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Abstract A latent internal process describes the state of some system, e.g. the social
tension in a political conflict, the strength of an industrial component or the health
status of a person.When this process reaches a predefined threshold, the process termi-
nates and an observable event occurs, e.g. the political conflict finishes, the industrial
component breaks down or the person dies. Imagine an intervention, e.g., a political
decision,maintenance of a component or amedical treatment, is initiated to the process
before the event occurs. How can we evaluate whether the intervention had an effect?
To answer this question we describe the effect of the intervention through parameter
changes of the law governing the internal process. Then, the time interval between
the start of the process and the final event is divided into two subintervals: the time
from the start to the instant of intervention, denoted by S, and the time between the
intervention and the threshold crossing, denoted by R. The first question studied here
is: What is the joint distribution of (S, R)? The theoretical expressions are provided
and serve as a basis to answer the main question: Can we estimate the parameters of
the model from observations of S and R and compare them statistically? Maximum
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likelihood estimators are calculated and applied on simulated data under the assump-
tion that the process before and after the intervention is described by the same type
of model, i.e. a Brownian motion, but with different parameters. Also covariates and
handling of censored observations are incorporated into the statistical model, and the
method is illustrated on lung cancer data.

Keywords First passage times · Maximum likelihood estimation · Wiener process ·
Degradation process · Effect of intervention · Survival analysis

1 Introduction

Statistical inference for univariate stochastic processes from observations of hitting
times, i.e. epochs when the process attains a boundary for the first time, is a common
problem, see Lee andWhitmore (2006) and references therein. Here we investigate its
specific variant for perturbed stochastic processes and discuss it in a general setting,
presenting some of the fields in which this methodology can be applied. At a known
time instant, either controlled by an experimentalist or induced by an independent
external condition, an intervention is applied and the time to a given event following
the intervention is measured. Assume that the intervention causes a change in the
parameters of the underlying process. This scenario can be found in many fields, such
as reliability theory, social sciences, finance, biology or medicine. The time course of
the intervention can be interpreted as a time-varying explanatory factor in a threshold
regression. Also constant and time-varying covariates can be incorporated into the
underlying parametric model for the stochastic process, in the spirit of Lee et al.
(2008, 2010).

A degradation process in amedical context is commonlymodeled as an intrinsic, but
not observable, diffusion stochastic process. With this interpretation, our model takes
into account an abrupt change of medication or life style before an observable event
takes place. For example, in Commenges and Hejblum (2013) the event is myocardial
infarction or coronary heart disease and the degradation is the atheromatous process,
which is modeled as a Brownian motion with drift, where the drift is a function of
explanatory variables. Lee et al. (2008) use a time scale transformation to accommo-
date treatment switching in clinical trails: the total survival time from randomization is
a linear combination of two event times, randomization-to-switch and switch-to-death.
Here we keep the original times, but instead model the switching by a change in the
drifts, which introduces a dependence structure between the two times. The interpre-
tation in our model is that the underlying Wiener process is a model of a deterioration
process, and the intervention either accelerates or slows down the risk process. Lee et
al. (2010) propose a Markov Threshold regression model for time-varying covariates.
The model decomposes the complete longitudinal process of a subject into a series
of shorter processes based on times at which observed covariates change in value.
Between two consecutive measurements, the latent process describing the health sta-
tus of a subject is then approximated by a function of the observed covariates. In this
paper we do not assume access to the time-course of the covariates, and the latent
process is estimated only through the observed times before and after the intervention.
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Similarly to the survival context in medicine, for analysing reliability of technical
systems it is important to investigate damageprocesses.Acommonmodel is theWiener
process (Whitmore 1995; Whitmore and Schenkelberg 1997; Whitmore et al. 1998,
2012; Kahle and Lehmann 1998). In Pieper et al. (1997), changing drifts of Wiener
processes describes various stress levels for a damage process. Doksum and Hoyland
(1992) use a Gaussian process and inverse Gaussian distribution (IGD) to discuss a
lifetime model under a step-stress accelerated life test. Nelson (2008) discusses prac-
tical issues when conducting an accelerated life test. Yu (2003) proposed a systematic
approach to the classification problem where the products’ degradation paths satisfy
Wiener processes.Ourmodel fits into the above framework as follows. The degradation
of a component is modeled by a Wiener process with failure corresponding to the first
crossing of a certain level. The time for maintenance is independently of the time since
last repair and the maintenance changes the parameters of the Wiener process. Then
frommeasurements of the time from last repair to the time ofmaintenance and from the
maintenance to the degradation,we deduce the effect of themaintenance on the system.

Lancaster (1972) makes effective use of the IGD in describing data on duration of
strikes in UK between 1965 and 1972. The approach is via the first passage time (FPT)
of an underlying Wiener process, which follows an IGD, and has also been used by
Harrison and Stewart (1993) ,Desmond and Yang (2011). Again, the model studied in
this paper can fit this scenario. Imagine that during a strike an important offer towards
strikers is proposed. Then the time after may move on a different scale.

In neuroscience, the interval between two consecutive action potentials is often
studied being related to information transfer in neurons. The Wiener process is some-
times chosen to model the subthreshold membrane potential evolution of the neu-
ron (Gerstein and Mandelbrot 1964) and parameter estimation has been investigated
(Lansky and Ditlevsen 2008). In many experiments, a stimulation (the intervention)
such as a sound or a visual image is presented and the changes in electrical activity
of the neuron is measured. Estimation from observations of the last action potential
before the intervention and the next following it, also in presence of delayed response
to the stimulus, has been investigated (Tamborrino et al. 2012, 2013). The current
model also fits this framework.

