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Abstract
We use the notion of polar duality from convex geometry and the theory of Lagran-
gian planes from symplectic geometry to construct a fiber bundle over ellipsoids 
that can be viewed as a quantum-mechanical substitute for the classical symplec-
tic phase space. The total space of this fiber bundle consists of geometric quantum 
states, products of convex bodies carried by Lagrangian planes by their polar duals 
with respect to a second transversal Lagrangian plane. Using the theory of the John 
ellipsoid we relate these geometric quantum states to the notion of “quantum blobs” 
introduced in previous work; quantum blobs are the smallest symplectic invariant 
regions of the phase space compatible with the uncertainty principle. We show that 
the set of equivalence classes of unitarily related geometric quantum states is in a 
one-to-one correspondence with the set of all Gaussian wavepackets. We empha-
size that the uncertainty principle appears in this paper as geometric property of the 
states we define, and is not expressed in terms of variances and covariances, the use 
of which was criticized by Hilgevoord and Uffink.

Keywords Lagrangian frame · Symplectic group · Polar duality · Gaussian 
wavepackets · Wigner transform · Quantum fiber bundle

1 Introduction

The Wigner transform and its variants (Bargmann transform, Gabor transform) 
have in common that they associate to a function on configuration space another 
function defined on phase space. For instance, in quantum mechanics the Wigner 
transform takes an arbitrary probability amplitude � (the wavefunction) to a quasi-
probability density on W� phase space whose marginals give the true probabilities 
of finding the quantum system under consideration in both some localization of 
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configuration space and a localization in momentum space. In the present work we 
suggest a novel “Configuration space <–> phase space correspondence” of a more 
general nature: instead of starting with a functions to which we associate quasi-
probability densities, we start with subsets of x-space (usually convex bodies, or 
even ellipsoids) to which we make correspond subsets in phase space; these are 
obtained using the notion of polar dually from convex geometry. Our constructions 
are somewhat related to the so-called “Pauli reconstruction problem”, which can 
be formulated in the Wigner formalism as follows: knowing the probability densi-
ties |�|2 and |�̂|2 ( ̂� the Fourier transform of � ) can we determine uniquely � ? (It 
is known that the answer to this question is generally negative). As we will see, 
our construction will give a geometric setting to this question and the involved dif-
ficulties and ambiguities. What is remarkable and new in our treatment is that we 
do not assume that the “quantum states” we define by this procedure are associ-
ated in any way (as is the case in standard quantum mechanics) to any notion of 
wavefunction. This is where our approach departs from the usual one. One has first 
to understand that as opposed to a widespread belief, Quantum Mechanics does 
not say that particles are waves. While the wave interpretation was de Broglie’s 
original point of view, it is today is untenable. Of course particle dynamics may 
be described using waves as solutions of Schrödinger’s equation, but this is not the 
same as saying particles are waves! Quantum mechanics is a probabilistic theory 
from which we can extract consequences on the statistical behavior of many meas-
urements performed on a great number of equally prepared systems. The real issue 
is the calculation of probabilities, and the objects used to study them (variances, 
spreading, covariances, mean values...) The uncertainty inequalities are statements 
about the variances and covariances of the random variables corresponding to inde-
pendently measured position and momentum in an ensemble of equally prepared 
particles. We emphasize that they are neither a statement about the measure of both 
momentum and position of a single particle nor an effect of the interaction with a 
measurement device as early interpretations of the Heisenberg inequalities seemed 
to suggest (Uffink and Hilgevoord have shown [19, 20] that the use variances and 
covariances to describe the statistical properties of a quantum system is valid only 
for Gaussian or almost Gaussian states).

1.1  Pointillisme à la Signac and Phase Space Pixels

In two brilliant publications [8, 9] Jeremy Butterfield dismisses what he calls poin-
tillisme, that is the view that mathematical points make sense in physics. We totally 
agree with Butterfield’s views and assume in this paper that the basic elements of 
configuration space (i.e. physical space, and its multi-dimensional extensions) are 
infinitesimal regions with non-zero volume. Indeed, in practice we can never experi-
mentally determine a point in physical space with absolute precision; as Gazeau [18] 
humorously notes
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Nothing is mathematically exact from the phsical point of view.

