CORRECTION

Correction to: Modeling the acute effects of exercise on glucose dynamics in healthy nondiabetic subjects

Spencer Frank^{1,2} • Abdulrahman Jbaily^{1,2} • Ling Hinshaw³ • Rita Basu⁴ • Ananda Basu⁴ • Andrew J. Szeri^{1,5}

Published online: 1 June 2021 © Springer Science+Business Media, LLC, part of Springer Nature 2021

Correction to:

Journal of Pharmacokinetics and Pharmacodynamics (2021) 48:225–239 https://doi.org/10.1007/s10928-020-09726-9

The original version of this article contained a typo in table 1. In table 1, the units in three parameters read as mL/kg, instead they should read dL/kg. The units were reported correctly elsewhere in the manuscript and the results are not affected by the typo. Please find below the corrected Table 1:

The original article can be found online at https://doi.org/10.1007/s10928-020-09726-9.

Spencer Frank spencerfrank@berkeley.edu

Department of Mechanical Engineering at the University of California Berkeley, Berkeley, USA

Present Address: Dexcom in San Diego, San Diego, CA, USA

Division of Endocrinology at Mayo Clinic, Rochester, USA

Present Address: Division of Endocrinology at the University of Virginia School of Medicine, Charlottesville, USA

Present Address: Department of Mechanical Engineering at the University of British Columbia, Vancouver, USA

Table 1 Parameters used in glucose dynamics model for healthy nondiabetic subjects

Parameter	Description	Unit	Value	Source
\mathbf{r}_{brain}^{G}	Metabolic clearance rate of glucose in the brain	mg/min	71	[32, p. 219]
\mathbf{r}_{heart}^{G}	Metabolic clearance rate of glucose in the heart	mg/min	3.7	[32, p. 219]
\mathbf{r}_{kidney}^{G}	Metabolic clearance rate of glucose in the kidneys	mg/min	3.7	[32, p. 219]
\mathbf{r}_{gut}^G	Metabolic clearance rate of glucose in the gut	mg/min	16.6 ^b	[32, p. 219]
\mathbf{r}_{peri}^G	Basal metabolic clearance rate of glucose in the peripheral tissue	mg/min	45.2	[32, p. 219]
\mathbf{r}_{liv}^G	Basal metabolic clearance rate of glucose in the liver	mg/min	14.8 ^b	[32, p. 219]
$\mathbf{r}_{SM_{ins}}^G$	Insulin sensitivity of glucose clearance in skeletal muscle	mg/min per μU/mL	5	[34]
$\mathbf{r}_{SM_{exr}}^{G}$	Exercise sensitivity of glucose clearance in skeletal muscle	mg/min per E	860	[2, 16, 17, 35, 36] ^c
$V_{CS_N}^G$	Normalized volume of distribution of glucose in circulatory system	dL/kg ^a	0.7	[7]
$V_{SM_N}^G$	Normalized volume of distribution of glucose in skeletal muscle	dL/kg ^a	0.96	[7]
$V_{SM_N}^{tiss}$	Normalized volume of tissue in skeletal muscle	mL/kg ^a	540	[41]
$ au_{liv}$	Time lag of insulin action of liver glucose uptake	min	25	[7]
$Q_{d_{rest}}$	Tissue perfusion rate in skeletal muscle tissue at rest	$mL_b/mL_{tiss}/min$	0.038	[41]
$PS_{d_{rest}}^{G}$	Capillary permeability surface area to glucose during rest	$mL_b/mL_{tiss}/min$	0.01	[38–40]
R_d	Capillary recruitment factor in delivering (SM) tissue	1	1.46	[19, 56, 57] ^c
γ	Capillary recruitment saturation rate	1	10	[19, 56, 57] ^c
λ_d	Sensitivity of tissue perfusion rate to exercise	$mL_b/mL_{tiss}/min per E$	1.1	[37]
$ au_{EGP}$	Time lag of exercise action on endogenous glucose production	min	20	[16, 17] ^c
η	Maximum exercise action on endogenous glucose production	1	4	[16, 17] ^c
$V^I_{SM_N}$	Normalized volume of distribution of insulin in skeletal muscle	dL/kg ^a	1.2	[7, 42]
$\mathbf{r}_{SM_N}^I$	Normalized metabolic clearance rate of insulin in skeletal muscle	1/min	0.02	[58–60] ^c
$PS_{d_{rest}}^{I}$	Capillary permeability surface area to insulin during rest	$mL_b/mL_{tiss}/min$	0.005	[39, 40]
h	Hematocrit percentage in blood	1	0.4	[43]

^aMultiplied by body weight (BW) prior to being used in model. See demographics for BW

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

^bAdjusted to ensure that total liver uptake is approx 50% of ingested glucose [33, 46]

^cParameter is derived from data taken from specified sources