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Abstract Let S be a nonorientable surface of genus g ≥ 5 with n ≥ 0 punctures, and
Mod(S) its mapping class group. We define the complexity of S to be the maximum rank
of a free abelian subgroup of Mod(S). Suppose that S1 and S2 are two such surfaces of the
same complexity. We prove that every isomorphism Mod(S1) → Mod(S2) is induced by a
diffeomorphism S1 → S2. This is an analogue of Ivanov’s theorem on automorphisms of
the mapping class groups of an orientable surface, and also an extension and improvement
of the first author’s previous result.
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1 Introduction

Let �n
g,b (resp. Nn

g,b) denote the orientable (resp. nonorientable) surface of genus g with b
boundary components and n punctures (or distinguished points). If b or n equals 0, then we
drop it from the notation. Let Mod(Nn

g,b) denote the mapping class group of Nn
g,b, which

is the group of isotopy classes of all diffeomorphisms of Nn
g,b, where diffeomorphisms

and isotopies are the identity on the boundary. The mapping class group Mod(�n
g,b) is
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defined analogously, but we consider only orientation preserving maps. The pure mapping
class groups PMod(�n

g,b) and PMod(Nn
g,b) are the subgroups of Mod(�n

g,b) and Mod(Nn
g,b)

respectively, consisting of the isotopy classes of diffeomorphisms fixing each puncture. We
denote by PMod+(Nn

g,b) the subgroup of PMod(Nn
g,b) consisting of the isotopy classes of

diffeomorphisms preserving local orientation at each puncture. Finally, let T (Nn
g,b) denote

the twist subgroup of PMod+(Nn
g,b) generated by Dehn twists about all two-sided curves.

We define the complexity of Nn
g , denoted by ξ

(
Nn
g

)
, as the maximum rank of a free

abelian subgroup of Mod(Nn
g ). By [8], for g + n > 2 we have

ξ
(
Nn
g

)
=

{
3
2 (g − 1) + n − 2 if g is odd
3
2 g + n − 3 if g is even.

The first author proved in [2] that the outer automorphism group of Mod(Ng) is cyclic
for g ≥ 5. In this paper we improve this result and also extend it to the case of surfaces with
punctures.

Theorem 1.1 For i = 1, 2 let Si = Nni
gi be a nonorientable surface of genus gi ≥ 5with ni ≥

0 punctures, and assume ξ(S1) = ξ(S2). Then every isomorphism Mod(S1) → Mod(S2) is
induced by a diffeomorphism S1 → S2.

In particular, for S1 = S2 we obtain the following.

Corollary 1.2 The outer automorphism groupOut(Mod(Nn
g )) is trivial for g ≥ 5 and n ≥ 0.

The analogous theorem for the mapping class group of an orientable surface is due to Ivanov
[5], who proved that if� is an orientable surface of genus g ≥ 3, then every automorphism of
Mod(�) is induced by a diffeomorphism of �, not necessarily orientation preserving. Later,
Ivanov and McCarthy [6] proved (among other things) that any injective endomorphism of
Mod(�) must be an isomorphism. Finally, by recent results of Castel [4] and Aramayona-
Souto [1], any nontrivial endomorphism of Mod(�) must be an isomorphism. It seems
reasonable to expect that Theorem 1.1 is true also for surfaces of genus less than 5 and
sufficiently big complexity. On the other hand, Corollary 1.2 does not hold for (g, n) = (2, 0)
or (3, 1), see [2, Proposition 4.5].

Similarly as in [5,6], the main ingredient of our proof of Theorem 1.1 is an algebraic
characterization of Dehn twists (Theorem 2.4), from which we conclude that any iso-
morphism Mod(S1) → Mod(S2) maps Dehn twists on Dehn twists. However, unlike for
orientable surfaces, Mod(Nn

g ) is not generated by Dehn twists (and neither are PMod(Nn
g )

and PMod+(Nn
g ), see [7,14]). In Subsection 2.8 we fix a finite generating set of PMod+(Nn

g )

consisting ofDehn twists andone crosscap transposition.Byusing this generating setwe show
that any isomorphism Mod(S1) → Mod(S2) restricts to an isomorphism PMod+(S1) →
PMod+(S2) of the form x �→ f x f −1 for some diffeomorphism f : S1 → S2. Then we
conclude Theorem 1.1 by using the following lemma proved in [5].

Lemma 1.3 (Ivanov) Let H be a normal subgroup of a group G such that the centralizer of
H in G is trivial. If ϕ : G → G is an automorphism such that ϕ(x) = x for all x ∈ H, then
ϕ = idG.

We close this introduction by remarking that Corollary 1.2 together with the fact that the
center of Mod(Nn

g ) is trivial [13, Corollary 6.3], imply that Aut(Mod(Nn
g )) is isomorphic to

Mod(Nn
g ) for g ≥ 5.
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2 Preliminaries

Let G be a group, X ⊆ G a subset and x ∈ G an element of G. Then C(G), CG(X) and
CG(x) will denote the center of G, the centralizer of X in G and the centralizer of x in G,
respectively.

Let g = 2ρ +m for ρ ≥ 0,m ≥ 1. We can represent Nn
g as an orientable surface of genus

ρ with n punctures and m crosscaps. In the figures, a crosscap is drawn as a disc with a cross
(e.g. Fig. 1). This means that the interior of the disc should be removed from the surface, and
then antipodal points on the resulting boundary component should be identified.

2.1 Curves and Dehn twists

By a curve a on a surface S we understand in this paper an unoriented simple closed curve.
According to whether a regular neighbourhood of a is an annulus or a Möbius strip, we call
a two-sided or one-sided respectively. If a bounds a disc with at most one puncture or a
Möbius band, then it is called trivial. Otherwise, we say that it is nontrivial. Let Sa denote the
surface obtained by cutting S along a. If Sa is connected, then we say that a is nonseparating.
Otherwise, a is called separating. If a is two-sided, then we denote by ta a Dehn twist about
a. On a nonorientable surface it is impossible to distinguish between right- and left-handed
twists, so the direction of a twist ta has to be specified for each curve a. Equivalently we
may choose an orientation of a regular neighbourhood of a. Then ta denotes the right-handed
Dehn twist with respect to the chosen orientation. Unless we specify which of the two twists
we mean, ta denotes any of the two possible twists. It is proved in [13] that many well known
properties of Dehn twists on orientable surfaces are also satisfied in the nonorientable case.
We will use these properties in this paper.

For two curves a and b we denote by i(a, b) their geometric intersection number (see
[13] for definition and properties). We say that a and b are equivalent if there exists a
diffeomorphism h : S → S such that h(a) = b.

We say that a collection of curves C = {a1, . . . , ak} is a multicurve if the curves ai
are nontrivial, pairwise disjoint, pairwise nonisotopic, and none is isotopic to a boundary
component of S. We denote by SC the surface obtained by cutting S along all curves of C.

2.2 Pants and skirts

We will use some properties of pants and skirts (P-S) decompositions defined in [13, Section
5]. We say that a multicurve C is a P-S decomposition if each a ∈ C is two-sided and each
component of SC is diffeomorphic to one of the following surfaces:

• disc with 2 punctures (pair of pants of type 1),
• annulus with 1 puncture (pair of pants of type 2),
• sphere with 3 holes (pair of pants of type 3),
• Möbius strip with 1 puncture (skirt of type 1),
• Möbius strip with 1 hole (skirt of type 2).