In fact the notion of point-like particle is a mathematical abstraction, which we 
can (in principle) approximate with arbitrary accuracy. However, these regions 
cannot be made arbitrarily small, because the uncertainty principle would then 
lead to violations of special relativity (at least for massive particles) since in the 
limit Δx → 0 the Heisenberg relation ΔpΔx ∼ ℏ leads to values of Δp exceeding 
the speed of light. Our view in a sense restores pointillisme as meant by the neo-
impressionist painter Paul Signac, who used small, distinct dots of color which 
he applied in patterns to form an image. We will show that this coarse graining of 
the usual configuration space leads, using an extended version of the geometric 
notion of polar duality, to a fiber bundle which can be viewed as a substitute for 
a quantum phase space. Admittedly, the term “quantum phase space” is usually 
perceived as a heresy in the physics community: there can’t be any phase space in 
quantum mechanics since the notion of a well-defined point does not make sense 
because of the uncertainty principle. Dirac himself dismissed in 1945 in a letter to 
Moyal (in [22]), even the suggestion that quantum mechanics can be expressed in 
terms of classical-valued phase space variables. Of course, as we know, Dirac was 
wrong, since the Wigner–Moyal–Weyl formalism, which deals with functions and 
operators defined on classical phase space, is one of the most powerful tools for 
expressing the laws of quantum mechanics. Still, the concept of quantum phase 
space itself is ambiguous, to say the least; the aim of this paper is to propose 
a substitute, which is a collection of fiber bundles. The simplest of these is the 
“canonical bundle”

where Conv(n) is the set of convex bodies in configuration space ℝn
x
 ; the fiber over 

X ∈ Conv(n) consists of the Cartesian products X × Xℏ(x0) where Xℏ(p0) is the polar 
dual of X centered at p0 ∈ ℝ

n
p
 . For instance

where Bn
X
(x0,

√
ℏ) and Bn

P
(p0,

√
ℏ) are balls with radius 

√
ℏ centered at x0 and p0 ; 

this reduces, in the limit ℏ → 0 , to the products {x0} ×ℝ
n
p
 . We will draw several 

consequences from these definitions. In particular we will see that if we restrict 
the base space of the fiber bundle (1) to ellipsoids, then we have a continuous 
action of the unitary group U(n,ℂ) on Quant(n) and that the homogeneous space 
Quant(n)∕U(n,ℂ) can be identified with the set Gauss(n) of all generalized Gaussian 
wavepackets on ℝn

x
.

(1)�can ∶ Quant(n) ⟶ Conv(n)

�−1(Bn
X
(x0

√
ℏ)) =

�
Bn
X
(x0

√
ℏ) × Bn

P
(p0,

√
ℏ) ∶ p0 ∈ ℝ

n
p

�
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1.2  Description of the Method: Heuristics

The aim of the present paper is to study, for an arbitrary number n of degrees of 
freedom, the properties of such “quantum state” and to relate them to the theory 
of Gaussian wavepackets; our study will unveil unexpected and beautiful geometric 
properties of quantum mechanics.

1.3  Toolbox and Terminology

We introduced in [15] the geometric notion of Lagrangian polar duality in connec-
tion with the uncertainty principle of quantum mechanics; in a recent paper [16] we 
have detailed this results and given a rigorous mathematical study of this notion. 
As pointed out in [15] the underlying idea is that a quantum system localized in the 
position representation in a set X cannot be localized in the momentum representa-
tion in a set smaller than its polar dual Xℏ ; this is a geometric form of the uncertainty 
principle, independent of the notion of variance or covariance. Let us explain this a 
little bit more in detail. We live in a three-dimensional world where the state of a 
classical particle is described by its position vector (x, y, z) and by the vector of con-
jugate momenta (px, py, pz) , both at a given time t. This extends to many particle sys-
tems by introducing the generalized position and momentum vectors x = (x1,… , xn) 
and p = (p1,… , pn) , and the phase space of that system is by definition the space 
ℝ

n
x
×ℝ

n
p
≡ ℝ

2n of all (x, p). This way of writing things explicitly singles out the two 
subspaces �X = ℝ

n
x
× 0 and �P = 0 ×ℝ

n
p
 ; however, as is already clear in classical 

(Hamiltonian) mechanics this “canonical” choice of frame (�X ,�P) has no reason to 
be privileged, and one can choose any other coordinate spaces to work with as long 
as these are obtained by symplectic transformations from the frame (�X ,�P) . Such 
transformations will not take �X and �P to arbitrary n-dimensional linear subspaces 
of ℝ2n , but rather to Lagrangian planes which have the property that the canonical 
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symplectic form on ℝ2n vanishes identically on them. These subspaces play a central 
role in classical mechanics (they are the tangent spaces of the invariant tori of the 
integrable Hamiltonian systems [1]). Consider now a convex compact set X� with 
non-empty interior (for instance an ellipsoid) carried by a Lagrangian plane � . if, 
for instance, � = �X this convex body X� can be physically interpreted as a cloud 
of points in configuration space corresponding to a sequence of measurements. 
Assuming, for simplicity, that X� is centered at the origin, we next choose a sec-
ond arbitrary Lagrangian plane �′ transversal to � and define the polar dual Xℏ

�′ of 
X� with respect to �′ as being the set of all phase space points z� = (x, p�) such that 
�(z, z�) ≤ ℏ for every z = (x, p) in X� . An elementary argument shows that Xℏ

�′ is also 
a convex set (and in particular an ellipsoid if X� is). We will call the subset X� × Xℏ

�� 
of ℝ2n a pure quantum state. Admittedly, this definition of a quantum state is rather 
abstract. The reason will become clear to the reader in the course of this article, but 
there is a rather immediate (although hidden) motivation. It turns out that the Car-
tesian product X� × Xℏ

�� is always a convex set (because X� and Xℏ
�′ are convex). As 

such it contains a unique maximum volume ellipsoid Ω (the “John ellipsoid”), and 
this ellipsoid is what we have called elsewhere [13, 17] a quantum blob, that is the 
image of a phase space ball with radius 

√
ℏ by a symplectic transformation. As we 

have shown in [12, 17] these quantum blobs represent the smallest phase space units 
compatible with the uncertainty (or indeterminacy) principle of quantum mechanics. 
In particular, a quantum blob can always (via the theory of the Wigner transform) be 
viewed as the covariance ellipsoid of a generalized Gaussian state.