The aim of this paper is to solve two problems. The first is the investigation of
the joint distribution of the subintervals up to the instant of intervention, and between
the intervention and the first crossing after it. This is needed for the second problem,
namely the estimation of the parameters of the process before and after the intervention
and testing their equality. This allows to statistically judge the effect of an intervention,
if it is as intended or expected and to quantify the size, by comparing latent processes
before and after intervention within subjects. The proposed modeling framework can
then serve as an alternative to standard survival models, where placebo groups in a
medical context have to be included in a randomized experiment to evaluate the effect
of treatment. Obviously, in our model, the time to treatment and time to failure are
dependent and the statistical inference is complicated by not observing the position of
the process at the time of intervention. Further complications arise in the presence of
censoring or truncation. Right censoring occurs if the event does not happen before the
end of study, which for example is often occurring in medical studies as in the example
above where a patient does not die before the end of study or is lost to follow-up. Also
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left censoring has to be accounted for if time of diagnosis or disease onset is unknown.
Another type ofmissing data can occur if the event happens before the intervention, e.g.
a strike ends without any political intervention or a patient dies before the beginning
of a treatment. With a slightly abuse of notation we will call this truncation. These
schemes can easily be incorporated into the likelihood, as long as data are available.
This can be a problem under truncation: If the study is started at time of intervention,
then the study population is defined as those subjects who receive the intervention,
and data from before are collected retrospectively. Then it is not well-defined how
many study subjects have an event before the intervention. This can bias the estimates
of parameters governing the process before intervention, as will be illustrated on a
data set on lung cancer. This will typically be a problem in medical studies, but not
in the strike example, where for example ”strikes in UK between 1965 and 1972”
is well-defined. In the neuroscience example, neither censoring nor truncation will
be relevant, because the observation period typically will include many spikes both
before and after the intervention, and thus, the interval containing the intervention is
always fully observed.

The main contributions of the paper are the solutions to these questions in the
case of a perturbed Brownian motion. A detailed guideline on how to carry out both
simulation of the data and parameter estimation in the computing environment R
(R Development Core Team 2011) is presented (see Appendices 2 and 3). Using the
derived theoretical expressions, estimation could be carried out for more complicated
diffusion processes.

In Sect. 2 the type of experimental data together with a description of the involved
quantities and variables are presented. In Sect. 3 we describe the model, mathemati-
cally define the quantities of interest and derive the probability densities for a general
diffusion process. The Brownian motion model under different assumptions on its
parameters is treated in Sect. 4. The estimation procedure, accommodating for covari-
ates and for right and left censored and truncated data, is described in Sect. 5. The
performance of the maximum likelihood estimators and testing the difference between
parameters are illustrated in Sect. 6 on simulated data, and finally theVeteran’sAdmin-
istration lung cancer data set taken from Kalbfleisch and Prentice (1980) is analyzed
in Sect. 7 and compared to previous analysis.

2 Data

The type of experimental data and the description of the involved quantities are illus-
trated in Fig. 1. At a time independent of when the process started, an intervention
is applied and the time the process has run as well as the time to an event after the
intervention are measured. The time of the intervention is set to 0 by convenience.
The intervention divides the observed interval into two subintervals: the time from the
start of the process to the instant of intervention, denoted by S, and the time between
the intervention and an event after it, denoted by R. Thus, the observed interval has
length S+ R. The experiment is repeated n times. This allows to obtain n independent
and identically distributed pairs of intervals (Si , Ri ), for i = 1, . . . , n. Note that Si
and Ri are not independent. A common situation for failure time data is the need to
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S R0

X(0)
No censoring

S 0

X(0)

R

Right censoring

S R0

X(0)
Left censoring

S 0

Truncation

Fig. 1 Schematic illustration of the single trial. At time 0, an intervention is applied, dividing the observed
interval into two subintervals: the time S upto the instant of intervention, and the time R between the
intervention and the first crossing after it. The random position of the process at time 0 is denoted by X (0).
In the fully observed case, the variables S and R are uncensored (top panel). Under right censoring, a
censoring time happens before the event (middle top panel). Under left censoring, the start of the process
is not observed (middle lower panel). In presence of truncation, an event happens before the intervention
occurs (lower panel), and R = 0

accommodate censoring or truncation in data. Left censoring happens when the time
of start of the process is not observed, and right censoring when the study ends before
an event occurs. In these cases either S or R are only known to be larger than a given
value. Truncation happens if an event occurs before the intervention. In this case R is
undefined.
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3 Model and its properties

We describe the dynamics of the system by a diffusion process X (t), starting at some
initial value x0. An event occurs when X exceeds a threshold B > x0 for the first time,
which for now is assumed not to happen before time 0. Later this assumption will be
relaxed (truncation is allowed for). The (unobserved) position of the process at time
of the intervention is X (0). Thus, t is running in the interval [−S, R] with S, R > 0,
and we assume X (t) given as the solution to a stochastic differential equation

{
dX (t) = ν (X (t), t) dt + σ (X (t), t) dW (t),
X (−S) = x0, X (R) = B, X (t) < B for t ∈ [−S, R),

where W (t) is a standard (driftless) Wiener process. We consider ν(X (t), t) =
ν1 (X (t)) and σ(X (t), t) = σ1(X (t)) for t < 0, and assume that the intervention
causes a change in the parameters of the underlying process to ν(X (t), t) = ν2(X (t)),
and likewise for σ(X (t), t). If there is no intervention, the standard approach is to
study the FPT of X (t) through the constant boundary B, denoted by T . This is the
same as the intervention having no effect. Thus, define T = S + inf{t > 0 : X (t) ≥
B|ν1 = ν2, σ1 = σ2}. Here T is not observed, but we can still consider its distribution.
In case that the FPT happens before time 0 then T = S.

3.1 Probability densities of S, X (0), R and (S, R)

It is well known from the theory of stationary point processes that the backward
recurrence time S is length biased, and the density is a functional of the distribution
of T . In particular, the probability density function (pdf) of S is given by (Cox and
Lewis 1966)

fS(s) = F̄T (s)

E[T ] , (1)

where F̄T (s) = 1− FT (s) = P(T > s) denotes the survival function, and E[T ] is the
mean of T . The first two moments of S are given by (Cox and Lewis 1966)

E[S] = E[T 2]
2E[T ] ; Var[S] = 4E[T ]E[T 3] − 3E[T 2]2

12E[T ]2 . (2)

The conditional density of X (0) given that B has not been crossed upto time 0 is
(Aalen and Gjessing 2001)

fX (0)(x |s) =
∂
∂x P(X (0) < x, T > s)

P(T > s)
= f aX (0)(x, s)

F̄T (s)
, (3)

where f aX (0)(x, s) denotes the pdf of the process at time 0 in presence of a constant
absorbing boundary and given that X (−S) = x0. The unconditional density of X (0)
is given by
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fX (0)(x) =
∫ ∞

