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Abstract
Purpose CMV infection remains a priority for vaccine devel-
opment. Vaccination of infants could modify congenital infec-
tion and provide lifetime immunity. Properties of CMV-
specific T cells associated with control of viral replication in
early life have not been fully defined.
Methods CMV-specific CD4 and CD8 T cell responses were
investigated in infants with congenital CMV infection and
compared to adults with primary or chronic infection. PBMC
were stimulated with UL83 (pp65) or UL122 (IE-2) peptide
pools then stained with antibodies to markers of T cell subset
(CD4 or CD8), phenotype (CD45RA, CCR7), or function
(MIP1β, CD107, IFNγ, IL2) for flow cytometry analysis.
Results Detection of CMVpp65-specific CD4 Tcells was less
common in infants than adults. Responder cells were

primarily effector memory (EM, CD45RA-CCR7-) in adults,
but mixed memory subsets in infants. Detection of CMV
pp65-specific CD8 T cells did not differ between the groups,
but infants had lower frequencies of total responding cells and
of MIP1β- or CD107-expressing cells. Responder cells were
EM or effector memory RA (CD45RA+CCR7-) in all groups.
Polyfunctional T cells were less commonly detected in infants
than adults. Responses to IE-2 were detected in adults but not
infants. All infants had detectable circulating CMV DNA at
initial study (versus 60 % of adults with primary infection)
despite longer duration of CMV infection.
Conclusions Reduced frequencies and altered functional pro-
file of CMV-specific CD4 and CD8 T cell responses were
detected in infants compared to adults, and were associated
with persistent CMV DNA in peripheral blood.
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Introduction

Congenital cytomegalovirus (CMV) infection is a significant
cause of infant morbidity, and remains a high priority for vac-
cine development [1]. An estimated 0.7 % of live births or 30,
000 infants per year in the U.S. are diagnosed with congenital
CMV infection, and nearly 20 % exhibit permanent neurolog-
ic disabilities [2]. Moreover, children with congenital or post-
natal CMVinfection may shed virus in the urine for prolonged
periods, increasing the risk of primary CMV infection in their
seronegative pregnant caretakers [3–5]. One possible CMV
vaccine strategy is to immunize infants to prevent CMV in-
fection, reduce viral shedding after primary infection, or to
reduce the risk of severe congenital infection during pregnan-
cy later in life, which has been a rationale for universal rubella
immunization [6–8]. Another strategy is to vaccinate infants
with congenital CMV infection as immunotherapy with or
without antiviral agents, which has been the basis of CMV
vaccine clinical trials in seropositivewomen or stem cell trans-
plant recipients [6, 9, 10]. Such approaches require that the
candidate vaccine induce potent CMV-specific neutralizing
antibodies and/or cell-mediated immune responses in infants
that correlate with control of viral replication or protection
from disease, persist in long-term memory, and are evaluable
in clinical trials [11–13]. Moreover, these responses must con-
tinuously adapt to the large diversity and rapid evolution of
CMV populations within distinct host tissue compartments
[14].

The generation and maintenance of anti-viral T cell re-
sponses over the course of CMV infection, and their role in
protection from severe clinical disease or control of viral rep-
lication have not been fully defined [15]. Virus-specific Tcells
with distinct antigen specificity, functional capacity, or surface
phenotype have been shown to affect viral disease pathogen-
esis in a variety of models, including animals [16, 17] or adult
humans [18–21]. However, unique features of cellular immu-
nity in young children may affect their ability to generate
protective anti-viral T cell responses during primary infection
or following vaccination, and therefore warrant further inves-
tigation in longitudinal studies [7, 11]. Congenital CMV in-
fection is a model system to characterize these T cells. Prior
work by our group and others [22–28] suggests that healthy
infants and young children can generate CMV-specific cell-
mediated immune responses, but a detailed analysis of their
phenotype and function has not been performed.

Efforts to define immune correlates of protective anti-viral
T cell responses in adults have focused extensively on

memory phenotype and effector function. Among other
markers, antigen-experienced T cells can be distinguished by
expression patterns of the transmembrane phosphatase CD45
isoform and the lymph node homing molecule CCR7 [29].
Moreover, increasing evidence suggests that T cells capable
of multiple simultaneous anti-viral effector functions are asso-
ciated with markers of protection [30–32], and that analysis of
these polyfunctional memory T cells may be used to evaluate
outcome following vaccination [13, 33–36].

Our aim was to characterize CMV-specific T cell memory
phenotype and effector functions in young infants with con-
genital CMV infection compared to adults with primary or
chronic infection, and to correlate these responses with longi-
tudinal viral load measurements. This identifiable infant pop-
ulation was utilized as a model of longitudinal CMV-specific
cellular immune responses to provide a foundation for studies
in healthy infants with primary post-natal CMV infection, a
more difficult population to identify. Using multi-parameter
flow cytometry, we demonstrate quantitative and qualitative
differences in CMV-specific CD4 and CD8 Tcell responses in
infants compared to adults.