Here is a basic example. Suppose that the configuration space is the x axis, in 
which case the classical phase space is just the x, p plane. The pseudo quantum 
phase space consists of parallelograms X� × Xℏ

�
 where � and �′ are two lines in 

the the x, p plane, X� is an interval in � and Xℏ
�
 is the polar dual of X� with respect 

to �′ . The latter is the set of points z′ on �′ such that

for all z = (x, p) on � . If � is the x-axis and �′ the p-axis this condition becomes 
p′x ≤ ℏ so Xℏ

�
 is the usual polar dual from convex geometry [15]. Choosing 

X�X
= [−

√
ℏ∕a,

√
ℏ∕a] for some a > 0 we have Xℏ

�P

= [−
√
aℏ,

√
aℏ] so that 

X�X
× Xℏ

�P

 is a parallelogram with area 4ℏ centered at the origin. Now, the largest 
ellipse contained in that parallelogram is the one with axes X�X

 and Xℏ
�P

 and thus has 
area �ℏ . To such an ellipse corresponds (via the theory of the Wigner transform) a 
unique (normalized) Gaussian wavepacket, namely

which is a minimum uncertainty wavepacket. To our “quantum state” X�X
× Xℏ

�P

 thus 
corresponds a basic object from quantum mechanics (a Gaussian wavepacket), but is 
a more general object than just this wavepacket.

�(z�, z) = −
||||
x� x

p� p

||||
≤ ℏ

�(x) =
(

a

�ℏ

)1∕4

e−ax
2∕ℏ
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1.3.1  Organization of the Paper

In Sect. 2 we review the basics of symplectic geometry we are using in this work; 
this includes a short discussion of the symplectic group and of the Lagrangian 
Grassmannian of the standard symplectic space. The main result is the transitivity 
of the action of the symplectic group on the pairs of transverse Lagrangian planes 
(Proposition 3). In Sect. 3 we begin with some preparatory geometric work, defin-
ing and studying the notion of Lagrangian polarity which is central to this work. 
Thereafter, in 4, we carefully define the notion of Lagrangian quantum state using 
our notion of polar duality. The main result is Proposition 13 where we describe the 
action of the symplectic group on the set of Lagrangian quantum states. In Sect. 5 
we relate the notion of Lagrangian quantum state to the usual Gaussian wavepackets 
and their Wigner transforms; he main results are there Propositions 16 and 17 about 
Gaussian Lagrangian quantum states and the notion of quantum blob we introduced 
in previous work. Finally, we discuss in Sect.  6 perspectives for generalizing our 
results to the non-elliptic (= non-Gaussian) case, which would open the way for a 
total geometric description of general quantum states.

1.3.2  Notation

The configuration space of a system with n degrees of freedom will in general be 
written �X = ℝ

n
x
 , and its dual (the momentum space) �P = ℝ

n
p
 . The position vari-

ables will be written x = (x1,… , xn) and the momentum variables p = (p1,… , pn) . 
The classical phase space ℝn

x
×ℝ

n
p
 is identified with ℝ2n equipped with the inner 

product p ⋅ x = p1x1 +⋯ + pnxn and with the standard symplectic form � defined by 
�(z, z�) = p ⋅ x� − p� ⋅ x if z = (x, p) , z� = (x�, p�).

2  Some Symplectic Geometry

2.1  The Symplectic Group Sp(n)

The standard symplectic form � on ℝ2n
z

≡ ℝ
n
x
×ℝ

n
p
 can be written in matrix form as

where J is the standard symplectic matrix:

The associated symplectic group Sp(n) consists of all linear automorphisms S of ℝ2n
z

 
preserving the symplectic form: �(Sz, Sz�) = �(z, z�) for all vectors z, z′ . The sym-
plectic automorphisms will be identified with their matrices in the canonical basis; 
with this convention S ∈ Sp(n) if and only it satisfies one of the equivalent identities 
STJS = J or SJST = J . These relations imply [11] that a real 2n × 2n matrix written 
in the block form

�(z, z�) = Jz ⋅ z� = (z�)TJz

J =

(
0n×n In×n
−In×n 0n×n

)
.
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is symplectic if and only if the n × n blocks A, B, C, D satisfy the sets of equivalent 
conditions

It follows that the inverse of S ∈ Sp(n) has the simple form

The affine (or inhomogeneous) symplectic group is the semi-direct product

it consists of all products ST(z0) = T(Sz0)S where S ∈ Sp(n) and T(z0) is the transla-
tion operator z ⟼ z + z0 in ℝ2n.