0
fX (0)(x |s) fS(s)ds = 1

E[T ]
∫ ∞

0
f aX (0)(x, s)ds, (4)

where we used (1) and (3). The variable R coincides with the FPT of X through the
boundary B, when the process starts in the randomposition X (0) < B with conditional
density fR|X (0)(r |x). The unconditional pdf of R is given by

fR(r) =
∫ B

−∞
fR|X (0)(r |x) fX (0)(x)dx . (5)

The joint pdf of (S, R) is

f(S,R)(s, r) = 1

E[T ]
∫ B

−∞
fR|X (0)(r |x) f aX (0)(x, s)dx (6)

since

F(S,R)(s, r) =
∫ s

0
P(R < r |S = u) fS(u)du

=
∫ s

0

∫ B

−∞
P(R < r |X (0) = x, S = u) fX (0)(x |u) fS(u)dxdu

=
∫ s

0

∫ B

−∞

∫ r

0
fR|X (0)(t |x) fX (0)(x |u) fS(u)dtdxdu

= 1

E[T ]
∫ s

0

∫ B

−∞

∫ r

0
fR|X (0)(t |x) f aX (0)(x, u)dtdxdu,

where we condition on X (0), then use the Markov property, and finally insert (1) and
(3).

4 The Wiener process

Consider a Wiener process X with ν1(X (t)) = μ1 > 0 and σ1(X (t), t) = σ1 > 0
for t < 0 and assume that the intervention causes a change in the parameters of
the underlying process to μ2, σ2 > 0. The process is space homogeneous, meaning
that increments follow the same distribution independent of where we are in state
space, in contrast to mean reverting processes like the Ornstein-Uhlenbeck. The FPT
distribution is completely determined by two parameters, and therefore two of the four
free parameters have to be fixed for identifiability. The standard approach is to let μ

vary freely, and to fix two of the three parameters x0, B and σ . We therefore set x0 = 0
without loss of generality, and also fix B, which is thus giving the distance the process
has to travel, and is just a scaling in arbitrary units. Since X is a Wiener process with
positive drift, T follows an IGD, T ∼ IG(B/μ1, B2/σ 2

1 ), mean E[T ] = B/μ1 and
variance Var[T ] = Bσ 2

1 /μ3
1 (Chhikara and Folks 1989). The pdf of S follows from

(1),
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fS(s) = μ1

B

⎧⎨
⎩Φ

⎛
⎝ B − μ1s√

σ 2
1 s

⎞
⎠ − exp

[
2μ1B

σ 2
1

]
Φ

⎛
⎝−B − μ1s√

σ 2
1 s

⎞
⎠

⎫⎬
⎭ , (7)

where Φ(·) denotes the cumulative distribution function of a standard normal distrib-
ution. Inserting the first three moments of T into (2), we get

E[S] = Bμ1 + σ 2
1

2μ2
1

; Var[S] = 1

3

(
Bμ1 + 3σ 2

1

2μ2
1

)2

; CV(S) = Bμ1 + 3σ 2
1√

3(Bμ1+ σ 2
1 )

, (8)

where CV(S) denotes the coefficient of variation of S, defined as the ratio between the
standard deviation and the mean. The pdf of X (0) in presence of a constant absorbing
boundary B is (Aalen and Gjessing 2001; Cox and Miller 1965; Giraudo et al. 2011;
Sacerdote and Giraudo 2013)

f aX (0)(x, s)=
1√

2πσ 2
1 s

{
exp

[
− (x − μ1s)2

2σ 2
1 s

]
−exp

[
2μ1B

σ 2
1

− (x − 2B − μ1s)2

2σ 2
1 s

]}
,

(9)
for x ∈ (−∞, B). Inserting (9) into (4), we get

fX (0)(x) = 1

B

[
exp

(
μ1(x − |x |)

σ 2
1

)
− exp

(
2μ1(x − B)

σ 2
1

)]
. (10)

The mean and variance of X (0) are given by

E[X (0)] = Bμ1 − σ 2
1

2μ1
, Var[X (0)] = B2μ2

1 + 3σ 4
1

12μ2
1

. (11)

The distribution of R conditioned on X (0) = x is R|X (0) ∼ IG ((B − x)/μ2,

(B − x)2/σ 2
2

)
. Plugging this and (10) into (5), we obtain

fR(r) = μ2

B

[
Φ

(
B − μ2r

σ2
√
r

)
− Φ

(
−μ2

√
r

σ2

)]

+μ2σ
2
1 − 2μ1σ

2
2

Bσ 2
1

exp

(
2μ1r(μ1σ

2
2 − μ2σ

2
1 )

σ 4
1

)

×
[
exp

(
2μ1B

σ 2
1

)
Φ

(
− Bσ 2

1 + 2rμ1σ
2
2 − μ2rσ 2

1

σ 2
1 σ2

√
r

)

−Φ

(
−2μ1rσ 2

2 − μ2rσ 2
1

σ 2
1 σ2

√
r

)]
.
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Finally, using (9) and fR|X (0) in (6), we get

f(S,R)(s, r) = μ1

B
√
2π [σ 2

1 s + σ 2
2 r ]3

exp

{
− (B − μ1s − μ2r)2

2(σ 2
1 s + σ 2

2 r)

}

×
⎧⎨
⎩[(B − μ1s)σ

2
2 + μ2σ

2
1 s]Φ

⎛
⎝√

r
(B − μ1s)σ 2

2 + μ2σ
2
1 s

σ1σ2

√
s(σ 2

1 s + σ 2
2 r)

⎞
⎠

− exp

{
2r B(μ1σ

2
2 − μ2σ

2
1 )

σ 2
1 (σ 2

1 s + σ 2
2 r)

}
[(−B − μ1s)σ

2
2

+μ2σ
2
1 s]Φ

⎛
⎝ (−B − μ1s)σ 2

2 + μ2σ
2
1 s

σ1σ2

√
s(σ 2

1 s + σ 2
2 r)

√
r

⎞
⎠

⎫⎬
⎭ . (12)

No closed expressions for CV(R), covariance and correlation of S and R are available,
except for σ 2

i = kμi , k > 0, as described below. In Fig. 2 we illustrate CV(S)

given by (8) and numerically approximate CV(R),Cov(S, R) and Corr(S, R) for
those parameter values used in Sect. 5. Note that when μ2 → ∞, the expected time
for an event after the intervention goes to zero; E[R] → 0. Also, Var[R] → 0,
whereas CV(R) does not, as shown in Fig. 2. The figure can be helpful to understand
the behaviour of the estimators for different values of the parameters.