A P-S decomposition C is called separating if each a ∈ C is a boundary of two different
connected components of SC .

Lemma 2.1 Let S = Nn
g for g ≥ 3, s = ξ(S) if g �= 4, and s = 2+n if g = 4. Suppose that

a is a two-sided curve on S. There exits a P-S decomposition C = {a1, . . . , as} of S, such that
each ai is equivalent to a, if and only if Sa is connected and nonorientable. Furthermore, if
g + n > 3 then such P-S decomposition must be separating.
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Fig. 1 P-S decomposition of a N7 and b N8 satisfying the conditions of Lemma 2.1

Proof The “if” part is left to the reader (see Fig. 1). Suppose that a is separating. Then all
ai are separating. Furthermore, either each ai separates a pair of pants of type 1, or each ai
separates a skirt of type 1. It follows that s ≤ n, a contradiction. Now suppose that Sai is
connected and orientable (this is possible only for even g). Then every component of SC is
a pair of pants of type either 2 or 3. Note, however, that for i �= j the curves ai , a j together
separate S (there can be no curve on S disjoint from ai and intersecting a j once; such a curve
would be two-sided and one-sided at the same time). It follows that no component of SC is
a pair of pants of type 3, hence all components are pairs of pants of type 2. We have s ≤ n,
a contradiction.

Now suppose that g+ n > 3 and ai is a boundary of only one connected component P of
SC . Because −χ(S) = g + n − 2 > 1, SC has more than one component. It follows that P
must be a pair of pants of type 3 and the third boundary component of P must separate S. This
is a contradiction, because all ai are nonseparating. Thus C is a separating P-S decomposition
of S. 	


Remark 2.2 For g = 4 there also exist P-S decompositions of Nn
4 of cardinality ξ(Nn

4 ) =
3 + n. However, such a P-S decomposition can not consist of nonseparating curves with
nonorientable component.

Lemma 2.3 Let S = Nn
g for g ≥ 3, (g, n) /∈ {(3, 0), (4, 0)} and suppose that C =

{a1, . . . , as} is a P-S decomposition as in Lemma 2.1, where s = ξ(S) if g �= 4, and
s = 2 + n if g = 4. For k ≥ 1 let T k

C be the subgroup of Mod(S) generated by tkai for
1 ≤ i ≤ s. Then, for each k ≥ 1:

(a) T k
C is a free abelian group of rank s;

(b) CMod(S)(T k
C ) = T 1

C .

Proof The assertion (a) follows from [13, Proposition 4.4]. To prove (b) we use an idea from
the proof of [13, Theorem 6.2]. Suppose f ∈ CMod(S)(T k

C ). Then tkai = f tkai f
−1 = tkf (ai )

for all i . It follows that f fixes each curve ai , hence it permutes the connected components
of SC . Suppose that f interchanges some two components P1 and P2 of SC . By the proof of
Lemma 2.1, there are no pairs of pants of type 1 and no skirts of type 1 in the decomposition.
Suppose that P1 and P2 are skirts of type 2 glued along a curve ai . Then the remaining
boundary curves a j ⊂ P1 and al ⊂ P2 must be glued together (al = f (a j ) = a j ), hence
S is the closed nonorientable surface of genus 4, contrary to the assumptions of the lemma.
Similarly, if P1 and P2 are pairs of pants of type 2 or 3, then S must be a Klein bottle with two
punctures, or a closed nonorientable surface of genus 4 respectively, which again contradicts
the assumptions. Thus f fixes each component of SC . Furthermore, since f centralizes the
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boundary twists of each pair of pants, it preserves its orientation. Because the mapping class
groups of a pair of pants of type 2 or 3, and that of the skirt of type 2 are generated by boundary
twists, f is a product of some powers of tai for 1 ≤ i ≤ s. Thus CMod(S)(T k

C ) ⊆ T 1
C and the

opposite inclusion is obvious. 	

Note that (b) of Lemma 2.3 implies that T 1

C is a maximal abelian subgroup of Mod(S).

2.3 Pure subgroups

Let S denote the surface Nn
g for g ≥ 3 and n ≥ 0. We recall from [2] the construction

of finite index pure subgroups �m(S) of Mod(S) (see Section 2 of [2] for more details).
Fix an orientable double cover � = �2n

g−1 of S. Then Mod(S) can be identified with the
subgroup of Mod(�), consisting of the isotopy classes of diffeomorphisms commuting with
the covering involution. Consequently, Mod(S) acts on H1(�,Z/mZ) for all m ≥ 0. We
define �m(S) to be the subgroup of Mod(S) consisting of all elements inducing the identity
on H1(�,Z/mZ). If m ≥ 3, then �m(S) is a pure subgroup of Mod(S). In particular, if
f ∈ �m(S) preserves a multicurve C, then f fixes each curve of C and, furthermore, it can
be represented by a diffeomorphism equal to the identity on a regular neighbourhood of each
curve of C. If the restriction of f to any connected component of SC is isotopic (by an isotopy
that does not have to fix pointwise the boundary components of SC) either to the identity or
to a pseudo-Anosov map, then C is called a reduction system for f . The intersection of all
reduction systems for f is called the canonical reduction system for f . Reduction systems
were introduced by Birman, Lubotzky and McCarthy in [3], for the case of a nonorientable
surface see [16].

2.4 Algebraic characterization of a Dehn twist

The key ingredient of the proof of our main result is an algebraic characterization of a Dehn
twist about a nonseparating curve in the mapping class group. Theorem 2.4 below is an
extension of Theorem 3.1 of [2] to punctured surfaces. The proof closely follows Ivanov’s
ideas [5].

Theorem 2.4 Let S = Nn
g for g ≥ 3, (g, n) /∈ {(3, 0), (4, 0)} and let � be a finite index

subgroup of�m(S) form ≥ 3. An element f ∈ Mod(S) is aDehn twist about a nonseparating
curve with nonorientable complement if and only if the following conditions are satisfied:

(i) C(C�( f k)) ∼= Z, for any integer k �= 0 such that f k ∈ �.
(ii) Set s = ξ(S) if g �= 4, and s = 2 + n if g = 4. There exist elements f2, . . . , fs ∈

Mod(S), each conjugate to f1 = f , such that f1, . . . , fs generate a free abelian group
K of rank s.

(iii) For k ≥ 1 let Kk be the subgroup of Mod(S) generated by f ki for 1 ≤ i ≤ s. Then
CMod(S)(Kk) = K.

Proof Assume that the above conditions are satisfied, then we have to show that f is a Dehn
twist about a nonseparating curve with nonorientable complement.

Choose any integer k �= 0 such that f k ∈ �. Because f has infinite order by (ii), f k is
not the identity element. Let C be the canonical reduction system for f k . Let G denote the
subgroup generated by the twists about the two-sided curves in C. SetG ′ = G∩�. ThenG and
G ′ are free abelian groups. Firstly, we will show that G ′ ⊂ C(C�( f k)). Let g ∈ C�( f k).
Since g commutes with f k , it preserves the canonical reduction system C. Because g is
pure, it fixes each curve of C and also preserves orientation of a regular neighbourhood
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of each two-sided curve of C. It follows that g commutes with each generator G, hence
G ⊆ CM(S)(C�( f k)). So, G ′ ⊂ C�(C�( f k)) = C(C�( f k)). For the last equality observe
that, since f k ∈ C�( f k), C�(C�( f k)) ⊆ C�( f k), hence C�(C�( f k)) ⊆ C(C�( f k)) and
the opposite inclusion is obvious. The assumption C(C�( f k)) = Z implies that C contains
at most one two-sided curve.