Recall [11] that the metaplectic group Mp(n) is the unitary representation on L2(ℝn
x
) 

of the double cover of the symplectic group Sp(n) . It is generated by the unitary opera-
tors Ĵ , V̂P , and M̂L.m defined in the table below, where we denote �Mp the projection 
Mp(n) ⟶ Sp(n).

Ĵ�(x) =
(

1

2�iℏ

)n∕2 ∫ e
−

1

ℏ
x⋅x��(x�)dnx�

�Mp

⟶ J =

(
0 I

−I 0

)

V̂
P
�(x) = e

−
i

2ℏ
Px⋅x�(x)

�Mp

⟶ V
P
=

(
I 0

−P I

)

M̂
L.m�(x) = i

m
√
� det L��(Lx) �Mp

⟶ M
L
=

(
L
−1 0

0 L
T

)
.

In the last line of this table the integer m is defined modulo 4 and corresponds to 
a choice of the argument of the determinant detL , reflecting the fact that Mp(n) is a 
double covering of Sp(n) . For a complete study of Mp(n) and its properties we refer 
to [11]. The non-homogeneous analogue of Mp(n) is denoted IMp(n) ; it consists of all 
operators ŜT̂(z0) = T̂(Sz0)Ŝ where Ŝ ∈ Mp(n) , z0 ∈ ℝ

2n , and T̂(z0) is the Heisenberg 
displacement operator:

The natural projection IMp(n) ⟶ ISp(n) is defined by ŜT̂(z0) ⟼ ST(z0).

(2)S =

(
A B

C D

)

(3)ATC,BTD symmetric, and ATD − CTB = In×n

(4)ABT ,CDT symmetric, and ADT − BCT = In××n.

(5)S−1 =

(
DT − BT

−CT AT

)
.

(6)ISp(n) = Sp(n)⋉ℝ
2n;

T̂(x0, p0)�(x) = e
i

ℏ
(p0⋅x−

1

2
p0⋅x0)�(x − x0).
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2.2  Lagrangian Planes and Frames

When n = 1 the symplectic form is, up to the sign, the determinant function: 
�(z, z�) = − det(z, z�) . It follows that �(z, z�) = 0 when z and z′ are colinear: 
the symplectic form vanishes along all lines through the origin. The notion of 
Lagrangian plane generalizes this property to arbitrary dimension n: a linear sub-
space � of ℝ2n equipped with its symplectic form � is called a Lagrangian plane 
if dim� = n and �(z, z�) = 0 for all z, z� ∈ �.

The most typical (but not most general) example of Lagrangian planes is given 
by the “coordinate Lagrangian planes”. They are obtained by picking out in the 
2n-vector z = (x1,… , xn;p1,… , pn) exactly n non-conjugate coordinates. For 
instance the set of all (x1,… , xk, pk+1,… , pn) for k < n are the coordinates of a 
Lagrangian plane in ℝ2n.

The subspaces consisting of all z = (x, p) such that p = Ax for some symmetric 
matrix A is a Lagrangian plane: it has dimension n and

since A is symmetric. More generally, a subspace � of ℝ2n is a Lagrangian plane if 
and only we have

where A and B are real n × n matrices satisfying one of the following sets of equiva-
lent conditions

The set of all Lagrangian planes in the symplectic space (ℝ2n,�) is called the 
Lagrangian Grassmannian and is denoted by Lag(n).

Remark 1 There is an alternative way of interpreting Lagrangian planes as sub-
spaces of ℂ2n on which the inner product (z, z�) ⟼ z ⋅ (z�)∗ is real. In fact, the sym-
plectic product �(z, z�) can be written as �(z, z�) = Im(z ⋅ (z�)∗) when z = (x, p) and 
z� = (x�, p�) are identified with the complex vectors x + ip and x� + ip� in ℂn . Lagran-
gian planes then correspond to the n-dimensional subspaces for which z ⋅ (z�)∗ is a 
real number.

In the phase plane ℝ2 every line through the origin can be taken to any 
other such line using a rotation. There is a similar property in arbitrary dimen-
sion n. A symplectic automorphism U is called a symplectic rotation if 
U ∈ Sp(n) ∩ O(2n,ℝ) where O(2n,ℝ) is the usual orthogonal group. In the case 
n = 1 this is just the usual rotation group SO(2n,ℝ) . We denote by U(n) the group 
of all symplectic rotations; one shows [11] that U(n) is the image in Sp(n) of the 
complex unitary group U(n,ℂ) by the embedding

�(x,Ax;x�,Ax�) = Ax ⋅ x� − Ax� ⋅ x = 0

(x, p) ∈ � if and only Ax + Bp = 0.