4.1 Special case: squared diffusion coefficients proportional to the drifts

No assumptions on the relation between changes in the drift and changes in the variance
of theWiener process have been made. However, in many applications larger values of
a variable are followed by a larger variance. This is formalized, for example, by thewell
known psychophysical Weber’s law, claiming that the standard deviation of the signal
is proportional to its strength (Laming 1986). Applying this law to the IGD by relating
mean and standard deviation, given prior to Eq. (7), we obtain that σ 2 is proportional
to μ. An analogous result can be derived from the diffusion approximation procedure
(Lansky and Sacerdote 2001). We therefore assume the squared diffusion coefficients
proportional to the drift coefficients, i.e. σ 2

i = kμi , for k > 0, i = 1, 2. The above
expressions simplify to

E[S] = B + k

2μ1
, Var[S] = (B + 3k)2

12μ2
1

, CV(S) = B + 3k√
3(B + k)

,

E[X (0)] = B − k

2
, Var[X (0)] = B2 + 3k2

12
,

fR(r) = μ2

B

{
Φ

(
B − μ2r√

kμ2r

)
− exp

(
2B

k

)
Φ

(−B − μ2r√
kμ2r

)}
= F̄T ∗(r)

E[T ∗] ,

(13)
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Fig. 2 Theoretical CVs of S and R and Corr(S, R) as functions of μ1, μ2 and k. Panel (A) No further
assumptions aremade. The parameters areμ1 = 1, σ 2

1 = 0.4, σ 2
2 = 0.1, yielding an approximate CV(S) =

0.62. Panel (B) Equal variances σ 2
1 = σ 2

2 = 0.1, 0.4, 1 and 2, the parameters are μ1 = 1 for μ2 ∈ [0.1, 6],
yielding an approximate CV(S) = 0.59, 0.62, 0.68 and 0.77; μ2 = 1 for μ1 ∈ [0.1, 6]. Panel (C) The
variances are proportional to the drifts, i.e. σ 2

i = kμi , k > 0. The parameters are μ1 = 1 and μ2 = 2.
Note that in this case, CV(S),CV(R) and Corr(S, R) are the same for any value of μ1 and μ2, since they
do not depend on μ1 and μ2 (see Sect. 4.1)

where T ∗ denotes the FPT through B of the Wiener process starting in 0 with drift μ2
and diffusion coefficient

√
kμ2. Note that R is distributed as the forward recurrence

time of T ∗, as well as S is distributed as the backward recurrence time of T . Thus

E[R] = B + k

2μ2
, Var[R] = (B + 3k)2

12μ2
2

, CV(R) = B + 3k√
3(B + k)

. (14)

Interestingly, CV(S) = CV(R) and they only depend on k and not on the specific
values of the coefficients. The joint pdf of S and R is

f(S,R)(s, r) = μ1μ2√
2πk(μ1s + μ2r)3

exp

(
− (B − μ1s − μ2r)2

2k(μ1s + μ2r)

)

= μ1μ2

B
fIG(B,B2/k)(μ1s + μ2r), (15)
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and the covariance and correlation of S and R are

Cov(S, R) = E[SR] − E[S]E[R] = 3k2 − B2

12μ1μ2
, (16)

Corr(S, R) = Cov(S, R)√
Var[S]Var[R] = 3k2 − B2

(B + 3k)2
, (17)

see Appendix 1 for detailed derivation. Note that the correlation can be positive, null
or negative, depending on whether 0 < k < B/

√
3, k = B/

√
3 or k > B/

√
3,

respectively. Moreover, Corr(S, R) → −1 as k → 0, i.e. σ 2
i → 0, while CV(S) =

CV(R) → √
3 and Corr(S, R) → 1/3 as k → ∞, i.e. σ 2

i → ∞, i = 1, 2.

5 Parameter estimation

The aim of this paper is the estimation of the parameters of X from a sample of n
independent observations of (S, R), and testing if the intervention has an effect by the
hypothesis H0 : μ1 = μ2. To take into account possible censoring and truncation,
denote the censoring variables Cr

i , the right censoring time for subject i , and Cl
i , the

left censoring time defined as the maximum time that can be observed before the
intervention for subject i . If truncation happens, then T = S and R is undefined and
arbitrarily set to 0. We consider data of the form {(si , ri , δli , δri , νi )}ni=1. Here δli , δri
and νi are indicator variables for left and right censoring and truncation, respectively:

δli =
{
0 if there is left censoring
1 if there is not left censoring

, δri =
{
0 if there is right censoring
1 if there is not right censoring

,

νi =
{
0 if there is truncation, i.e. T = S
1 if there is not truncation, i.e. T > S

.

Here si is the observation of min(Si ,Cl
i ) if Ti > Si , it is the observation of Si if

Ti = Si and Cl
i ≥ Si (truncation), and it is the time passed from entrance in the study

to time of event if Ti = Si and Cl
i < Si (truncation and left-censoring). Finally ri

is the observation of min(Ri ,Cr
i ). Note that if νi = 0 then R plays no role and we

set δri = 1. We will always assume independent censoring, defined as the risk of the
event being independent of the censoring times. The (si , ri , δli , δ

r
i , νi )’s, i = 1, . . . , n

are independent and identically distributed, and for independent censoring, the log-
likelihood is (Kalbfleisch and Prentice 1980)

l(S,R)(φ) =
n∑

i=1

δli δ
r
i νi log f(S,R)(si , ri ) +

n∑
i=1

(1 − δli )δ
r
i νi log

∫ si

0
f(S,R)(s, ri )ds

+
n∑

i=1

(1 − δri )δ
l
iνi log

∫ ∞

ri
f(S,R)(si , r)dr +

n∑
i=1

(1 − νi )δ
l
i log fT (si )
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+
n∑

i=1

(1 − νi )(1 − δli ) log
∫ si

0
fT (s)ds

+
n∑

i=1

(1 − δri )(1 − δli )νi log
∫ ∞

ri

∫ si

0
f(S,R)(s, r)dsdr. (18)

The first term on the right hand side of (18) evaluates the contributions for full obser-
vations without neither censoring nor truncation, the second and third terms are the
contributions for left and right censored observations, the fourth term corresponds
to truncation, the fifth term to both truncation and left censoring, and the last term
corresponds to both left and right censoring.