Methods

Study Population

Ten infants with congenital CMV infection were studied lon-
gitudinally. They were enrolled at the University of Massa-
chusetts Medical Center (Worcester, MA), Baystate Chil-
dren’s Hospital (Springfield, MA), and Policlinico SanMatteo
(Pavia, Italy). Diagnosis of congenital CMV infection was
performed within 3 weeks of birth by detection of CMV
DNA in neonatal blood [37, 38] and/or virus isolation from
urine. Three of 10 infants were symptomatic with central ner-
vous system (CNS) involvement.

Ten pregnant women with primary CMV infection were
studied longitudinally as adult controls for primary CMV in-
fection. They were enrolled at Policlinico San Matteo (Pavia,
Italy). Diagnosis of primary CMV infection was based on one
or more of the following criteria: recent CMV-specific IgG
seroconversion, presence of CMV-specific IgM and low IgG
avidity, and/or presence of CMV nucleic acids in blood [39].
Timing of primary CMV infection was based on decreasing
levels of CMV-specific IgM antibody, increasing levels of IgG
avidity, presence of clinical symptoms, and/or laboratory find-
ings [40]. Healthy infants with no CMVor HIV infection who
were born to HIV-1-infected women [24], and healthy adults
with chronic or no CMV infection, served as additional con-
trols. Pregnant women and HIV-uninfected infants of HIV-
infected women have been shown to generate robust CMV-
or vaccine-specific cellular immune responses, respectively
[41–43]. Infants and non-pregnant adults with primary CMV
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infection were not available as controls for this study. Infec-
tion is typically asymptomatic or mild in these populations, so
they are infrequently identified by health care providers and
therefore rarely available for study enrollment.

These studies were approved by human subjects commit-
tees at participating institutions.Written informed consent was
obtained from adult participants or from a parent or legal
guardian of infants.

Peripheral Blood Mononuclear Cell Stimulation and Staining

Peripheral blood mononuclear cells (PBMC) were processed
as described [24] and were stimulated (0.5×106 in 250 μl
RPMI with 10 % fetal calf serum) with pools of overlapping
peptides spanning CMV UL83 (pp65) or UL122 (immediate
early (IE)-2). Anti-CD107a and -CD107b (Alexa-647),
brefeldin A, and monensin (BD Pharmingen) and antibodies
to co-stimulatory molecules CD28 and 49d were added with
peptide. Following a 6-h incubation, cells were fixed, stained
with antibodies specific for CD8 (ECD), CD4 (Pacific Blue),
CD14/16/19 (APC-Cy7), CD45RA (FITC), CCR7 (PE-Cy7),
and vital stain Live/Dead Blue (Invitrogen), permeabilized,
then stained with macrophage inflammatory protein (MIP)-
1β (PE), interferon (IFN)-γ (Alexa-700), and interleukin
(IL)-2 (PerCP-Cy5.5). All antibodies were obtained in the
conjugated form from BD Pharmingen with the exception of
CD107a/b, CD14/16/19, IFNγ, and IL2 obtained from
BioLegend. Medium alone and staphylococcus enterotoxin
B (SEB, Toxin Technology, Sarasota, FL) were used as neg-
ative and positive controls, respectively. Longitudinal samples
from each subject were studied simultaneously in the same
assay.

CMV Peptides

The CMV pp65 peptide pool (15 amino acid peptides over-
lapping by 11 amino acids) was obtained through the NIH
AIDS Research and Reference Reagent Program, Division
of AIDS, NIAID, NIH. The CMV IE-2 peptide pool was
synthesized as described [44].

Flow Cytometry

Flow cytometry was performed using a LSRII instrument (BD
Bioscience, San Jose, CA) and data were analyzed using
FlowJo (TreeStar, Palo Alto, CA), Pestle (version 1.6.2 Mario
Roederer, VRC, NIAID, NIH, Bethesda, MD), or SPICE (ver-
sion 5, Mario Roederer, VRC, NIAID, NIH) software.

Cells of interest were identified by a serial gating algorithm
incorporating lymphocytes (forward versus side scatter), cell
singlets, live cells, CD14/16/19- cells (to enrich for CD3
cells), CD4+ or CD8+ cells, and memory cells (CD45RA or
CCR7). Thresholds to define negative CD45RA or CCR7 cell

populations were determined using Bfluorescence minus one^
tubes that included all antibodies in the panel except CD45RA
or CCR7, respectively.

CD4 or CD8 T cells were distinguished by patterns of
CD45RA or CCR7 expression, and included naïve
(CD45RA+CCR7+) and total memory T cell populations. To-
tal memory Tcells were further divided into subsets defined as
central memory (CM, CD45RA-CCR7+), effector memory
(EM, CD45RA-CCR7-), or effector memory RA (EMRA,
CD45RA+CCR7-) [29]. Frequencies of total memory T cells
were calculated as a percentage of all CD4 or CD8 Tcells, and
memory T cell subsets (CM, EM, or EMRA) were calculated
as a percentage of total memory T cells, where total = (CM +
EM + EMRA) (Fig. 1).