ATB = BTA and ATA + BTB = In×n

ABT = BAT and AAT + BBT = In×n.
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A matrix 
(

A B

−B A

)
 is thus a symplectic rotation if and only if the blocks A and B 

satisfy the conditions

in view of (3), (4).
Let � be a Lagrangian plane in (ℝ2n,�) : � ∈ Lag(n) . For every symplectic 

transformation S ∈ Sp(n) the image S� is also a Lagrangian plane: we clearly 
have dim S� = n and �(Sz, Sz�) = �(z, z�) = 0 for all z, z� ∈ � . We thus have a natu-
ral group action

which induces, by restriction, an action

An essential property is the transitivity of these actions.

Proposition 2 The subgroup U(n) of Sp(n) (and hence Sp(n) itself) acts transitively 
on the Lagrangian Grassmannian Lag(n) : for any pair (�,��) of Lagrangian planes 
in (ℝ2n,�) there exists U ∈ U(n) such that �� = U� . In particular every � ∈ Lag(n) 
can be obtained from �X (or from �P ) using a symplectic rotation.

Proof This is proven as follows [11]: let B = {e1,… , en} and B� = {e�
1
,… , e�

n
} be 

orthonormal bases of � and �′ , respectively. Then B ∪ JB and B� ∪ JB� are bases 
of ℝ2n which are both orthogonal and symplectic. Let U be a linear mapping taking 
B ∪ JB to B� ∪ JB� ; we then have �� = U� and U ∈ Sp(n) ∩ O(2n,ℝ) .   ◻

The action (10) allows to endow Lag(n) with a topology, using the theory of 
homogeneous spaces. In fact, the subgroup O(n) of U(n) consisting of all sym-
plectic matrices

stabilizes �P (that is, R�P = �P ) hence there is a natural bijection

which allows to identify topologically the coset space U(n)/O(n) with the Lagran-
gian Grassmannian (see [11] for technical details).

� ∶ A + iB ⟼

(
A B

−B A

)
.

(7)ATB = BTA and ATA + BTB = I

(8)ABT = BAT and AAT + BBT = I

(9)Sp(n) × Lag(n) ⟶ Lag(n)

(10)U(n) × Lag(n) ⟶ Lag(n).

R =

(
A 0

0 A

)
A ∈ O(n,ℝ)

U(n)∕O(n) ≡ U(n,ℂ)∕O(n,ℝ) ⟶ Lag(n)
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Let (�,��) be a pair of Lagrangian planes in (ℝ2n,�) such that � ∩ �� = 0 . Since 
the dimensions of � and �′ are n this is equivalent to � ⊕ �� = ℝ

2n . We will call 
(�,��) a Lagrangian frame. We will use the notation

and call the spaces �X and �P the position and momentum planes; Clearly (�X ,�P) is 
a Lagrangian frame (we will call it the“canonical frame”). We will denote the space 
of all Lagrangian frames Lag2

0
(n) . Thus:

where Lag2(n) denotes the Cartesian product Lag(n) × Lag(n).
A crucial property is that the symplectic group Sp(n) acts transitively on the set 

of all Lagrangian frames [11]. Because of the importance of this result we prove it 
here:

Proposition 3 The group Sp(n) acts transitively on the set of all Lagrangian 
frames: if (�1,�

�
1
) and (�2,�

�
2
) are in Lag2

0
(n) then there exits S ∈ Sp(n) such that 

(�2,�
�
2
) = (S�1, S�

�
1
).

Proof Choose a basis Bℑ{e11,… , e1n} of �1 and a basis B� = {f11,… , f1n} of �′
1
 such 

that {e1i, f1j}1≤i,j≤n is a symplectic basis of (ℝ2n
z
,�) (i.e. �(ei1, ej1) = �(fi1, fj1) = 0 

and �(fi1, ej1) = �ij for all i, j = 1,… , n ). Similarly choose bases of �2 and �′
2
 

whose union {e2i, f2j}1≤i,j≤n is also a symplectic basis. Define a linear mapping 
S ∶ ℝ

2n
⟶ ℝ

2n by S(e1i) = e2i and S(f1i) = f2i for 1 ≤ i ≤ n . We have S ∈ Sp(n) and 
(�2,�

�
2
) = (S�1, S�

�
1
) .   ◻

Notice that we cannot replace Sp(n) with U(n) in the result above. For instance, in 
the case n = 1 no rotation will take an arbitrary pair of transverse of lines to another 
arbitrary pair of transverse lines if they do not form equal angles ( U(1) = SO(2,ℝ) 
preserves angles, while Sp(1) does not).

Remark 4 It follows from Proposition 3 that every Lagrangian frame in (ℝ2n,�) can 
be obtained from the canonical frame (�X ,�P) using a symplectic transformation.

The following property is useful when considering phase space shifts of the 
origin:

Lemma 5 Every phase space point z0 ∈ ℝ
2n belongs to at least one Lagrangian 

plane.