The model can easily be extended to incorporate baseline covariates z1, . . . , z p. If
the effects are linear in the drifts it takes the following form for a subject i :

μ1i = z1iβ1 + · · · + z piβp,

where β j , j = 1, . . . , p, are regression parameters to estimate. The intervention will
cause a change given bym further covariates, e.g.m different types of treatment. Then

μ2i = z1iβ1 + · · · + z piβp + z p+1,iβp+1 + · · · + z p+m,iβp+m = Ziβ.

The parameters enter implicitly in the log-likelihood (18) through the dependence on
μ1 and μ2. In the simplest case where μ1 and μ2 are the same for all subjects we have
p = m = 1, and β = (β1, β2)

T determines the drifts.
The maximum likelihood estimator φ̂ = (β̂, σ̂ 2

1 , σ̂ 2
2 ) is found by numerically max-

imizing (18) (see Appendix 3 for detailed description). An approximate 95 % confi-
dence interval (CI) for φi is given by φ̂i ± 1.96 SE(φ̂i ), where SE is the asymptotic

standard error given by SE(φ̂i ) =
√
Iii (φ̂)−1/n, where I (φ) is the Fisher information

matrix (Cramer 1946), which we numerically approximate (see Appendix 3). To test
the hypothesis H0 : μ1 = μ2 we perform a likelihood ratio test at a 5 % significance
level, evaluating it in a chi-squared distribution with m degrees of freedom. The test
statistic is −2 log[L0(φ̂0)/L full(φ̂)], where L0 and L full denote the likelihood func-
tions of the null and full (alternative) model evaluated in the estimated parameters
φ̂0 = (μ̂, σ̂ 2

1 , σ̂ 2
2 ) and φ̂ = (μ̂1, μ̂2, σ̂

2
1 , σ̂ 2

2 ) under the hypotheses μ = μ1 = μ2
(corresponding to βp+1 = · · · = βp+m = 0) and μ1 	= μ2, respectively.

In the following the performance of the estimators is checked on simulated data
in a simple set-up both without and with right censoring, and then on a data set with
a more complicated structure, incorporating covariate effects. This is the Veteran’s
Administration lung cancer data set taken fromKalbfleisch and Prentice (1980), which
is analyzed and results are compared.

6 Monte Carlo simulation study

Here we briefly summarize the main results from the simulation study. An extended
treatment and further figures can be found in the online material accompanying the

123



Parameter inference from hitting times for perturbed brownian motion 343

Table 1 Averages, empirical and asymptotic SEs and CPs in percentage over 1,000 estimates of φ =
(μ1, σ

2
1 , μ2, σ

2
2 ) for n = 100, when μ1 = 1, σ 2

1 = 0.4, μ2 = 0.1, and σ 2
2 = 0.026, 0.059, 0.094, or

0.131, yielding an approximate CV(R) = 0.60, 0.65, 0.70 or 0.75, respectively

Average Empirical Asymptotic Average Empirical Asymptotic
CV(R) of μ̂1 SE(μ̂1) SE(μ̂1) CP(μ̂1) of σ̂ 2

1 SE(σ̂ 2
1 ) SE(σ̂ 2

1 ) CP(σ̂ 2
1 )

0.60 0.9998 0.0405 0.0397 94.7 0.39962 0.1079 0.1027 91.6

0.65 1.0020 0.0438 0.0428 93.7 0.4016 0.1213 0.1154 91.3

0.70 1.0023 0.0468 0.0441 94.5 0.3983 0.1315 0.1198 91.8

0.75 1.0020 0.0458 0.0449 94.9 0.3989 0.1388 0.1251 91.4

Average Empirical Asymptotic Average Empirical Asymptotic

CV(R) of μ̂2 SE(μ̂2) SE(μ̂2) CP(μ̂2) of σ̂ 2
2 SE(σ̂ 2

2 ) SE(σ̂ 2
2 ) CP(σ̂ 2

2 )

0.60 0.1003 0.0032 0.0032 94.8 0.0256 0.0083 0.0080 92.7

0.65 0.1001 0.0044 0.0043 93.7 0.0578 0.0154 0.0145 91.9

0.70 0.1000 0.0053 0.0051 93.7 0.0926 0.0221 0.0212 92.1

0.75 0.1001 0.0058 0.0058 95.5 0.1290 0.0288 0.0278 92.9

In all cases, CV(S) = 0.62

paper. In the simulations we are mainly concerned with illustrating the performance
of the estimators. It is of interest to evaluate the effect of the variability and correlation
of S and R on estimation, to evaluate sample sizes needed for the asymptotic results
of tests and CIs to be valid, to illustrate different special submodels which simplify
estimation, and finally to evaluate how much information is gained on parameters of
S by taking into account observations of R.

In the simulations, three scenarios are considered: no information about the para-
meters is available, i.e. all parameters can vary freely; we assume equal variances
σ 2
1 = σ 2

2 = σ 2; or we assume σ 2
i = kμi , as in Sect. 4.1. That is, we want to estimate

either φ = (μ1, σ
2
1 , μ2, σ

2
2 ), φ = (μ1, μ2, σ

2) or φ = (μ1, μ2, k). We assume both
the parametric form of the underlying process and the relations between parameters,
if any, to be known. It can be discussed if these assumptions are realistic. Equality of
diffusion coefficients, or the assumption of variance proportional to the mean, can be
checked by likelihood ratio test.
Parameters vary freely Details about the settings of parameters, sample sizes and
number of repetitions can be found in the onlinematerial, and are also given in Table 1,
where averages and empirical SEsof the estimates, aswell asmedians of the asymptotic
SEs and the coverage probabilities of the CIs are reported. All estimators appear
unbiased and with acceptable SEs. Not surprisingly, the performance improves when
the CV of R decreases. This holds also for μ̂1 and σ̂ 2

1 , highlighting the dependence
between S and R: a large variability after the intervention deteriorates estimation of
parameters governing the process before the intervention. Coverage probabilities of
drift parameters are close to the desired 95 %, whereas the diffusion parameters σ 2