CD4 or CD8 Tcell functional responses were calculated by
subtracting the frequencies of response without stimulation
from the response with CMV or SEB stimulation
(Bbackground-subtracted^). The threshold to define
Bdetectable^ response was set at ≥90th percentile of the dis-
tribution of negative background-subtracted values [34]. For
subjects with 2 or more detectable responses at 1 or more time
points, data generated from FlowJo for each functional marker
was formatted in Pestle and analyzed for patterns of
polyfunctionality using SPICE. As above, the threshold in
SPICE was set at ≥90th percentile of the distribution of neg-
ative background-subtracted values.

CMV Detection

CMV DNAwas quantified in peripheral blood at Policlinico
San Matteo (Pavia, Italy) for all subjects. Until December
2007, samples were tested initially by quantitative PCR with
detection limit 10 genome equivalents (GE)/10 μl whole
blood. Samples negative for DNAwere then tested in triplicate
by nested PCR [39, 45]. Samples DNA negative by quantita-
tive PCR and positive by nested PCR (i.e., DNA present but
<10 GE/10 μl) are reported as 3 GE/10 μl. After December
2007, samples were tested by real-time PCR with detection
limit 25 GE/ml whole blood) [46]. The two assays were inter-
nally calibrated and validated by an external quality control
program (Quality Control for Molecular Diagnostics,
www.qcmd.org). Clinical laboratories at participating
sites performed virus isolation from urine.

Data Analysis

Nonparametric Savage scores were used to compare the per-
centages of total memory Tcells and of memory Tcell subsets
(CM, EM, or EMRA) at initial study, presence of detectable
CMV-specific Tcell responses at any time, frequency of CMV
pp65-specific T cells at initial study, and presence of
polyfunctional responses at any time between all study
groups. Nonparametric Wilcoxon Rank-Sum tests were used
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to compare percentages of CMV pp65-specific memory T cell
subsets between C infants and P adults, CMV viral load at
initial study, and duration of detectable CMVDNAemia. Fish-
er’s Exact Test was used to compare detectable CMV DNA in
the peripheral blood at initial study between C infants and P
adults. SAS v 9.3 software was used for all of these analyses
(SAS Institute, Inc., Cary, North Carolina).

Wilcoxon Rank-Sum Test was used to compare the fre-
quencies of polyfunctional responses. Normalized data is
shown, i.e., each measurement value is weighted by its rela-
tive contribution to the total of all measurements for the sam-
ple, and expressed as Bpercent of total response^ [47]. Statis-
tical significance was defined as p<0.05.

Results

Study Population

Table 1 shows characteristics of the study population. Study
subjects were infants with congenital (C) CMV infection.
Control subjects were infants with no (N) CMV infection
and adults with primary (P), chronic (CH), or no (N) CMV
infection. All but 3 infants with congenital CMV infection (BC
infants^), and all adults with primary CMV infection (BP
adults^), were studied at ≥2 time points. Infants with no
CMV infection (BN infants^) were studied at 2 time points
(2–6 months and 12–18 months of age). Adults with chronic

(BCH adults^) or no (BN adults^) CMV infection were each
studied at 1 time point.

For P adults, median gestational age at onset of primary
infection was 8 weeks (range 0 to 21 weeks). Median duration
of CMV infection at initial study, defined as the time between
onset and initial study, was 9 weeks (range 3 to 13 weeks).

For C infants, median postnatal age at initial study was
4 weeks (range 2 days to 30 weeks). Median duration of
CMV infection at initial study, defined as time between onset
of maternal infection and infant initial study, was 32 weeks
(range 22 to 63 weeks) for 6 infants with known timing of
maternal infection. This definition likely overestimates the
duration of CMV infection at initial study by approximately
6 weeks, during which time transmission frommother to fetus
occurs [48]. Samples obtained in utero during early CMV
infection were not available.

Memory T Cell Subsets in Infants and Adults

We first compared the frequencies of total memory and mem-
ory subset CD4 and CD8Tcell populations between all cohort
groups (Fig. 2). The median frequencies of total memory T
cells were significantly lower in C infants compared to P
adults (CD4 30 % versus 66 %, p=0.003; CD8 40 % versus
71 %, p=0.022), and in N infants compared to N adults (CD4
33 % versus 74 %, p=0.002; CD8 29 % versus 77 %, p=
0.002). The median frequencies of total memory CD4 T cells
in C and N infants were not significantly different.