Proof The case z0 = 0 being trivial we assume z0 ≠ 0 . Let e1 be a normalized 
vector such that z0 = �e1 and choose vectors e2,… , en and f2,… , fn such that 
{e1,… , en} ∪ {f1,… , fn} is a symplectic basis of ℝ2n (this is a symplectic vari-
ant of the Gram–Schmidt orthonormalization process, see [11] for an explicit 

(11)�X = ℝ
n
x
× 0 and �P = 0 ×ℝ

n
p

(12)Lag2
0
(n) = {(�,��) ∈ Lag2(n) ∶ � ∩ �

� = {0}}
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construction). The subspace spanned by the set of vectors {e1,… , en} is Lagrangian 
and contains z0 .   ◻

2.3  Lagrangian Ellipsoids

Let us identify the position space ellipsoid

with the phase space subset

where, by definition,

The image of X by S ∈ Sp(n) (or by any phase space automorphism) is then

Let us call “quantum blob” [13] the image of the phase space ball B2n(z0,
√
ℏ) by a 

symplectic transformation. The following property shows that every ellipsoid car-
ried by a Lagrangian plane � is the intersection � ∩ Q of that subspace with a quan-
tum blob (or any other phase space ball, for that):

Proposition 6 Let X� be an n-dimensional ellipsoid centered at z0 ∈ � and car-
ried by the Lagrangian plane � ∈ Lag(n) . There exists S ∈ Sp(n) such that 
X� = S(B2n(S−1z0,

√
ℏ)) ∩ �.

Proof It is sufficient to assume z0 = 0 . We first consider the case � = �X , then 
X𝓁X

= {x ∶ Ax ⋅ x ≤ ℏ} where A is a symmetric positive definite matrix. Clearly, X�X
 

is the intersection of the phase space ellipsoid

with �X , and Ω is indeed a quantum blob since Ω = S(B2n(
√
ℏ)) with

Suppose now � is an arbitrary Lagrangian plane. In view of Proposition 2 there 
exists a symplectic rotation R ∈ U(n) such that � = R�X . The set X�X

= R−1(X�) 
is an ellipsoid in �X centered at z0 = 0 and hence X�X

= Q ∩ �X for some quantum 
blob Q, and X� = R(X�X

) = (RQ) ∩ � which concludes the proof since R(Q) is also a 
quantum blob.   ◻

X = {x ∈ ℝ
n
x
∶ Ax ⋅ x ≤ ℏ}

X = {z = (x, 0) ∶ (A⊕ 0)z ⋅ z ≤ �}

A⊕ 0 =

(
A 0n×n

0n×n 0n×n

)
.

(13)S(X) = {z ∶ ((ST )−1(A⊕ 0)S−1)z ⋅ z ≤ �}.

Ω = {(x, p) ∶ Ax ⋅ x + A−1p ⋅ p ≤ ℏ}

(14)S =

(
A 0

0 A−1

)
∈ Sp(n).
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Remark 7 The quantum blob described in the result above is not unique. For instance 
there exist infinitely many quantum blobs Q = S(B2n(

√
ℏ)) such that X�X

= Q ∩ �X.

3  Lagrangian Polar Duality and Quantum States

3.1  Polar Duality: Review

We begin by briefly recalling the usual notion of polar duality from convex geometry 
(we are following our presentation in [15]); for the notions of convex geometry we use 
see for instance [5, 23, 26]). Let X be a convex body in configuration space ℝn

x
 (a con-

vex body is a compact convex set with non-empty interior). We assume in addition that 
X contains 0 in its interior. This is the case if, for instance, X is symmetric: X = −X . 
The polar dual of X is the subset

of the dual space ℝn
p
≡ (ℝn

x
)∗ . Notice that it trivially follows from the definition that 

Xℏ is convex and contains 0 in its interior. In the mathematical literature one usually 
chooses ℏ = 1 , in which case one writes Xo for the polar dual; we have Xℏ = ℏXo . 
The following properties are straightforward:

Reflexivity (bipolarity): (Xℏ)ℏ = X P1
Antimonotonicity: X ⊂ Y ⟹ Y

� ⊂ X
� P2

Scaling property A ∈ GL(n,ℝ) ⟹ (AX)ℏ = (AT )−1Xℏ. P3

In [15] we proved the following elementary properties of polar duality:
(i) Let Bn

X
(R) (resp. Bn

P
(R) ) be the ball {x ∶ |x| ≤ R} in ℝn

x
 (resp. {p ∶ |p| ≤ R} in 

ℝ
n
p
 ). Then

In particular

(ii) Let A be a real invertible and symmetric n × n matrix and R > 0 . The polar dual 
of the ellipsoid defined by Ax ⋅ x ≤ R2 is given by

and hence

We can easily picture that the polar set Xℏ is “large” when X is “small” since X and 
Xℏ are “inversely” related [26]; these sets can also be viewed as Fourier transforms 

(15)Xℏ = {p ∈ ℝ
n
x
∶ sup

x∈X

(p ⋅ x) ≤ ℏ}

(16)Bn
X
(R)ℏ = Bn

P
(ℏ∕R) .