Assume that C has no two-sided curve, so that C = {c1, . . . , cl}, where each ci is a one-
sided curve. Then SC is connected. Let Stab+(C) be the subgroup of Mod(S) consisting of
elements fixing each curve of C and preserving its orientation. Note thatC�( f k) ⊆ Stab+(C).
The mapping h �→ h|SC defines an isomorphism Stab+(C) → Mod(SC)/Zl , where Z

l is

the subgroup generated by the boundary twists of SC (see [12, Section 4]). We also have
a monomorphism Mod(SC)/Zl → Mod(S′), where S′ is the surface obtained from SC by
collapsing each boundary component to a puncture. By composing these two maps we obtain
a monomorphism θ : Stab+(C) → Mod(S′). Because C is the canonical reduction system for
f k , θ( f k) is either the identity or pseudo-Anosov. In the former case f k must be the identity,
a contradiction. Suppose θ( f k) is pseudo-Anosov. Set H = � ∩ Kk , where Kk is the group
from condition (iii). We have H ⊆ C�( f k) ⊆ Stab+(C) and θ(H) is a free abelian subgroup
of Mod(S′) containing θ( f k). Since θ( f k) is pseudo-Anosov, θ(H) must have rank 1. This
is a contradiction, as H has rank s > 1.

We have C = {c1, . . . , cl , a}, where a is a two-sided curve and each ci is one-sided. Let
D be the subgroup generated by f k and the twist about a and denote the intersection D ∩ �

by D′. Hence, D′ ⊂ C(C�( f k)) and hence D′ is isomorphic to Z. It follows that f k1 = tma
for some integers m and k1 (possibly greater than k).

Let f1, . . . , fs be the elements from condition (ii). For 1 ≤ i ≤ s we have f k1i = tmai for
some curve ai equivalent to a1 = a. We claim that C = {a1, . . . , as} is a P-S decomposition
of S. If not, then we can complete C to a P-S decomposition C′. Let TC′ be the free abelian
group generated by twists about the curves of C′. We have TC′ ⊆ CMod(S)(Kk1) = K .
It follows that rank(TC′) ≤ s, hence C′ = C. By (iii) and (b) of Lemma 2.3 we have
K = CMod(S)(Kk1) = CMod(S)(Tm

C ) = T 1
C . By (ii) f is a primitive element of K = T 1

C ,
hence f = ta1 . It follows from Lemma 2.1 that a1 is nonseparating and has nonorientable
complement.

The proof of the opposite implication is straightforward and left to the reader (see [5]). 	

Corollary 2.5 For i = 1, 2 let Si = Nni

gi for gi ≥ 5 and assume ξ(S1) = ξ(S2). Suppose
that ϕ : Mod(S1) → Mod(S2) is an isomorphism. If f ∈ Mod(S1) is a Dehn twists about a
nonseparating curve with nonorientable complement, then so is ϕ( f ).

Proof Fix m ≥ 3. Because f satisfies the conditions (i), (ii), (iii) of Theorem 2.4 with
�m(S1) as �, it follows that ϕ( f ) also satisfies (i), (ii), (iii) of Theorem 2.4 with � =
ϕ(�m(S1)) ∩ �m(S2). 	

2.5 Chains

A sequence (a1, . . . , ak) of curves is called a chain if i(ai , ai+1) = 1 for 1 ≤ i ≤ k − 1
and i(ai , a j ) = 0 for |i − j | > 1. The integer k ≥ 1 is called the length of the chain. If all
curves in a chain are two-sided, then a regular neighbourhood of the union of these curves
is orientable. Let tai be right-handed Dehn twists with respect to some orientation of such a
neighbourhood for 1 ≤ i ≤ k. Then

(a) tai tai+1 tai = tai+1 tai tai+1 for 1 ≤ i ≤ k − 1
(b) tai ta j = ta j tai for |i − j | > 1.
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Conversely, if a sequence of Dehn twists (ta1 , . . . , tak ) satisfies (a) and (b), then (a1, . . . , ak)
is a chain, and the twists are right-handed with respect to some orientation of a regular
neighbourhood of the union of the curves of the chain (see [13, Section 4]). A sequence of
Dehn twists satisfying (a) and (b) will also be called a chain. Observe that if (a1, a2) is a
2-chain of two-sided curves, then Sai must be connected and nonorientable for i = 1, 2.

2.6 Trees

Wewill now define a tree of curves (and Dehn twists) as a generalization of a chain. Suppose
that C is a collection of curves, such that i(a, b) ∈ {0, 1} for all a, b ∈ C. Let �(C) be a
graph with C as the set of vertices, and where a and b are connected by an edge if and only
if i(a, b) = 1. We will call C a tree if and only if �(C) is a tree (connected and acyclic). If
all curves in a tree are two-sided, then a regular neighbourhood of the union of these curves
is orientable. Let ta be right-handed Dehn twists with respect to some orientation of such a
neighbourhood for a ∈ C. Then
(a′) tatbta = tbtatb if a and b are connected by an edge,
(b′) tatb = tbta otherwise.

Conversely, suppose that T = {ta : a ∈ C} is a set of Dehn twists for some set of curves C,
where each two twists of T either commute, or satisfy the braid relation. Then the geometric
intersection number of the underlying curves is, respectively, either 0 or 1. We say that T is a
tree of twists if and only if C is a tree. We will always assume that the curves in C realize their
geometric intersection number and a regular neighbourhood of the union of these curves is
oriented so that all twists of T are right-handed.

The following corollary follows immediately from Corollary 2.5

Corollary 2.6 For i = 1, 2 let Si = Nni
gi for gi ≥ 5 and assume ξ(S1) = ξ(S2). Suppose

that ϕ : Mod(S1) → Mod(S2) is an isomorphism. If T = {ta : a ∈ C} ⊂ Mod(S1) is a tree
of Dehn twists of cardinality at least 2, then ϕ(T ) is also a tree of Dehn twists for some set
of curves C′, such that �(C) and �(C′) are isomorphic (as abstract graphs).

2.7 Useful relations among Dehn twists

The following lemma is well-known (see [9, Proposition 2.12]).

Lemma 2.7 Suppose that (tc1 , tc2 , . . . , tc2k+1) is a chain of twists. Then

(tc1 tc2 . . . tc2k+1)
2k+2 = tu1 tu2 ,

where tu1 , tu2 are right-handed twists about the boundary components of a regular neigh-
bourhood of the union of the curves ci (Fig. 2).

Relations (a) and (b) of the next lemma appear in [9, Theorem 3.2] as (R5) and (R6)
respectively. Their proof can be deduced from [9, Proposition 2.12].