Mother
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CD8CD4
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P110

75

30 53

86 EMRA

EM CM

Fig. 1 Gating strategy for
memory T cell populations.
Representative dot plots with
memory T cells populations for a
mother (A110) and her infant
(P110) are shown. CD4 (left
column) or CD8 (right column) T
cells are differentiated by
CD45RA (y-axis) or CCR7 (x-
axis) expression. T cell popula-
tions include total memory (L-
shaped gate incorporating CM +
EM + EMRA as indicated in leg-
end diagram) with subsets central
memory (CM, CC45RA-CCR7+,
lower right quadrant), effector
memory (EM, CD45RA-CCR7-,
lower left quadrant), or effector
memory RA (EMRA, CD45RA +
CCR7-, upper left quadrant).
Naïve T cells (CD45RA+CCR7+,
upper right quadrant) are not in-
cluded in the gate
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For both C and N infant groups, the majority of memory
CD4 T cells were CD45RA-CCR7+ (CM; median frequen-
cies>51 %; p<0.05 versus all adult groups), and the majority
of memory CD8 T cells were CD45RA+CCR7- (EMRA; me-
dian frequencies>60 %; p<0.02 versus all adult groups). In
contrast, for all P, CH, and N adult groups, the majority of
memory CD4 or CD8 T cells were CD45RA-CCR7- (EM;
median frequencies>58 %, p<0.01 versus both infant
groups).

The median frequencies of EM T cells were significantly
lower for C infants compared to P adults (CD4 23 % versus
52 %, p=0.003; CD8 29 % versus 65 %, p=0.003) and for N
infants compared to N adults (CD4 25 % versus 50 %, p=
0.002; CD8 12 % versus 59 %, p=0.002). Conversely, the
median frequencies of EMRATcells were significantly higher
for C infants compared to P adults (CD4 8 % versus 6 %, p=
0.046; CD8 63 % versus 33 %, p=0.007) and for N infants
compared to N adults (CD4 17% versus 10%, p=0.013; CD8
80 % versus 40 %, p=0.006). The median frequencies of CM
CD4 T cells were significantly higher for C infants compared
to P adults (68 % versus 42 %, p=0.036), and for N infants
compared to N adults (51% versus 43% at p=0.05). CMCD8
T cells were negligible for all groups. The frequencies of total
or subset memory T cell populations in P, CH, and N adults
did not differ significantly.

Altered Function and Phenotype of CMV pp65-Specific T
Cell Responses in Infants

To quantify the frequencies and characterize the functional
properties of CMV-specific T cells in infants and adults at
distinct stages of infection, we compared CD4 or CD8 T cell
responses to CMV pp65 or IE-2 peptide pools measured by
markers of cytotoxicity (CD107), chemotaxis (MIP1β), or
anti-viral cytokine secretion (IFNγ or IL2). Both CMV gene
products are common targets for CMV-specific T cell

Table 1 Characteristics of the study population

Subject Postnatal age at initial
study (monthsa)

Viral load
(GE / 10 μl blood)

Symptoms

C infants

B101 4.5 ND CNS

M102 1.5 33 CNS

M103 0.5 3 CNS

P105 0.5 1000 none

P110 2 days 10 none

P111 2 days 10 none

P113 1.3 10 none

P114 3.8 10 none

P115 2 days 3 none

P107 7.0 10 none

P adults Time since infection
onset at initial
study (months)

Viral load
(GE / 10 μl blood)

Symptoms

A110 2.5 0 none

A112 1.0 3 yes

A115 2.5 0 yes

A116 2.8 0 yes

A117 1.2 100 yes

A118 1.6 0 yes

A119 3.0 10 yes

A120 0.7 30 yes

A121 2.6 10 yes

A122 0.6 3 none

GE genome equivalents, BC infants^ infants with congenital CMVinfection,
BP adults^ adults with primary CMV infection, ND not done, CNS symp-
toms of congenital CMV infection involving the central nervous system

Infants with no CMV infection (n=10; age 2–6 months of age at initial
study) and adults with chronic (n=5) or no (n=7) CMV infection are not
included in the table as the characteristics are not applicable
aMonths unless otherwise noted

p=0.003 p=0.002 p=0.022 p=0.002
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Fig 2 Median frequencies of memory T cells at initial study. Total
memory T cells (full bars; CD4 left panel; CD8 right panel) are shown
as percent of all (total memory plus naïve) T cells, and memory T cell
subsets (regions within full bars as noted in legend) are shown as percent
of total memory T cells. Compared to P adults, C infants had lower total
memory CD4 (p=0.003) or CD8 (p=0.022) Tcell frequencies. Compared
to N adults, N infants had lower total memory CD4 (p=0.002) or CD8