(17)Bn
X
(
√
ℏ)ℏ = Bn

P
(
√
ℏ).

(18){x ∶ Ax ⋅ x ≤ R2}ℏ = {p ∶ A−1p ⋅ p ≤ (ℏ∕R)2}

(19){x ∶ Ax ⋅ x ≤ ℏ}ℏ = {p ∶ A−1p ⋅ p ≤ ℏ} .
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of each other. These qualitative statements, reminiscent of the uncertainty princi-
ple, are clarified by the following remarkable property of polar duality, called the 
Blaschke–Santaló inequality: assume that X is a symmetric body; then there exists 
[10] c > 0 such that

where Voln is the standard Lebesgue measure on ℝn , and equality is attained if and 
only if X ⊂ ℝ

n
x
 is an ellipsoid centered at the origin The Mahler conjecture (which 

is still unproven) is that the best constant c is (4ℏ)n∕n! (see [15]) for a discussion of 
partial results and references).

3.2  Lagrangian Polar Duality

Let now (�,��) be a Lagrangian frame in the symplectic phase space (ℝ2n,�) and 
X� a centrally symmetric convex body in � (i.e. X� = −X� ). The Lagrangian polar 
dual Xℏ

�′ of X� in �′ is the subset of �′ consisting of all z� ∈ �� such that

equivalently, since X� is centrally symmetric and � antisymmetric,

The Lagrangian polar dual Xℏ
�′ is also a centrally symmetric body. Suppose in 

particular that the Lagrangian frame (�,��) is the canonical frame (�X ,�P) . Then 
z = (x, 0) and z� = (0, p�) so that condition (21) becomes p′ ⋅ x ≤ ℏ ; the notion of 
Lagrangian polar duality for (�X ,�P) thus reduces the usual notion of polar duality 
as described above. It is always possible to reduce Lagrangian polar duality to ordi-
nary polar duality. Recall that the symplectic group acts transitively on the manifold 
of Lagrangian frames.

Proposition 8 Let (X� ,X
ℏ
�� ) be a dual pair and choose S ∈ Sp(n) such that 

(�,��) = S(�X ,�P) . Let X = S−1(X�) ⊂ �X . We have S−1X�
�� = X� ⊂ �P . Thus

(X� ⊂ �P is the ordinary polar dual of X ⊂ �X).

Proof Let z ∈ X� and z� ∈ Xℏ
�� and define (x, 0) = S−1z , (0, p�) = S−1z� . We have

hence the conditions �(z, z�) ≤ ℏ and p′ ⋅ x ≤ ℏ are equivalent.   ◻

The following table summarizes the main properties of Lagrangian polar 
duality:

(20)c ≤ Voln(X)Voln(X
ℏ) ≤ (Voln(B

n(
√
ℏ))2

(21)�(z�, z) ≤ ℏ for all z ∈ X�;

(22)�(z, z�) ≤ ℏ for all z ∈ X� .

(23)(X� ,X
ℏ
�� ) = S(X,Xℏ) if (�,��) = S(�X ,�P)

p� ⋅ x = �((x, 0); (0, p�)) = �((S−1z;S−1z�) = �((z;z�)
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Reflexivity: (Xℏ
�� )

ℏ
�
= X�

LP1
Antimonotonicity: X� ⊂ Y� ⟹ Y

�
�′ ⊂ X

�
�′

LP2
Symplectic covariance: S ∈ Sp(n) ⟹ S(Xℏ

�� ) = (SX�)
ℏ
S�� . LP3

The following characteristic property of quantum blobs is also useful:

Proposition 9 Let Q = S(B2n(
√
ℏ)) be a centered quantum blob and 

(�X ,�P) ∈ Lag2
0
(n) the canonical Lagrangian frame. The intersection Q ∩ �X and the 

orthogonal projection Π�P
Q are polar dual of each other. We have a similar state-

ment interchanging �X and �P.

Proof We have to show that Q ∩ �X and Π�P
Q are n-dimensional ellipsoids 

{x ∶ Ax ⋅ x ≤ ℏ} and {p ∶ Bp ⋅ p ≤ ℏ} such that AB = In×n . The quantum blob Q is 
represented by the inequality Gz ⋅ z ≤ ℏ where G = (SST )−1 ∈ Sp(n) . Writing G in 

block matrix form 
(
GXX GXP

GPX GPP

)
 the following relations hold in view of the sym-

plectic conditions (3), taking into account the symmetry of G:

With this notation we clearly have

while the orthogonal projection Π�P
Q is given by (see [15])

where G∕GXX is the Schur complement

To prove the proposition it therefore suffices to show that

but this follows from the relations (24) which in particular imply that 
GPXG

−1
XX

= G−1
XX
GPX:

  ◻

(24)GXXGPX ,GPXGPP symmetric and GXXGPP − G2
XP

= In×n.