Lemma 2.8 Suppose that {tc0 , tc1 , . . . , tc7} is the tree of right-handed Dehn twists on �2,3

whose underlying curves are shown on Fig. 3, and tui , i = 1, 2, 3, are right-handed Dehn
twists about the boundary components of �2,3. Then

(a) tu1 = (tc0 tc1 tc2 tc3 tc4 tc5)
5(tc1 tc2 tc3 tc4 tc5)

−6

(b) tu2 = (tc7 tc6 tc4 tc3 tc2 tc0)
5(tc6 tc4 tc3 tc2 tc0)

−6(tc6 tc5 tc4)
4(tc7 tc6 tc5 tc4)

−3
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2.8 Generators of PMod+(Nn
h )

The aim of this subsection is to fix a finite generating set of PMod+(Nn
h ) for h ≥ 5.We choose

a generating set which differs slightly from the one given in [14, Theorem 4.1]. We begin
its description with Dehn twists. Let D and E be the trees of curves from Figs. 4 and 5. We
will abuse notation and denote by the same symbols the corresponding trees of Dehn twists.
As we already mentioned in the introduction, PMod+(Nn

h ) is not generated by Dehn twists
and to obtain a generating set for this group we add to D or E one more generator, namely
a crosscap transposition (in [14] a crosscap slide is used). In order to describe this element,
and also to be able to prove Lemmas 3.7 and 3.8 in Sect. 3, we view certain subsurface of
Nn
h as a disc with crosscaps.
For k ∈ {5, 6} let Nk,1 be a nonorientable surface of genus kwith one boundary component,

represented on Fig. 6 as disc with k crosscaps numbered from 1 to k. For i ≤ j let ci, j denote
the simple closed curve on Nk,1 from Fig. 6. Note that ci, j is two-sided if and only if j − i
is odd. In such case tci, j denotes the twist about ci, j in the direction indicated by the arrows
on Fig. 6.

We denote by u the crosscap transposition defined to be the isotopy class of the diffeo-
morphism of Nk,1 interchanging the (k − 1)’st and k’th crosscaps as shown on Fig. 7, and
equal to the identity outside a disc containing these crosscaps.

Lemma 2.9 For g ≥ 2 there are embeddings θ1 : N5,1 → Nn
2g+1 and θ2 : N6,1 → Nn

2g+2,
such that:

(a) for i = 1, 2, Nn
2g+i\θi (N4+i,1) is an orientable surface of genus g − 2 with n punctures

containing the curves ai for all i > 8;
(b) for i = 1, 2, a5 = θi (c1,2), a6 = θi (c2,3), a4 = θi (c3,4), a2 = θi (c4,5), a1 = θi (c1,4);
(c) a3 = θ1(tc4,5u

−1(c1,4));
(d) a0 = θ2(c5,6), a = θ2(c1,6);
(e) θ2 maps boundary curves of a regular neighbourhood of c1,6 ∪ c5,6 ∪ c6,6 on a1 and a3.

Proof Suppose h = 2g + 1. Set c5 = c1,2, c6 = c2,3, c4 = c3,4, c2 = c4,5, c1 = c1,4
and c3 = tc4,5u

−1(c1,4). By changing these curves by a small isotopy, we may assume that
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k − 1 k

u−→

Fig. 7 The crosscap transposition

they realize their geometric intersection number. Then we have |ci ∩ c j | = |ai ∩ a j | for all
i, j ∈ {1, . . . , 6}. Let M (resp. M ′) be a regular neighbourhood of the union of ci (resp.
ai ) for i ∈ {1, . . . , 6}. Observe that M and M ′ are both diffeomorphic to �2,3. There is a
diffeomorphism θ ′ : M → M ′ such that θ ′(ci ) = ai for i ∈ {1, . . . , 6}. To see that θ ′ can be
extended to an embedding θ1 : N5,1 → Nn

h observe that (1) c1, c4 and c5 (resp. a1, a4 and
a5) bound a pair of pants on N5,1 (resp. Nn

h ); (2) c3, c4, c5 and ∂N5,1 bound a 4-holed sphere;
(3) c1 and c3 (resp. a1 and a3) bound a subsurface of N5,1 (resp. Nn

h ) diffeomorphic to N1,2.
Suppose h = 2g + 2. Set c5 = c1,2, c6 = c2,3, c4 = c3,4, c2 = c4,5, c1 = c1,4, c0 = c5,6.

Let K be a regular neighbourhood of c1,6 ∪ c5,6 ∪ c6,6. Observe that K is a Klein bottle
with two holes, whose one boundary component is isotopic to c1 = c1,4. Let c3 denote the
other component of ∂K . We have |ci ∩ c j | = |ai ∩ a j | for all i, j ∈ {0, . . . , 6}. Let M (resp.
M ′) be a regular neighbourhood of the union of ci (resp. ai ) for i ∈ {0, . . . , 6}. Observe
that M and M ′ are both diffeomorphic to �2,4. There is a diffeomorphism θ ′ : M → M ′
such that θ ′(ci ) = ai for i ∈ {0, . . . , 6}. To see that θ ′ can be extended to an embedding
θ2 : N6,1 → Nn

h observe that (1) c1, c4 and c5 (resp. a1, a4 and a5) bound a pair of pants on
N6,1 (resp. Nn

h ); (2) c3, c4, c5 and ∂N6,1 bound a 4-holed sphere; (3) two boundary curves
of M (resp. M ′) bound an annulus with core c1,6 (resp. a). The conditions (a, b, d, e) follow
immediately from the construction of θ2. 	


Via these embeddings, we will treat N4+i,1 as a subsurface of Nn
2g+i for i = 1, 2. Conse-

quently, we will identify curves on N4+i,1 with their images on Nn
2g+i , and also, using [15,

Corollary 3.8], treat Mod(N4+i,1) as a subgroup of Mod(Nn
2g+i ) (in particular ta5 = tc1,2

etc.).

Proposition 2.10 For g ≥ 2, PMod+(Nn
2g+1) (resp. PMod+(Nn

2g+2)) is generated by u and
D (resp. u and E).

Proof Let y = tck−1,k u. This element is called crosscap slide and Stukow proved in [14, Theo-
rem 4.1] that PMod+(Nn

2g+1) is generated by D∪{y} = D∪{ta2u}, whereas PMod+(Nn
2g+2)

is generated by E ∪ {y, ta} = E ∪ {ta0u, ta}. It suffices to show that ta can be expressed as a
product of elements of E . This can be achieved by (a) of Lemma 2.8:

(ta0 ta1 ta2 ta4 ta6 ta5)
5(ta0 ta2 ta4 ta6 ta5)

−6 = ta 	

We will also need the following fact about the twist subgroup.

Lemma 2.11 For h ≥ 5, T (Nn
h ) is generated by Dehn twists about nonseparating curves

with nonorientable complement.
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Proof Set S = Nn
h . By [14], T (S) is a subgroup of PMod+(S) of index 2, and PMod+(S) =

T (S)∪ uT (S). By Proposition 2.10, T (S) is generated by D∪ uDu−1 ∪{u2} if h = 2g+ 1,
and by E ∪ uEu−1 ∪ {u2} if h = 2g + 2. We have u2 = te, where e is the boundary curve
of the Klein bottle with a hole shown in Fig. 7. Because D and E consist of Dehn twists
about nonseparating curves with nonorientable complement, the same is true for uDu−1 and
uEu−1, and it suffices to show that te can also be expressed as a product of such twists. Note
that Se is homeomorphic to Nn

h−2,1 � N2,1. If h ≥ 7, then the surface�2,3 from Fig. 3 can be
embedded in S so that the boundary curve u1 of�2,3 coincides with e, and then (a) of Lemma
2.8 provides the desired expression of te as a product of Dehn twists about nonseparating
curves with nonorientable complement.