1
and σ 2

2 need a larger n.
A relevant question is how much, if at all, the estimators of μ1 and σ 2

1 improve by
considering themore complicated likelihood based on Eq. (12) compared to the simple
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Fig. 3 Empirical and asymptotic SEs over 1,000 estimates of (μ1, σ

2
1 , μ2, σ

2
2 ) for n = 100 as a function

of μ2 when no assumptions on the parameters are made. The parameters are μ1 = 1, σ 2
1 = 0.4, σ 2

2 = 0.1,
yielding an approximated CV(S) = 0.62. Full lines empirical SEs. Dashed lines asymptotic SEs. Colors
correspond to the SEs of the estimators obtained by either maximizing l(S,R) (black lines), or maximizing
log fS (gray lines), respectively

likelihood based on Eq. (7), where information from R is ignored. The estimates of
μ1 and σ 2

1 obtained from observations of (S, R) outperform those obtained only from
observations of S, as can be seen comparing both their empirical and asymptotic SEs
in Fig. 3. When μ2 increases, the performance of μ̂1 and σ̂ 2

1 improve and that of μ̂2
and σ̂ 2

2 get worse even if CV of R decrease. Moreover, the difference between the
empirical and the asymptotic SEs for μ̂2 and σ̂ 2

2 increases with μ2, and thus, for large
μ2, a larger sample size is needed for asymptotics to be valid. Otherwise the empirical
and asymptotic SEs are approximately equal, and thus the asymptotic values appear
acceptable for inference purposes.
Equal variances When σ 2

1 = σ 2
2 = σ 2, the behavior of the estimators is similar, and

with equal variances we can more easily analyze the behavior of the drift estimators
as functions of the parameters. All estimators improve when σ 2 decreases, since that
reduces the variability of both S and R. The performance of μ̂i improves while that
of μ̂ j gets worse when μ j increases, for i, j = 1, 2 and i 	= j . Interestingly, the
performance of σ̂ 2 seems to be constant with respect to μ, unless σ 2 is large. A
likelihood ratio test for testing the hypothesis H0 : μ1 = μ2 performs well for Type
I error when n = 100 for different sizes of σ 2. Not surprisingly, the power of the test
decreases when σ 2 increases.
Variance proportional to the mean Assume σ 2

i = kμi , for k > 0. As expected from
the theoretical results in Sect. 4.1, the performance of μ̂1 and μ̂2 appears similar, and
it does not depend on μ2 and μ1, respectively. Interestingly, the asymptotic SE of k̂
depends neither onμ1 nor onμ2, but only on k. This may be due to the fact that neither
the CVs of S and R nor their correlation depend on μ1 and μ2, see Eqs. (13), (14) and
(17).
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Right truncation The effect of censoring on the estimation of φ is illustrated in the
online material, where boxplots of the estimates are reported for different percentage
of right censored data and sample sizes. As expected, the performance of φ̂ gets worse
when the percentage of right censored data increases and thus a larger sample size is
needed.

7 Veterans’ Administration lung cancer data

The model is applied on the Veterans’ Administration lung cancer data set from
Kalbfleisch and Prentice (1980), available in the R-package ”survival” with the name
”veteran”. In this trial, males with advanced inoperable lung cancer were randomized
to either a standard or test chemotherapy. The randomization time is the time of
intervention. The primary endpoint for therapy comparison was time to death. This is
a standard survival analysis data set. The following variables were recorded:

1. Disease duration: Time in months from diagnosis to randomization (observations
of S). We transform to units of days by multiplying by 30.4.

2. Survival lifetime: Time in days from randomization to death (observations of R).
3. Treatment: standard, test.
4. Histological type of tumor: squamous, small, adeno, large cell.
5. Ameasure at randomization of the patient’s performance status (Karnofsky rating);

10–30 completely hospitalized, 40–60 partial confinement, 70–99 able to care for
oneself. We call it karno and transform to 100-karno.

6. Age in years of the patient.
7. Prior therapy: no, yes.
8. Indicator for right censoring (observations of δr )

No information about death of patients before the beginning of the treatment is avail-
able, and thus it is not possible to correct for possible truncation. Only 9 of the 137
survival times were right censored, and none were left censored.

The aim of the study is to compare types of treatment and histological types of
tumor. A positive component for a given covariate means a higherμ and thus increased
risk. A negative component implies protection. Indeed, the best treatment and the less
dangerous type of tumors should have the (expected) highest survival time and thus the
lowest value of μ2, since for X (0) = x is E[R|X (0)] = (B − x)/μ2. Furthermore, it
is of interest to compare treatment against no treatment, that is, the difference between
μ1 and μ2, in particular, to judge whether any of the two treatments has an effect with
respect to no treatment.

Assuming σ 2 = σ 2
1 = σ 2

2 , we estimate φ = (β, σ 2) by numerically maximizing
(18), as detailed in Appendix 3. We let μ1 depend on cell type (4 categories, para-
metrized by absolute levels and no intercept), age (continuous variable) and whether
prior therapy has been applied (dichotomous variable), thus p = 6. Performance sta-
tus at intervention time does not influence μ1, since this is measured after the time
course of S. This is also confirmed by a likelihood ratio test for testing the hypothesis
H0 : βkarno inμ1 = 0 yielding a p value of 0.40. Note that performance status can be
considered a proxy of risk status at time of intervention, that is, of X (0). Therefore,
performance status was transformed to 100-karno for more readily interpretation. By
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Table 2 Estimates of β for all regressor variables and asymptotic χ2 statistics

Full model Reduced model

Regressor variable β̂ χ2 value β̂ χ2 value

Performance status (100-karno) 0.0014 23.12 0.0014 23.62

Age (years) 0.0001 0.30

Prior therapy −0.0146 17.09 −0.0147 17.30

Cell type

Squamous 0.0284 0.0341

Small 0.0379 0.0431

Adeno 0.0522 0.0576

Large 0.0346 17.13 0.0396 16.64

Treatment −0.0231 5.37

Test −0.0215

Standard −0.0277 0.44

The variance estimate is σ̂ 2 = 0.2151 in the full model and 0.2173 in the reduced model, obtained by
removing age as covariate, and merging the two treatment groups

including this variable inμ2, it will (hopefully) correct for unmeasured confounders in
μ1 by taking into account the actual status at time of intervention, so that the estimates
of treatment effect are indeed due to treatment. Thus, performance status (continuous
variable) and treatment (2 categories, both as changes with respect to μ1, i.e. with
respect to no treatment) are added to μ2, and thus m = 3. This implies an extra
parameter compared to standard models because the time before the intervention,
corresponding to no treatment, is included. In standard models this would require
inclusion of an extra randomized group with placebo. Estimates and χ2-values are
reported in Table 2.