(p=0.002) T cell frequencies. There were no significant differences in
frequencies of total memory T cells between P, CH, and N adult groups.
See text for comparison of T cell subsets. C, congenital infant; P, primary
adult; CH, chronic adult; N (I), no infection infant; N (A), no infection
adult; EM, effector memory (CD45RA-CCR7-); CM, central memory
(CC45RA-CCR7+); EMRA, effector memory RA (CD45RA+CCR7-)
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responses in adults with chronic infection [49]. In particular,
CD4 T cells targeted IE-2 more frequently than IE-1 in adults,
so we chose to examine IE-2 in infants rather than IE-1 as in
our previous studies [23, 24]. Representative flow cytometry
plots for a mother-infant pair show CD4 T cell responses to
CMV pp65 or SEB as measured by CD107, MIP1β, IFNγ, or
IL2 expression (Fig. 3). Responses to IE-2 were not detected
in any C infants, but were detected in 1 of 10 (CD4 only) P
adults and 2 of 5 (CD8 only) CH adults (data not shown). We
therefore focused on characterizing responses to CMV pp65.
Overall, no distinct longitudinal trend of pp65-specific CD4 or
CD8 T cell responses was observed for any group, except P
adults showed no IL2 expression by pp65-specific CD4 T
cells more than 3 months after onset of infection (data not
shown).

For pp65-specific CD4 Tcells, a lower proportion (2 of 10;
p=0.019) of C infants had detectable responses by any func-
tional marker at any time point compared to P adults (Fig. 4).
In these 2 C infants, single IFNγ- and single IL2-expressing
CD4 T cells were detected at only 1 (6 months or 19 months,
respectively) of 5 time points over the first 15 or 19 months of
age, respectively (Fig. 5). CMV pp65-specific CD4 T cells
were found primarily within the EM Tcell subset for P adults,
but were distributed fairly equally across subsets for the 2 C
infants with responses (Fig. 6). The median proportion of EM
cells was lower (p=0.03) and of EMRA cells was higher (p=
0.04) for C infants compared to P adults.

For pp65-specific CD8 T cells, the proportion of C infants
and P adults with detectable responses by any functional
marker at any time point did not differ (8 of 10 for both
groups) (Fig. 4). However, the frequencies of all responding
pp65-specific CD8 Tcells (p=0.006 versus P adults; p=0.040
versus CH adults; data not shown), and of MIP1β- (p=0.043

versus P adults; p=not significant (NS) versus CH adults) or
CD107-expressing (p=NS versus P adults; p=NS versus CH
adults) pp65-specific CD8 T cells, were lower in C infants
(Fig. 5). Frequencies of responses measured by IFNγ were
not significantly different between C, P, and CH groups, and
responses by any measure were not significantly different be-
tween the P and CH adult groups. Responses measured by IL2
were detected in 1 of 5 CH adults but no other subjects. CMV
pp65-specific CD8 T cells were found almost exclusively
within the EM or EMRA T cell subsets for both C infants
and P adults (Fig. 6).

CMV-specific T cell responses were compared between
infants with (CNS; n=3) or without (non-CNS; n=7) symp-
tomatic infection involving the central nervous system, al-
though no significant differences were identified. Two of 3
CNS infants had detectable CD4 (versus 0 of 7 non-CNS;
p=NS) and CD8 (versus 6 of 7 non-CNS; p=NS) T cell re-
sponses. Of the CNS infants with detectable CD8 T cells, 0 of
2 (versus 2 of 6 non-CNS; p=NS) had detectable
polyfunctional responses.

Reduced Frequencies of Polyfunctional CMV-Specific T Cell
Responses in Infants

T cells capable of multiple simultaneous effector functions
(Bpolyfunctional^) have been associated with protection in
viral infection [30–32]. To characterize these responses in
the study cohorts, we compared the frequencies and pat-
terns of polyfunctional CMV pp65-specific T cells using
SPICE analysis for subjects with≥2 functions detected at
any time point. Significantly fewer C infants with detect-
able pp65-specific T cells had polyfunctional responses (0
of 2 with CD4 responses; 2 of 8 with CD8 responses)
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Mother A110 Infant P110Fig 3 CMV-specific T cell
responses. Representative CD4 T
cell functional responses (x- and
y-axes) to SEB (top row) or CMV
pp65 (bottom row) for a pregnant
adult at 18 weeks gestation
(4 months after onset of infection,
left columns) and her infant at
3 months of age (right columns)
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compared to P (CD4 p=0.033; CD8 p=0.003) or CH
(CD8 p=0.011) adults (Fig. 7). Patterns of CD4 T cell
functions varied for P and CH adults, but IL2 secretion
was the least common (Fig. 8). Fewer C infants had
polyfunctional CD8 T cells than adults (p<0.05), but
when present followed the most common patterns of
adults with co-expression of CD107/IFNγ/MIP1β or of
CD107/MIP1β (Fig. 8). Fewer C infants had single ex-
pression of CD107 than adults (p<0.05).