For the case h = 5, 6weneed the so called star relation,which is a special case of the fourth
relation of [9, Proposition 2.12]. We say that curves c0, c1, c2, c3 form a star if (c1, c2, c3) is
a chain, i(c0, c2) = 1 and i(c0, c1) = i(c0, c3) = 0. A regular neighbourhood of the union of
the curves of the star is a 3-holed torus, andwe denote its boundary components by u1, u2, u3.
The star relation is (tc0 tc1 tc3 tc2)

3 = tu1 tu2 tu3 , where the twists are right-handedwith respect to
some orientation of the regular neighbourhood.We choose a chain (c1, c2, c3) of curves such
that one of the boundary components of a regular neighbourhood of c1 ∪ c2 ∪ c3 is the curve
e, and we denote the second component by u1. By Lemma 2.7 we have (tc1 tc2 tc3)

4 = tu1 te.
Note that the connected component of Su1 containing the chain is homeomorphic to N4,1

and so we can complete the chain to a star (c0, c1, c2, c3), by adding a curve c0, such that
one boundary curve of a regular neighbourhood of the union of the curves of the star is u1
and the other two components bound Möbius bands. Then the star relation takes the form
(tc0 tc1 tc3 tc2)

3 = tu1 and te = (tc0 tc1 tc3 tc2)
−3(tc1 tc2 tc3)

4 is the desired expression of te as a
product of Dehn twists about nonseparating curves with nonorientable complement. 	


3 Automorphisms of Mod(Nn
g )

The aim of this section is to prove Theorem 1.1. Our first observation is that we can assume
S1 = S2 by the following lemma.

Lemma 3.1 Suppose that ϕ : Mod(S1) → Mod(S2) is an isomorphism, where S1 and S2
are as in Theorem 1.1. Then (g1, n1) = (g2, n2).

Proof By Lemma 2.11 and Corollary 2.5, ϕ(T (S1)) = T (S2), and hence [Mod(S1) : T (S1)]
= [Mod(S2) : T (S2)]. Since [Mod(Si ) : T (Si )] = 2ni+1ni ! by [14, Corollary 6.4], we have
n1 = n2. This and the equality ξ(S1) = ξ(S2) imply that g1 and g2 must be of the same
parity, and in fact g1 = g2. 	


Our next goal is the following key lemma.

Lemma 3.2 Suppose that h = 2g + 1 (resp. h = 2g + 2) for g ≥ 2 and ϕ : Mod(Nn
h ) →

Mod(Nn
h ) is an automorphism. Then there exists f ∈ Mod(Nn

h ) such that ϕ(t) = f t f −1 for
each t ∈ D (resp. t ∈ E ∪ {ta}).

After we prove Lemma 3.2, the next step is to show, using Proposition 2.10, that the auto-
morphism ϕ′ : Mod(Nn

h ) → Mod(Nn
h ) defined as ϕ′(x) = f −1ϕ(x) f restricts to an inner

automorphism of PMod+(Nn
h ). This step is completed in Lemmas 3.7 and 3.8. Finally, we

conclude Theorem 1.1 by using Lemma 1.3.
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For the proof of Lemma 3.2 we need to compute the centralizers of sub-trees 
 ⊂ D and
� ⊂ E defined as


 = {
ta1 , ta3 , ta5

} ∪ {
ta2i : 1 ≤ i ≤ 2g − 1

} ∪ {
tb j : 1 ≤ j ≤ n − 1

}
,

� = {
ta1 , ta3 , ta5

} ∪ {
ta2i : 0 ≤ i ≤ 2g − 1} ∪ {tb j : 1 ≤ j ≤ n − 1

}
.

Let �g,n+1 (resp. �g,n+2) be a subsurface of Nn
2g+1 (resp. N

n
2g+2), supporting D (resp. E),

obtained by removing from Nn
2g+1 (resp. N

n
2g+2) n open discs, each containing one puncture,

and aMöbius band (resp. an annulus with core a). For i = 1, 2 the inclusion�g,n+i ⊂ Nn
2g+i

induces a homomorphism Mod(�g,n+i ) → Mod(Nn
2g+i ).

Lemma 3.3 Suppose that h = 2g + 1 for g ≥ 2. Then CMod(Nn
h )(
) = 1.

Proof Let H denote the image of Mod(�g,n+1) in Mod(Nn
h ). It can be easily deduced from

themain result of [9] that H is generated by twists of
. ThusCMod(Nn
h )(
) = CMod(Nn

h )(H).
Set D′ = D\{ta4i−2 : 1 ≤ i ≤ g}. The curves supporting the twists of D′ form a sep-
arating pants and skirts decomposition of Nn

h (see Subsection 2.2 for the definition). Let
h ∈ CMod(Nn

h )(H). Since D′ ⊂ H , h ∈ CMod(Nn
h )(D

′). By the proof of (b) of Lemma 2.3,

h = ∏
tmi
ai for some integers mi , where the product is taken over all tai ∈ D′. By [10,

Proposition 3.4], for every tai ∈ D′ there exists a simple closed curve c on �g,n+1, such that
i(c, ai ) > 0 and tc commutes with all twists in D′\{tai }. Since tc ∈ H , it also commutes
with h. It follows that tc commutes with tmi

ai , which is possible only for mi = 0, hence h = 1
and CMod(Nn

h )(H) is trivial. 	

Lemma 3.4 Suppose that h = 2g + 2 for g ≥ 2. Then CMod(Nn

h )(�) is the infinite cyclic
group generated by ta, where a is the curve from Fig. 5.

Proof Let H denote the image of Mod(�g,n+2) in Mod(Nn
h ). Similarly as in the odd genus

case, H is generated by twists of �, thus CMod(Nn
h )(�) = CMod(Nn

h )(H). Note that ta ∈ H ,
because a is isotopic to a boundary component of�g,n+2. Set E ′ = E∪{ta}\{ta4i−2 : 1 ≤ i ≤
g}. The curves supporting the twists of E ′ form a separating P-S decomposition of Nn

h . Let
h ∈ CMod(Nn

h )(H). By a similar argument as in the proof of (b) of Lemma 2.3, h = tma
∏

tmi
ai

for some integers mi and m, where the product is taken over all tai ∈ E ′\{ta}. By the same
argument as in the proof for odd genus, all mi = 0, hence h = tma . 	

Lemma 3.5 Let S = Nn

2g+1 for g ≥ 2, n ≥ 1 and suppose that ϕ : Mod(S) → Mod(S) is
an isomorphism such that ϕ(ta1) and ϕ(ta3) are Dehn twists about curves c1 and c3. Then
c1 ∪ c3 does not bound a once-punctured annulus embedded in S.