Since treatment estimates are negative, treatment increases survival time. This infor-
mation is missing in standard survival models, unless a placebo group is included in
the study. A likelihood ratio test for testing H0 : βstandard = βtest shows no statisti-
cal difference between treatment types (p = 0.51). Age is not statistical significant
either, whereas histological cell types, performance status and prior theory are sta-
tistical significant. Results for the reduced model without age and merging the two
treatment groups, are reported in Table 2. These results agree with those in Kalbfleisch
and Prentice (1980). In their paper, Weibull and Log-normal regression models were
fitted to these data, with survival lifetime as dependent variable and disease dura-
tion prior to entry to the clinical trial, treatment (one category for the difference
between test and standard treatment), cell types (large as reference level and three
categories), age and prior therapy as covariates. An important difference is that they
include disease duration (the variable S) as a covariate, whereas we include it as a
driving part of the model to interpret the entire disease development. They do not find
it statistical significant, whereas the test μ1 = μ2 (i.e. βkarno = βtreatment = 0) is
strongly significant (χ2 = 34.98). This might be due to the strong significance of
performance status, but also a test only of treatment effect (i.e. βtreatment = 0) yields
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Fig. 4 Histogram of uniform residuals from the full (left panel) and reduced (right panel) fitted models

χ2 = 5.37 (p = 0.02). Furthermore, the estimate of μ1 might be strongly downward
biased due to non reported deaths before the beginning of the treatment, which might
also bias the regression coefficient in the analysis by Kalbfleisch and Prentice (1980).
If this is the case, the treatment effect is larger than what the study shows. This is a
general problem of missing data when the amount of truncation is not reported. To
fully evaluate the treatment effect this information (or an estimate thereof) is needed,
or a placebo randomization group should be included in the study design. An important
advantage of the present model is that it allows to evaluate treatment effect as such,
whereas the model of Kalbfleisch and Prentice (1980) only evaluates the difference
between treatment types.

To check the model, P(R < ri ) was calculated for all subjects in the fitted model.
Under themodel, these should be standard uniformly distributed.Ahistogram is shown
in Fig. 4, which appear acceptable both for the full and the reduced model.

8 Conclusion

In any study where an intervention is applied, the most natural question arising is
whether it has an effect, and if this is the case if it is the intended effect and to quantify
the size. Here, the effect is reflected in the change of the time to an observable event.
However, in many studies there is no apparent information available about what such
a time would have been if no intervention had been applied. In this paper we solve
the problem by comparing the time to the intervention and the time to the final event.
The parameters of the underlying process are identified and statistically compared to
judge the presence and size of an effect. The method represents a potential tool in all
the experimental or observational situations where direct measurements of the time
course of the underlying process are not available, but only the qualitative changes are
observable through times of observable events.

An essential assumption in our approach is that the intervention time is independent
of the underlying process. This is a strong assumption and probably not fulfilled in
many cases. It is difficult to avoid this assumption, unless the dependence structure is
specifically modeled, which is prone to imply even stronger assumptions that might be
more difficult to check or fulfil. Nevertheless, in many applications we believe it to be
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a reasonable assumption. In the neuroscience example when analysing neuronal spike
data, the assumption is absolutely reasonable, because the time of intervention (e.g.
start of stimulation) is independent of the neuronal activity, where many spikes occur
both before and after the intervention. In this case neither censoring nor truncation
is relevant. Also in the reliability of technical systems the assumption will often be
reasonable, where an intervention is applied to the entire production at the same
time, independent of how each component is evolving at that moment. However, in
many medical contexts it will of course not be realistic that the intervention time is
independent of disease status, and careful reservations have to be taken for possible
bias in estimates. In some examples the assumption might be reasonable, though, or
it might be possible to include some corrections at intervention time as done in the
data example. The analysis corrects both for prior therapy as well as for performance
status at intervention time. This last covariate hopefully corrects for any (or most of)
the dependence as well as unmeasured confounders, where the disease state might
influence the decision of whether a patient should enter the study or not and thus be
randomized to one of the treatments. In this application the most serious problem is
that data from before the intervention are collected retrospectively from those patients
having an intervention, and thus, no information is available about possible deaths
before the intervention time. We therefore expect that the estimate of the drift before
the intervention is downward biased (only those surviving until intervention are kept
in the analysis), and the effect of treatment might be larger than the analysis shows.
In other medical examples, the assumption is fully justified. For example imagine
a transplant intervention, where start is defined by being approved for a transplant,
final event is death, and the intervention is the transplant. Then the intervention time
will depend on when a matching organ is available, which will be independent of the
disease progress in a particular patient. Here truncation (death before the transplant)
will probably be present, but it can easily be corrected for if data on deaths before the
intervention are available, which is also a reasonable assumption. The strike example
is the most problematic, since a political decision of an intervention will likely depend
on the status of the strike. In that case proper care should be taken to include possible
covariates, which can hopefully correct for some of the incurred bias, such as media
coverage or other social factors.
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Appendix

1. Covariance and correlation of S and R when σ 2
i = kμi

Let P ∼ IG(B, B2/k), and thus E[P] = B. Then, using (15), we have
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E[SR] =
∫ ∞

0

∫ ∞

0
sr f(S,R)drds =

∫ ∞

0

sμ1

B

∫ ∞

0
μ2r fP (μ1s + μ2r)drds

=
∫ ∞

0

sμ1

B

∫ ∞

μ1s

1

μ2
(t − μ1s) fP (t)dtds

= 1

μ1μ2B

∫ ∞

0
u

∫ ∞

u
(t − u) fP (t)dtdu

= 1

μ1μ2B

∫ ∞

0
u

∫ ∞

u
t fP (t)dtdu − 1

μ1μ2B

∫ ∞

0
u2 F̄p(u)du. (19)

Calculating the integral in dt by parts, we get

∫ ∞

u
t fP (t)dt = [−t F̄P(t)]|∞u +

∫ ∞

u
F̄p(t)dt = u F̄P (u) +

∫ ∞

u
F̄p(t)dt, (20)

where −t F̄P (t) → 0 when t → ∞ because F̄(t) = o(t−1) as t → ∞. Define now a
variable Q by

fQ(t) = F̄P (t)

E[P] = F̄P(t)

B
.