Persistence of Detectable CMV DNA in Peripheral Blood
of Infants with Congenital CMV Infection

CMV DNA was detectable in the peripheral blood of all 9 C
infants tested, with a median CMV load at initial study of 10
GE/10 μl blood (range 3 to 1000 GE) (Table 1). The median
time between onset ofmaternal infection and infant initial study

(a measure of duration of infant CMV infection at initial study)
was 26 weeks (range 22 to 63 weeks) for 5 of the 9 C infants
(timing of maternal infection was not known for 4 infants).

CMV DNA was detectable in 6 of 10 P adults (p=NS
versus C infants), with a median CMV load at initial study
of 10 GE/10 μl blood (range 3 to 100 GE; p=NS versus C
infants). Median time between onset of infection and initial
study (a measure of duration of CMVinfection at initial study)
for these 6 subjects was 5 weeks (range 3–13 weeks; p=0.013
versus C infants). CMV DNAwas undetectable in the other 4
of 10 P adults at initial study and over the course of the study
period. Median time between onset of infection and initial
study for these 4 subjects was 11 weeks (range 7–12 weeks;
p=0.037 versus C infants, and p=NS versus 6 P adults with
detectable CMV DNA at initial study as above). The median
CMV load at initial study for all 10 P adults was 3 GE/10 μl
blood (range 0 to 100 GE; p=NS versus C infants) (Table 1).
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Fig 5 Frequencies of detectable CMV pp65-specific T cell responses.
Box plots display the frequencies of CMV pp65-specific CD4 (left) or
CD8 (right) T cells detected by individual measures of function (CD107,
MIP1β, IFNγ, or IL2) for C infants, P adults, and CH adults. All detect-
able responses and timepoints are included. Horizontal lines represent the
25th, 50th (median), or 75th percentiles. Diamonds indicate the mean
frequencies, and the error bars indicate the minimum and maximum

values. C infants showed significantly lower frequencies of pp65-
specific CD8 T cells detectable by any function (i.e., gated on all
responding cells, not shown; p=0.006 versus P adults; p=0.040 versus
CH adults) or by MIP1β (p=0.043 versus P adults; p=NS versus CH
adults). Frequencies of responses measured by CD107, IFNγ, or IL2
were not significantly different between the groups
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Discussion

Congenital CMV infection is a significant clinical problem
with limited effective prevention or treatment strategies, and
serves as a relevant model in which to examine the dynamic
lifelong interaction between virus and host. While many stud-
ies have demonstrated the critical role of CMV-specific cellu-
lar immune responses in controlling viral replication and dis-
ease severity, the specific features of these responses that con-
fer protection remain incompletely defined [15]. As a result,
development of a CMV vaccine has been relatively empiric
with measurable but limited efficacy. The optimal immuniza-
tion strategy has been shown to include infants less than 1 year
of age [6, 50, 51]. To focus these efforts toward identifying the
mechanisms of protective cellular immunity in this popula-
tion, we tested the hypothesis that the memory phenotype or
functional capacity of CMV-specific T cells is different and

associated with reduced control of viral replication in infants
with congenital CMV infection compared to immunocompe-
tent adults with primary or chronic infection. Our data dem-
onstrate reduced or altered CMV pp65-specific CD4, CD8, or
poyfunctional T cells in these infants, which were associated
with prolonged detection of CMV DNA in the peripheral
blood.

We first examined the distribution of total memory CD4
and CD8 T cell populations. CD45RA and CCR7 have been
used to identify Tcell populations with distinct tissue homing,
capacity for rapid proliferation, or anti-viral effector function
[29]. Compared to adults, infants had significantly smaller
total memory T cell compartments at initial study, primarily
due to lower frequencies of the CD45RA-CCR7- EM T cell
subset. This pattern was observed regardless of CMV infec-
tion status, suggesting an age- rather than virus-specific phe-
nomenon associated with less cumulative antigen exposure in
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infants compared to adults. The distribution of memory T cell
subsets observed in our study is similar to that reported in
other cohorts of young healthy children [7, 52].

Consistent with the effect of antigen exposure on the evo-
lution of memory T cell populations, the only significant dif-
ference observed at initial study for infants with congenital
CMV infection compared to CMV-uninfected infants was
higher frequency of EM CD8 T cells. This finding concurs
with previous studies showing that congenital viral infection
shifts the overall CD8 T cell population to a more differenti-
ated memory phenotype [25, 52]. The clinical significance of
relatively late-differentiated CD8 T cells in infants with con-
genital CMVor other viral infection is not known, but may be
associated with such disparate effects as inadequate long-lived

protective T cell memory and ineffective control of viral in-
fection over time [53], T cell senescence as observed in CMV-
infected older adults [54], or reversing the relative anti-
inflammatory nature of neonatal T cell responses [7].