Proof Suppose that c1 and c3 are the boundary curves of a once-punctured annulus embedded
in S. Set G = CMod(S){ta1 , ta3} and H = ϕ(G) = CMod(S){tc1 , tc3}. Observe that S{c1,c3} is
homeomorphic to Nn−1

2g−1,2��1
0,2, whereas S

{a1,a3} is homeomorphic to�n
g−1,2�N1,2. Let X

(resp. Y ) be the subsurface of S homeomorphic to�n
g−1,2 (resp. N

n−1
2g−1,2) such that ∂X = a1∪

a3 (resp. ∂Y = c1 ∪ c3). The centralizer G consists of the isotopy classes of diffeomorphisms
of S fixing a1 and a3 whose restriction to X is orientation preserving. It follows that the
inclusion of X in S induces an isomorphism Mod(X) → G (see [11, §5.2] or [12, §4]).
Similarly, the inclusion of Y in S induces an isomorphism Mod(Y ) → H . Let K denote the
image of PMod(X) inG. Because PMod(X) is generated by Dehn twists about nonsepataing
curves (see [9, Proposition 2.10]), K is generated by Dehn twists about nonseparating curves
with nonorientable complement. By Corollary 2.5, ϕ(K ) is also generated by Dehn twists,
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and hence it is contained in the image of T (Y ). By [14, Corollary 6.4], T (Y ) has index
2n(n−1)! in Mod(Y ), and hence [H : ϕ(K )] ≥ 2n(n−1)!. On the other hand [H : ϕ(K )] =
[G : K ] = [Mod(X) : PMod(X)] = n!. This is a contradiction, because n! < 2n(n − 1)!. 	

Proof of Lemma 3.2 Set S = Nn

h . Suppose h = 2g + 1. By Corollary 2.6, ϕ(
) is a tree of
Dehn twists for which the underlying tree of curves is isomorphic (as abstract graphs) to that
of 
. For tai , tb j ∈ 
 choose curves ci , d j such that tci = ϕ(tai ), td j = ϕ(tb j ). These curves
may be chosen to realize their geometric intersection number.

LetM be a closed regular neighbourhood of the union of ci and d j for tci , td j ∈ ϕ(
). Note
that M is an orientable surface of genus g with n + 2 (or 3 if n = 0) boundary components.

Similarly, let M ′ be a closed regular neighbourhood of the union of the curves supporting

. OrientM andM ′ so that tai , tb j and tci , td j are right-handedDehn twists. Fix an orientation
preserving diffeomorphism f0 : M ′ → M such that f0(a2i ) = c2i for 1 ≤ i ≤ 2g − 1 ,
f0(a5) = c5, { f0(a1), f0(a3)} = {c1, c3} and { f0(b j ) : 1 ≤ j ≤ n − 1} = {d j : 1 ≤ j ≤
n−1}. If (g, n) = (2, 0) thenwe can also assume f0(ai ) = ci for i = 1, 3. Set c′

i = f0(ai ) for
i = 1, 3 and d ′

j = f0(b j ) for 1 ≤ j ≤ n−1. Either (c′
1, c

′
3) = (c1, c3) or (c′

1, c
′
3) = (c3, c1).

Analogously, (d ′
1, . . . , d

′
n−1) is some (possibly nontrivial) permutation of (d1, . . . , dn−1).

The neighbourhood M and the curves supporting ϕ(
) are shown on Fig. 8.
By Lemma 3.3, CMod(S)(ϕ(
)) = ϕ(CMod(S)(
)) = 1. It follows that Dehn twists about

the boundary components of M are trivial, hence each component of ∂M bounds either a
Möbius band or a disc with 0 or 1 puncture. It is clear that exactly 1 component bounds a
Möbius strip, and exactly n components bound once-punctured discs.

Consider the component u of ∂M which bounds a pair of pants together with c′
1 and c′

3.
By Lemma 3.5, c′

1 ∪ c′
3 can not bound a once-punctured annulus in S. It also can not bound

a non-punctured annulus, because tc1 �= t±1
c3 . It follows that u bounds a Möbius strip.

Suppose (g, n) �= (2, 0) and consider the component v of ∂M which bounds a 4-holed
sphere together with c5, c4 and c′

1. For i = 1, 3 set

xi = (ta5 ta6 ta4 ta2 tai )
6 and yi = (tc5 tc6 tc4 tc2 tc′

i
)6.

Suppose that (c′
1, c

′
3) = (c3, c1). Then ϕ(x3) = y1. By Lemma 2.7, x3 is a product of 2

twists commuting with ta1 , whereas y1 does not commute with tc′
3
, a contradiction. Hence

c′
i = ci for i = 1, 3. It also follows that y3 commutes with tc1 , which implies that v bounds
a non-punctured disc.

It is now clear that f0 can be extended to f : S → S. We have ϕ(tai ) = f tai f
−1 for all

tai ∈ 
. Since each ta j ∈ D can be expressed in terms of tai ∈ 
, we have ϕ(ta j ) = f ta j f
−1

for all ta j ∈ D. It remains to prove that d ′
i = di for 1 ≤ i ≤ n − 1. We proceed by induction.

...

...
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c

c

c

c

c

c

2

3

4

5

64g-6
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4g-2
1
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v

Fig. 8 The neighbourhood M supporting ϕ(
)
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Consider the once-punctured annulus A1, whose boundary is the union of b1 and a4g−3.
Let u1 be the boundary of a small disc contained in A1 and containing the puncture. By (a)
of Lemma 2.8 we have

tu1 = (
ta4g−3 tb1 ta4g−2 ta4g−4 ta4g−6 ta4g−7

)5 (
tb1 ta4g−2 ta4g−4 ta4g−6 ta4g−7

)−6
.

By applying ϕ to the above equality and using Lemma 2.8 we obtain that ϕ(tu1) is equal to
a twist about the curve bounding a disc containing all punctures of the annulus A′

1, whose
boundary is the union of d1 and f (a4g−3). Since tu1 = 1, we have ϕ(tu1) = 1. It follows that
A′
1 contains only 1 puncture, hence d1 = d ′

1.
Now suppose that d ′

i = di for 1 ≤ i ≤ k−1 for some k < n. Consider the once-punctured
annulus Ak , whose boundary is the union of bk−1 and bk . Let uk be the boundary of a small
disc contained in Ak and containing the puncture. By (b) of Lemma 2.8 we can express tuk
in terms of Dehn twists of the tree

{tbk , tbk−1 , ta4g−3 , ta4g−2 , ta4g−4 , ta4g−6 , ta4g−7}.
By applying ϕ to that expression and using Lemma 2.8 we obtain that ϕ(tuk ) is equal to a
twist about the curve bounding a disc containing all punctures of the annulus A′

k , whose
boundary is the union of dk and dk−1. As above, it follows that dk = d ′

k .
For h = 2g + 2 we proceed as above, to obtain a diffeomorphism f0 : M ′ → M , where

M (resp. M ′) is a regular neighbourhood of the union of the curves supporting ϕ(�) (resp.
�), such that f0(a2i ) = c2i for 1 ≤ i ≤ 2g − 1, f0(a5) = c5, { f0(a0), f0(a1), f0(a3)} =
{c0, c1, c3} and { f0(b j ) : 1 ≤ j ≤ n − 1} = {d j : 1 ≤ j ≤ n − 1}, where ϕ(tai ) = tci and
ϕ(tb j ) = td j . Set c

′
i = f0(ai ) for i = 0, 1, 3 and d ′

j = f0(b j ) for 1 ≤ j ≤ n − 1. Note that
M and M ′ are orientable of genus g with n + 3 (or 4 if n = 0) boundary components (see
Fig. 9).

For i ∈ {0, 1, 3} set
xi = (ta5 ta6 ta4 ta2 tai )

6 and yi = (tc5 tc6 tc4 tc2 tc′
i
)6.