Then, inserting (20) into (19) and simplifying the resulting expression, we obtain

E[SR] = 1

μ1μ2B

∫ ∞

0
u

∫ ∞

u
F̄P (t)dtdu = 1

μ1μ2

∫ ∞

0
u

∫ ∞

u
fQ(t)dtdu

= 1

μ1μ2

∫ ∞

0
u F̄Q(u)du. (21)

Similarly, let Z be a variable defined by fZ (u) = F̄Q(u)/E[Q]. Then (21) becomes

E[SR] = E[Q]
μ1μ2

∫ ∞

0
u
F̄Q(u)

E[Q] du = E[Q]
μ1μ2

E[Z ], (22)

where

E[Z ] = 1

2
E[Q] + 1

2

Var[Q]
E[Q] ,

see Eqs. (1) and (2). Mimicking the calculations done for S in (13), we obtain E[Q] =
(B + k)/2,Var[Q] = (B + 3k)2/12. Plugging them into E[Z ] first and then (22), and
simplifying the resulting expression, we get

E[SR] = B2 + 3Bk + 3k2

6μ1μ2
.

Finally, (16) follows using (13) and (14).
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2. Simulation in R

To simulate (si , ri ), i = 1, . . . , n we proceed as follows. We simulate si by applying
the inverse transforming sampling to the cumulative distribution function of S, which
is obtained by numerically integrating (1) using the function integrate in R. We
obtain si by simulating ui from a uniform distribution on [0, 1], and solving FS(si ) −
ui = 0 with respect to si by means of the function uniroot in R. To obtain an
observation ri from Rwefirst simulate x , i.e. the position X (0)of theprocess at the time
of intervention. We use the inverse transforming sampling to the distribution of X (0),
obtained by integrating (3) with respect to x , i.e. FX (0)(x |s) = Fa

X (0)(x, s)/P(T > s).
Because X is a Wiener process, Fa

X (0)(x, s) is given by (9),

Fa(x, s) = Φ

⎛
⎝ x − μ1s√

σ 2
1 s

⎞
⎠ − exp

[
2μ1B

σ 2
1

]
Φ

⎛
⎝ x − 2B − μ1s√

σ 2
1 s

⎞
⎠ .

Using x , an observation ri from R is drawn from IG((B − x)/μ2, (B − x)2/σ 2
2 ).

We obtain 1 ≤ l ≤ n right censored observations of R by simulating from a uniform
distribution in (0, r j ), for j = 1, . . . , l.

3. Estimation of φ and I (φ) in R

Since the parameter values of μ1, μ2, σ1 and σ2 need to be positive, maximizing the
log-likelihood is a constrained optimization problem. When minimizing −l(s,r) by
means of the function optim, we penalize negative values of μ1, μ2, σ1 and σ2 by
returning 1010.

Since l(s,r) is a complicated function ofφ, it can frequently happen that it has several
local maxima. To find the global maximum, sensible starting values are paramount.
The starting value φ0 for the iterations is chosen by the following strategy:

a. Monte Carlo simulation study.Obtainμ∗
1, σ

2∗
1 bymaximizing the log-likelihood

log fS from si , i = 1, . . . , n, with starting values given by means of moment
estimation of S; plug μ∗

1, σ
2∗
1 into (11) to estimate the expected position at the

time of intervention, i.e. x̂ = Ê[X (0)]; using ri and x̂ , obtain μ∗
2, σ

2∗
2 as moment

estimators for μ2 and σ 2
2 when R|X (0) ∼ IG((B − x̂)/μ2, (B − x̂)2/σ 2

2 ), i.e.

μ∗
2 = B − x̂

r̄
, σ 2∗

2 = emp.var(R)μ3∗
2

B − x̂
, (23)

where r̄ denotes the average of the observations ri . Alternatively, μ∗
2 and σ ∗

2 may
be the maximum likelihood estimator (Chhikara and Folks 1989). Then φ0 =
(μ∗

1, σ
2∗
1 , μ∗

2, σ
2∗
2 ) is the starting value. When the variances are equal, the starting

value is φ0 = (μ∗
1, σ

2∗
1 , μ∗

2). When the variance is proportional to the mean,
obtain μ∗

1, k
∗ by maximizing the log-likelihood log fS from si , i = 1, . . . , n, with

starting values given by means of moment estimation of S through (13); obtain
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μ∗
2 as moment estimator for μ2 from (14), i.e. μ∗

2 = (B + k∗)/2r̄ . Then set
φ0 = (μ∗

1, μ
∗
2, k

∗).
b. Veterans’ Administration lung cancer data. We choose β∗

cell = 0.01 for each
of the four cell types, β∗

age = 0.0001, β∗
prior = β∗

Performance = 0.01, β∗
standard =

β∗
test = 0.1, σ 2∗ = 0.1 and set φ0 = (β∗, σ 2∗).

To reduce the influence of the starting value in the optimization procedure, we pro-
ceed as follows. Once that φ0 has been computed or set, we carry out the estimation
procedure, and then we use the obtained estimate φ̂ as a new starting value φ0. We
repeat this procedure until φ0 and the estimated parameters yield approximately the
same value of − log f(S,R).

Often an explicit expression for the inverse of the Fisher information I (φ)−1 is not
available, but it can be numerically evaluated. In the Monte Carlo simulation study,
we calculate the d × d matrix I (φ)/n, for d = 4 when no assumptions are made
and d = 3 when σ 2

1 = σ 2
2 or σi = kμi using the option hessian=TRUE in the

optim function. Since I (φ) is symmetric, positive definite square matrix, we invert it
by means of its Cholesky decomposition. We first use the function chol to compute
the Cholesky factorization and then chol2inv to invert it.
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