Among immunocompetent adults, heterogeneous and ro-
bust CMV-specific CD4 T cells are readily detectable, and
have been associated with control of viral replication, less
severe disease, and lower risk of mother-to-child viral trans-
mission [19, 55–57]. These cells exhibit higher cytotoxic
(CD107) and chemotaxis (MIP1β) and lower helper (IL2)
functions, and more advanced stages of maturation [29, 58].
Consistent with this pattern, the majority of adults in our study
with primary (7 of 10) or chronic (3 of 5) CMV infection had
CMV pp65-specific CD4 T cell responses with various

Fig 8 Patterns of polyfunctional T cell responses. Polyfunctional CMV
pp65-specific CD4 (top panel) or CD8 (bottom panel) T cell responses
were defined as expression of ≥2 measures of function (CD107, MIP1β,
IFNγ, and/or IL2) on stimulation with CMV pp65. Normalized data is
shown, i.e. each measurement value (frequency of response) is weighted
by its relative contribution to the total of all measurements in the group
(C, P, or CH), and expressed as Bpercent of total response^ for each group.
Pies (legend top) illustrate relative frequencies of responses with 1–4
functions for each group. Bars (legend bottom) represent relative

frequencies of responses consisting of the specific functional profiles
indicated along the x-axis (boxes). A significantly lower (* p<0.05) pro-
portion of C infants had polyfunctional CMV pp65-specific CD8 T cells
compared to P or CH adults, but when present these cells expressed the
same common profiles as adults with co-expression of CD107 and
MIP1β with or without IFNγ. In addition, a significantly lower (+

p<0.05) proportion of C infants had CMV pp65-specific CD8 Tcells that
expressed CD107 alone compared to P or CH adults
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combinations of the 4 functions expressed almost exclusively
by EM Tcells. In contrast, these responses were rarely detect-
ed in infants with congenital CMV infection, even when an
expanded panel of functions including IFNγ, IL2, MIP1β,
and CD107 was examined using flow cytometry. Only 2 in-
fants had detectable responses, which consisted of IFNγ- or
IL2-expressing cells equally distributed within the EM, CM,
and EMRA memory T cell compartments. Of interest, these
infants were 2 of 3 in the study with symptomatic infection
involving the central nervous system.

Our findings concur with other studies of CMV-specific
CD4 T cell responses in neonates or young children. Early
studies using bulk lymphoproliferative assays showed that
responses were uncommon in children with congenital
[59–61] or postnatal [62] CMV infection. Of note, Pass et al.
[60, 62] demonstrated fewer responses to CMV compared to
herpes simplex virus in infants infected with both viruses,
suggesting that reduced cellular immunity may be specific
for CMV but not other herpesviruses. More recent studies
using assays to measure single-cell responses in children with
postnatal CMV infection have also shown lower frequencies
of CMV-specific CD4 T cells detected by IFNγ or IL2 secre-
tion compared to adults [26–28]. Consistent with our studies,
Lidehall et al. recently reported that fewer CMV-specific
IFNγ-producing CD4 T cells were detectable in infants with
congenital or post-natal CMV infection compared to adults
with primary CMV infection [28].

Among adults, CMV pp65-specific CD8 T cells are
skewed toward robust cytotoxic and chemotaxis functions, a
profile consistent with effector responses and the capacity to
recruit cells to local sites of viral replication [63, 64]. In par-
ticular, Kim et al. [63] showed that late memory (CD27-
CD45RA+) CMV pp65-specific CD8 Tcells in healthy adults
produce little IL2 but abundant MIP1β. While CMV pp65-
specific CD8 T cell responses were detected in most C infants
and P adults in our study, the frequencies of these responses,
particularly single MIP1β- or CD107-expressing and
polyfunctional cells, were lower in infants. In adults,
polyfunctional T cells are associated with anti-viral protection
measured by slower disease progression, more frequent con-
trol of viral replication, or reduced antiviral drug treatment
[30–32], and measurement of these responses has been used
to evaluate anti-viral vaccine strategies [13, 33–36]. Few stud-
ies have examined polyfunctional CD4 or CD8 T cell re-
sponses in infants, which were detected infrequently in con-
genital HIV infection [65, 66], but commonly and with het-
erogeneous phenotype and functional profiles following Ba-
cillus Calmette-Guérin vaccination [35, 67]. Similar to these
HIV studies, our work shows that infants with congenital
CMV infection are relatively incapable of generating
polyfunctional T cell responses, but when present, expression
patterns were similar to adults and included CD107 and
MIP1β with or without IFNγ [64].

With these profiles of CMV pp65-specific T cell responses,
we then examined the level and duration of detectable CMV
DNA in peripheral blood of infants with congenital and adults
with primary CMV infection. CMV DNA at initial study was
detectable in all C infants compared to only 60 % of P adults,
despite significantly longer estimated duration of CMV infec-
tion in infants at the time of sampling.While decay rates could
not be estimated from our data, duration of detectable CMV
DNA in peripheral blood of infants with congenital CMV
infection was at least twice as long as adults with primary
CMV infection. This finding suggests that infants have more
prolonged exposure to viral replication, and that their CMV-
specific T cell responses do not result in clearance of viremia.
The relationship between level of viral exposure and clinical
outcome of congenital CMV infection has not been fully de-
fined, but an association between high viral burden and severe
sequelae has been observed in many studies, and has been
used as rationale for antiviral treatment of congenital CMV
infection [68, 69].