Suppose (g, n) �= (2, 0) and consider the component v of ∂M which bounds a 4-holed sphere
together with c5, c4 and c′

1. It follows from Lemma 2.7 that
{
ta0 , ta1 , ta3

} ∩ CMod(Nn
h ){x0, x1, x3} = {ta1},

hence

{tc0 , tc1 , tc3} ∩ CMod(Nn
h ){y0, y1, y3} = {tc1}.
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Fig. 9 The neighbourhood M supporting ϕ(�)
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Since neither tc′
0
nor tc′

3
commute with y1, we have c1 = c′

1. Furthermore, since tc1 commutes
with y0 and y3, v bounds a non-punctured disc. (If (g, n) = (2, 0) then {ta0 , ta1 , ta3} ∩
CMod(Nn

h ){x0, x1, x3} = {ta1 , ta3}. It follows that c′
0 = c0, and by composing f0 by a suitable

diffeomorphism if necessary we may assume c′
i = ci for i = 1, 3. )

By (a) of Lemma 2.8 we have

(ta0 ta1 ta2 ta4 ta6 ta5)
5(ta0 ta2 ta4 ta6 ta5)

−6 = ta

For i = 0, 3 set

zi = (tc′
i
tc1 tc2 tc4 tc6 tc5)

5(tc′
i
tc2 tc4 tc6 tc5)

−6

Then either ϕ(ta) = z0 or ϕ(ta) = z3. Since ta commutes with ta3 , and z3 does not commute
with tc′

0
, we have ϕ(ta) = z0. It follows that c′

i = ci for i ∈ {0, 1, 3}. Note that z0 = tu1 ,
where u1 is the component of ∂M bounding a pair of pants with c0 and c1. Let u2 be the
component of ∂M bounding a pair of pants with c0 and c3. By (b) of Lemma 2.8 we have

tu2 = (tc0 tc3 tc2 tc4 tc6 tc5)
5(tc3 tc2 tc4 tc6 tc5)

−6(tc1 tc3 tc2)
4(tc0 tc1 tc3 tc2)

−3

By applying ϕ−1 and using (b) of Lemma 2.8 again we obtain

ϕ−1(tu2) = (ta0 ta3 ta2 ta4 ta6 ta5)
5(ta3 ta2 ta4 ta6 ta5)

−6(ta1 ta3 ta2)
4(ta0 ta1 ta3 ta2)

−3

= t−1
a .

By Lemma 3.4 CMod(S)(ϕ(�)) = ϕ(CMod(S)(�)) is the infinite cyclic group generated by
ϕ(ta) = tu1 = t−1

u2 . It follows that u1 ∪ u2 bounds an annulus (exterior to M) such that the
union of M and that annulus is a nonorientable surface of genus 2g + 2 = h.

It is clear that f0 can be extended to f : S → S. The rest of the proof follows as in the
odd genus case. 	

Lemma 3.6 Let h = 2g+1 for g ≥ 2, D′ = D\{tai : i = 1, 2, 3, 4}and H = CMod(Nn

h )(D
′).

Let c be the nontrivial boundary component of a regular neighbourhood of the union of the
curves supporting D′. Then CH {ta1 , ta2} is the free abelian group of rank 2 generated by
(ta1 ta2)

3 and either tc if (g, n) �= (2, 0), or (ta5 ta6)
3 if (g, n) = (2, 0).

Proof Let d be the boundary of a regular neighbourhood of a1 ∪a2 (torus with one hole) and
set ρ = (ta1 ta2)

3. Then ρ2 = td . Since tc can be expressed in terms of twists of D′, we have
CH {ta1 , ta2} ⊂ CMod(Nn

h ){tc, td}. It follows that any x ∈ CH {ta1 , ta2} can be represented by a
diffeomorphism, also denoted by x , equal to the identity on regular neighbourhoods of c and
d . The complement of the union of such neighbourhoods has three connected components S′,
S′′ and N , where S′ is diffeomorphic to �n

g−1,1 (containing a5 and a6), S
′′ is diffeomorphic

to �1,1 (containing a1 and a2), and N is diffeomorphic to N1,2. Clearly x preserves each of
these components. Furthermore, x restricts to a diffeomorphism x ′ of S′, which commutes
with all twists of D′ up to isotopy. Since PMod(S′) is generated by twists of D′, x ′ ∈
CMod(S′)(PMod(S′)). By [10, Proposition 5.5 and Theorem 5.6], CMod(S′)(PMod(S′)) =
C(Mod(S′)) is the infinite cyclic group generated either by tc if (g, n) �= (2, 0), or by
(ta5 ta6)

3 if (g, n) = (2, 0) (note that tc = (ta5 ta6)
6 if (g, n) = (2, 0)). Thus x ′ is isotopic

on S′ to some power of tc (or (ta5 ta6)
3). Analogously, x restricts to a diffeomorphism x ′′ of

S′′, isotopic on S′′ to some power of ρ. Finally, since Mod(N ) is generated by the boundary
twists, the restriction of x to N is isotopic to the product of some power of tc and some power
of td . 	
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Lemma 3.7 Let h = 2g + 1 for g ≥ 2 and suppose that ϕ is an automorphism ofMod(Nn
h )

such that ϕ(t) = t for all t ∈ D. Then ϕ restricts to the identity on PMod+(Nn
h ).

Proof ByProposition 2.10, it suffices to proveϕ(u) = u. LetM be the subgroup ofMod(Nn
h )

generated by u, ta1 and ta2 . By [11, Theorem 4.1], M is isomorphic to Mod(N3,1). More
specifically, it is the mapping class group of the nonorientable subsurface of Nn

h bounded by
the curve c from Lemma 3.6. Set u2 = u and u1 = t−1

a2 t−1
a1 u−1ta1 ta2 . The following relations

are satisfied in M (see [11]).

(1) ta2 ta1 ta2 = ta1 ta2 ta1 (2) u2u1u2 = u1u2u1

(3) u2u1ta2 = ta1u2u1 (4) ta2u1u2 = u1u2ta1

(5) ui tai u
−1
i = t−1

ai for i = 1, 2 (6) u2ta1 ta2u1 = ta1 ta2

Set e = ta2u
−1
2 ta1u2t

−1
a2 . Note that e is a Dehn twist about the curve ta2u

−1
2 (a1) = a3 (see

(b) and (c) of Lemma 2.9). In particular ϕ(e) = e. Set v = eu1. We have

e = ta2u
−1
2 ta1u2t

−1
a2

(5)= ta2u
−1
2 ta1 ta2u2

(6)= ta2 ta1 ta2u1u2

v = ta2 ta1 ta2u1u2u1

It follows from relations (1,3,4,5) that vtai v
−1 = t−1

ai for i = 1, 2, and v2 = (u1u2u1)2 = tc
(for the last equality see [11, Subsection 3.2]). Observe that v−1ϕ(v) commuteswith all twists
of D′,where D′ is as inLemma3.6, and alsowith tai for i = 1, 2. Suppose that (g, n) �= (2, 0).
By Lemma 3.6, ϕ(v) = vtkc (ta1 ta2)

3m for some k,m ∈ Z. We have tc = ϕ(v2) = t2k+1
c ,

hence k = 0. If (g, n) = (2, 0), then by Lemma 3.6, ϕ(v) = v(ta5 ta6)
3k(ta1 ta2)

