” (Franklin, 2005, p. 891).

Now at the very inception of present-day particle physics stand Rutherford’s scat-
tering-experiments (Duncan & Janssen, 2019,  pp. 154), and famously, the first to 
make sense of several experimental findings here was Bohr. His explanation was 
based upon the assumption of quantized orbits for electrons (Duncan & Janssen, 
2019, pp. 11–12), a development which contributed greatly to his later development 
of the atom model. Ultimately, this lead to modern-day quantum theory—a then-
new background theory, which even introduced mathematics unfamiliar to physicists 
at the time.

The conceptual shift between classical and quantum theories is thus as radical 
as any (just think ‘superposition’ and ‘entanglement’), which underscores Steinle’s 
observations. Against the manifold successes of what is now called ‘classical phys-
ics’, such a leap must have clearly seemed inconceivable to many at the time (just 
recall Kelvin’s infamous ‘two clouds’). Yet it happened, stimulated by empirical 
findings that could not be properly conceptualized within the classical framework.

The point, then, is this: While the role Franklin ascribes to background theories 
in exploratory research may be correct in principle, exploration can even induce the 
need for new background theories. Given also the profound surprises particle physi-
cists have faced in the past, we can’t exclude big conceptual shifts lurking at unex-
plored energies.

A little more precisely, particle physics’ present background theory is quantum 
field theory (QFT), so most candidate physics explanations would presumably be 
presented in terms of some QFT-Lagrangian. However, given, e.g., the well-known 
difficulties of integrating Einstein’s general theory of relativity into QFT, it is by no 
means certain that QFT has the resources for providing the desired new model. And 
it is impossible to estimate how big a conceptual shift will be required in finding that 
new background theory.

The outlook on the quest for scientific understanding in an exploratory context 
where an unsupervised DNN powers new discoveries now comes out as follows: 
Being c-instrumental, we could not expect an explanation directly from the DNN. 
However, in pursuing steps (I)–(III) scientists would have to rely on previously 
established concepts, and hence be prone to assigning the wrong meaning to the DL 
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model. This would definitely hinder an extended understanding in terms of a new 
background theory, for:

Research questions can be posed only with particular concepts. In the context 
of another conceptual scheme they may well fail to make sense, in which case 
they elude attention. (Steinle, 2016, p. 333)

And again, this is not mere philosophical speculation in the void, but an actual sci-
entific problem recognized (if somewhat vaguely) by active researchers:

Even complex problems in computer vision have been solved by hand-crafted 
features that reflect the assumptions and expectations that arise from com-
mon world knowledge. In geoscience and climate science, such global, general 
knowledge is still partly missing, and indeed, is exactly what we are seeking in 
research (hence, it cannot be an assumption). (Reichstein et al., 2019, p. 200; 
emph. added)

Note the crucial role of w-opacity here: It is exactly the ability of DNNs to ‘auto-
matically discover’ important, complex features that further prediction and, at the 
same time, provide a basis for understanding underlying mechanisms (such as the 
development of secondary protein structure, or the intermediate decay of a certain 
massive particle). But if these features are so far not understood by humans, it is 
far from clear how to abstract them from a successful DNN by means of standard 
interpretability methods; for “the subsequent interpretation of the final state of the 
trained network depends on human categories expressed in natural language by the 
human evaluators” (López-Rubio, 2020, p. 12).

Hence, to put it in the words suggested to me by an anonymous referee, the DNN 
finds significant features, but the translation of these into scientific concepts is up to 
scientists’ ability and knowledge. This is because concepts are expressed linguisti-
cally, but current state of the art DNNs do not have the ability to generate linguistic 
descriptions of the concepts that underlie these automatically discovered significant 
features.

5  Conclusion

I have argued that DNNs are c-instrumental models that harvest their success in a 
w-opaque way. Even though they excel as predictive tools, they thus do not deliver 
explanations themselves and may conceal information relevant for new-concept-for-
mation. As I have shown, this creates the possibility of unprecedented gaps between 
discovery and understanding in the near future; in particular, when the following 
four factors are jointly present: 

1. In an exploratory experimental context,
2. an unsupervised model
3. predicts an unexpected discovery, whose understanding
4. requires a radical conceptual shift.
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Emphatically, I am not claiming that only under conditions 1.–4. will scientists face 
problems in gathering understanding of underlying mechanisms from DL, nor that 
this is bound to happen in case 1.–4. occur: Certainly, executing step (III) can be 
hard under far less drastic circumstances, and maybe the right set of geniuses, with 
the necessary ‘exotic’ ideas, are around the corner if and when 1.–4. happen (as in 
the quantum revolution).

However, hoping for geniuses to be around is certainly not a satisfying response 
to this problem, and given the current state of several big-data sciences (as well as 
the astonishing DL successes witnessed therein), I submit that we might plausibly 
face a scenario like the above in the near future.

What this means for science as whole remains to be seen: Will future scientists 
value prediction over explanation? Or will they develop new skills for constructing 
explanatory models from sparse information? There are certainly already some steps 
that seem to point in the latter direction: Reichstein et al. (2019), for instance, sug-
gest a hybrid approach in which physics information is incorporated into the train-
ing, and Alvarez Melis and Jaakkola (2018) propose a framework for DNNs that are, 
in a sense, ‘self explaining’.

However, neither of these proposals seems to make contact with the conceptual 
challenges I have raised in this paper, and I am not convinced that any approach 
to ‘self-explanation’ could deliver something like the complex, involved—and often 
quite ingenious—models that arise from advanced physical (or, more generally: sci-
entific) theorizing.

In any case, I hope to have shown convincingly that, in a precise sense, the 
w-opacity and c-instrumentality of DL models indeed have the potential to pro-
foundly ‘change the face of science’.
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