The mechanisms regulating the induction, expansion, dif-
ferentiation, quality, andmaintenance of virus-specific cellular
immune responses are not well understood, especially for in-
fants with congenital viral infection, although knowledge in
this area is increasing [7, 11]. In addition to engagement of the
T cell receptor (TCR) and co-stimulatory ligands, neonatal T
cells have been shown to require a sufficient cytokine signal to
allow an effective transition from naïve to effector Tcells [70].
IL-12 has been identified as a critical mediator in this pathway,
and is required to sustain phosphorylation and expression of
proximal TCR signal transduction proteins CD3ξ and Lck.
However, IL-12 production by antigen-presenting cells
(APC) is impaired through at least the first year of life, which
likely limits the capacity of infants to generate adequate virus-
specific T cell responses that control viral replication and limit
clinical disease. Our data show that infants are relatively inca-
pable of generating polyfunctional CD8 T cell responses but
when present expression patterns are similar to adults, thus
supporting the model of a critical induction threshold for in-
duction of effector T cell responses.

Moreover, infants characteristically exhibit cytokine pro-
files favoring polarization of T cells to relatively more anti-
(especially T helper 2 and regulatory T cells) than pro-
inflammatory responses [71]. In turn, limited CD4 T cell help
and/or amplified T cell suppression may lead to suboptimal
generation or maintenance of virus-specific CD8 T cells. In
humans and animal models, CD8 T cells generated with inad-
equate CD4 T cell help during infection or vaccination fail to
sustain anti-viral effector function or protection [13, 36, 72].
In addition, T cell functional impairment or Bexhaustion^ is a
distinct molecular state associated with chronic viral infection,
which involves expression of inhibitory co-receptors such as
programmed death receptor-1 (PD1) and cytotoxic T-
lymphocyte antigen 4 (CTLA4), reduced effector functions
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and proliferative capacity, and relatively terminal differentia-
tion, and correlates with markers of disease progression [53].
These T cells have been identified in primary CMV infection
[73]. Similarly, our data showing relatively differentiated CD8
T cells in infants with compared to those without congenital
CMV infection raises the possibility that these cells are in a
state of functional impairment. At the same time, this state
may limit T cell-mediated pathologic inflammation and tissue
damage [53], especially in the central nervous system that can
lead to severe neurodevelopmental delay in some children
with congenital CMV infection. While our study did not iden-
tify a difference in detectable CD4 or CD8 T cell responses in
CNS compared to non-CNS affected infants due to the small
cohort, others have shown evidence of immunopathology in
mouse [74] and human fetus [75] models. These and other
mechanisms intrinsic to or affecting the developing immune
system, along with viral immune evasion [76] or genomic
evolution [14], perturb the dynamic virus-host interaction to
favor persistent viral replication or severe disease in early life.

Conclusions

Our study provides new knowledge of neonatal anti-viral cel-
lular immune responses, and supports ongoing efforts to de-
lineate relevant mechanisms of protection and to develop an
effective preventive or therapeutic CMV vaccine targeting
young children. Using an expanded flow cytometry panel of
functional markers, we show that CMV-specific T cell re-
sponses can be primed in early life, but their frequency or
Bquality^ may be suboptimal for controlling CMV infection.
Compared to adults, infants with congenital CMV infection
have less frequently detectable CMV pp65-specific CD4 T
cells and lower frequencies of CD8 T cells capable of cyto-
toxic, chemotaxis, and multiple simultaneous functions, all in
the setting of persistent detectable CMV DNA in the periph-
eral blood. Moreover, recent studies show that CMV genome
populations are highly variable between tissue compartments
[14], necessitating plasticity of immune responses within the
host. The implication of these findings is that an effective
CMV vaccine targeting young children would need to accom-
modate specific features of adaptive immunity in this age
group. Toward this end, a recent report showed that a vaccine
based on the CMV gH/gL-pentamer complex induces robust
humoral responses that neutralize CMV infection of endothe-
lial cells and fibroblasts [12]. This candidate vaccine may
overcome the limitations of the neonatal immune system, es-
pecially if combined with pp65, IE1/2, or other targets of
cellular responses [44].

Our work demonstrates the feasibility of novel experimen-
tal approaches applied to studies of infants that can be used for
evaluation of this population in clinical trials. Moreover, our
work provides a foundation from which to study CMV-

specific cellular immunity in healthy infants with primary or
chronic CMVinfection, a more difficult population to identify.
The phenotypic and functional profiles of protective anti-viral
T cells that persist into memory are not fully defined for any
population [15, 29], so further characterization of these fea-
tures will be particularly critical to the design of CMV pre-
vention and treatment strategies.
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