3m , and
because tc = ϕ(v2) = tk+1

c , hence k = 0. We have ϕ(v) = v(ta1 ta2)
3m . It follows that

ϕ(u1) = u1(ta1 ta2)
3m and ϕ(u2) = (ta1 ta2)

−3mu2.
Set td = (ta1 ta2)

6 (d bounds a regular neighbourhood of a1 ∪ a2) and y = ta2u2. Observe
that the curves y(a4) and a4 are disjoint up to isotopy (recall a4 = c3,4), hence yta4 y

−1

commutes with ta4 . By applying ϕ2 we obtain that t−m
d yta4 y

−1tmd commutes with ta4 . By
[13, Proposition 4.7] it follows that i(tmd (a4), y(a4)) = 0.Wewill show that on the other hand
i(tmd (a4), y(a4)) ≥ 4|m|, which implies m = 0 and finishes the proof. Set a′

4 = y(a4) and
note that a′

4, a4 and a1 are pairwise disjoint, and each of them intersects a2 in a single point.
We also have i(a4, d) = i(a′

4, d) = 2. Let M be a regular neighbourhood of a′
4∪a4∪a1∪a2,

which is a 3-holed torus (Fig. 10). The complement of the interior of M in Nn
h is the disjoint

union of a Möbius band and a subsurface diffeomorphic to �n
g−2,2. In particular, M is an

essential subsurface of Nn
h in the sense of [15, Definition 3.1], and hence, by [15, Proposition

3.3], i(tmd (a4), a′
4) is equal to the geometric intersection number iM (tmd (a4), a′

4) of t
m
d (a4)

and a′
4 treated as curves on M . Let M̃ be the 2-holed torus obtained from M by gluing a disc

along the boundary component f (see Fig. 10). Clearly iM (tmd (a4), a′
4) ≥ iM̃ (tmd (a4), a′

4),
and since a′

4 is isotopic on M̃ to a4, we have iM̃ (tmd (a4), a′
4) = iM̃ (tmd (a4), a4). Finally, by

[10, Proposition 3.3] iM̃ (tmd (a4), a4) = |m|iM̃ (d, a4)2 = 4|m|. Summarising, we have

i(tmd (a4), a
′
4) = iM (tmd (a4), a

′
4) ≥ iM̃ (tmd (a4), a

′
4) = 4|m|

	


Lemma 3.8 Let h = 2g + 2 for g ≥ 2 and suppose that ϕ is an automorphism ofMod(Nn
h )

such that ϕ(t) = t for all t ∈ E ∪ {ta}. Then ϕ restricts to an inner automorphism of
PMod+(Nn

h ).
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Fig. 10 The regular
neighbourhood M of
a′
4 ∪ a4 ∪ a1 ∪ a2

f

d

a

a

a1

2

4 4a'

Proof Let K denote the nonorientable connected component of the surface obtained by
removing from Nn

h an open regular neighbourhood of a1 ∪ a3. Thus, K is a Klein bottle with
two holes, and the other connected component is diffeomorphic to �n

g−1,2. Furthermore, by
(e) of Lemma 2.9, K is a regular neighbourhood of c1,6∪c5,6∪c6,6. Using [15, Corollary 3.8]
we will treat Mod(K ) as a subgroup of Mod(Nn

h ).
Set u′ = ϕ(u). Since u′ commutes with all twists of E supported on Nn

h \K , it can be
represented by a diffeomorphism supported on K , by a similar argument as in the proof of
Lemma 3.6. Hence u′ ∈ Mod(K ). Since u′ta0u′−1 = t−1

a0 , u′ preserves the isotopy class of
a0 by [13, Proposition 4.6]. Let S denote the subgroup of Mod(K ) consisting of elements
fixing the isotopy class of a0, and let S+ be the subgroup of index 2 of S consisting of
elements preserving orientation of a regular neighbourhood of a0. Note that every element
of S+ can be represented by a diffeomorphism equal to the identity on a neighbourhood of
a0. By cutting K along a0 we obtain a four-holed sphere, and it follows from the structure of
the mapping class group of this surface, that S+ is isomorphic to Z

3 × F2, where the factor
Z
3 is generated by ta1 , ta3 and ta0 , and F2 is the free group of rank 2 generated by ta and

utau−1.
Set v = tau. By [12, Lemma 7.8] we have v2 = ta1 ta3 . Note that v ∈ S\S+. It follows

from the previous paragraph, that S admits a presentation with generators ta1 , ta0 , ta and v,
and the defining relations

ta0 ta = tata0 , vta0 = t−1
a0 v, v2ta = tav

2

ta1v = vta1 , ta1 ta0 = ta0 ta1 , ta1 ta = tata1

Let H denote the subgroup generated by ta0 , ta1 and v2 = ta1 ta3 . It follows from above
presentation that H is normal in S and S/H is isomorphic to the free product Z ∗ Z2. More
specifically, denoting by A and V the images in S/H of respectively ta and v, we see that
S/H has the presentation 〈A, V | V 2 = 1〉.

Since ϕ(tai ) = tai for i = 0, 1, 3 and ϕ(ta) = ta and u′ = ϕ(u) ∈ S, ϕ preserves S and,
by the same argument, ϕ−1 also preserves S, hence ϕ|S is an automorphism of S. Since ϕ is
equal to the identity on H , it induces φ ∈ Aut(S/H). We have φ(A) = A. Note that every
element of order 2 in S/H is conjugate to V . In particular φ(V ) is conjugate to V . It is an
easy exercise to check, using the normal form of elements of the free product, that in order
for φ to be surjective, we must have φ(V ) = AnV A−n for some n ∈ Z.
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It follows that ϕ(v) = tka1 t
l
a3 t

m
a0 t

n
a vt−n

a for some integers l, k and m. We have ta1 ta3 =
ϕ(v2) = t2k+1

a1 t2l+1
a3 , hence k = l = 0. By composing ϕ with the inner automorphism

x �→ t−n
a xtna we may assume n = 0 (note that ta commutes with all tai ). Thus ϕ(u) = tma0u.

Set y = ta0u and note that y(a2) is disjoint from a2, hence yta2 y
−1 commutes

with ta2 . By applying ϕ we obtain that tma0 yta2 y
−1t−m

a0 commutes with ta2 , which gives
i(t−m

a0 (a2), y(a2)) = 0. On the other hand, by a similar argument as in the proof of Lemma
3.7, we have i(t−m

a0 (a2), y(a2)) ≥ |m|, hence m = 0. 	


Proof of Theorem 1.1 By Lemma 3.1 we can assume S1 = S2. Suppose that ϕ is any auto-
morphism of Mod(Nn

h ) for h ≥ 5. By Lemma 3.2, there exists f ∈ Mod(Nn
h ) such that

ϕ′ defined by ϕ′(x) = f −1ϕ(x) f for x ∈ Mod(Nn
h ) is the identity on D (if h is odd)

or E ∪ {ta} (if h is even). By Lemma 3.7 or Lemma 3.8, ϕ′ restricts to an inner automor-
phism of PMod+(Nn

h ). Thus, by composing ϕ′ with an inner automorphism we obtain ϕ′′,
which restricts to the identity on PMod+(Nn

h ). Since CMod(Nn
h )(PMod+(Nn

h )) is contained
in CMod(Nn

h )(T (Nn
h )), it is trivial by [13, Theorem 6.2]. Lemma 1.3 implies that ϕ′′ is trivial,

hence ϕ is inner. 	
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