Q ∩ 𝓁X = {x ∶ GXXx ⋅ x ≤ ℏ}

Π𝓁P
Q = {p ∶ (G∕GXX)p ⋅ p ≤ ℏ}

G∕GXX = GPP − GPXG
−1
XX
GXP.

GXX(GPP − GPXG
−1
XX
GXP) = In×n

GXX(GPP − GPXG
−1
XX
GXP) = GXXGPP − GXX(GPXG

−1
XX
)GXP)

= GXXGPP − G2
XP
) = In×n.
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4  Lagrangian Quantum States

4.1  Definition of a Lagrangian Quantum State

The definition of quantum states we are giving here generalizes the Definition 3 in 
[15].

Definition 10 (Centered case)Let (�,��) ∈ Lag2
0
(n) be a Lagrangian frame and X� 

be an ellipsoid with center 0 carried by � . We call the product X� × Xℏ
�� the Lagran-

gian quantum state in ℝ2n associated with the frame (�,��) and the ellipsoid X� and 
we set

The elements of Quant0(1) are parallelograms with area 4ℏ in the phase plane, 
while Quant0(2) consist of products of two dual plane ellipses. The simplest example 
of a state in 2n-dimensional phase space is what we call the “fiducial state”, defined 
by

To define a quantum state when the ellipsoid X� has center z0 ≠ 0 some care 
is needed. Consider for example, for ℏ = 1 , the polar dual X1 of the disk 
X = B2((a, 0), 1) in the x, y plane, where 0 ≤ a < 1 . It is the ellipse defined by [5]

and its area �∕(1 − a2) becomes arbitrarily large when a gets close to one. To avoid 
this unwanted lack of stability we proceed as follows: suppose the ellipsoid X�(z0) is 
centered at some z0 ∈ � and consider the translate X� = T(−z0)X�(z0) (it is the set of 
all z − z0 for z ∈ X�(z0) ). Since X� has center 0 we can define as usual its Lagrangian 
polar Xℏ

�′ , and by definition this will be the Lagrangian polar dual of X�(z0) . This 
procedure, has been generalized by Santaló [24] to arbitrary convex bodies, but is 
much more complicated in this case. This leads to the following extension of Defini-
tion 10:

Definition 11 (General case)Let (�,��) ∈ Lag2
0
(n) and (z0, z�0) ∈ � × �

� (cf. Lemma 
5). Let X�(z0) = T(z0)X� be an ellipsoid carried by � and centered at z0 . The Lagran-
gian quantum state associated with (�,��, z0, z

�
0
) and X� is the product

where we write Xℏ
�� (z

�
0
) = T(z�

0
)Xℏ

�� . We denote Quant(n) the set of all such quantum 
states.

Here is a basic example:

Quant0(n) = {X� × Xℏ
�� ∶ (�,��) ∈ Lag2

0
(n)}.

(25)X�X
× Xℏ

�P
= Bn

X
(
√
ℏ) × Bn

P
(
√
ℏ).

(26)(1 − a2)2
(
px +

a

1 − a2

)2

+ (1 − a2)p2
y
≤ 1

(27)X�(z0) × (X�(z0) − z0)
ℏ
�� + z�

0
) = X�(z0) × Xℏ

�� (z
�
0
)
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Example 12 Let z0 = (x0, 0) , z�0 = (0, p0) , � = �X , �� = �P , and

We have (Bn
X
(
√
ℏ) × 0)ℏ

�P

= 0 × Bn
P
(
√
ℏ) hence the state is

In classical mechanics the phase space ℝn
x
×ℝ

n
p
 can be viewed as a fiber bun-

dle over the configuration space ℝn
x
 using the projection �x(x, p) = x ; the fiber 

is then just the momentum space ℝn
p
 . In the case of Lagrangian quantum states 

we have a similar situation replacing the points in configuration space with ellip-
soids (“pointillisme”). Let E��(ℝn

x
) be the set of all ellipsoids in �X = ℝ

n
x
 ; a typ-

ical element of E��(ℝn
x
) is the set of all x such that A(x − x0) ⋅ (x − x0) ≤ ℏ . For 

instance, Bn
X
(x0,

√
ℏ) ∈E��(ℝn

x
) . Let us now work using the canonical Lagran-

gian frame (�X ,�P) and denote by Quantcan(n) ⊂ Quant(n) the set of quantum states 
X(x0, 0) × Xℏ(0, p0) where X(x0, 0) ⊂ �X and X�(0, p0) ⊂ �P is in E��(ℝn

p
) . We 

define a projection �can ∶ Quantcan(n) ⟶E��(ℝn
x
) by

which defines a vector bundle structure on Quantcan(n) . The fiber over 
X(x0, 0) ∈E��(ℝn

x
) is

so we have the identification

4.2  Symplectic Actions on Quant0(n)

As expected, elliptic quantum states behave well under linear or affine symplectic 
transformations. Recall from Proposition 8 that for every dual pair (X� ,X

ℏ
�� ) there 

exists S ∈ Sp(n) such that (�,��) = S(�X ,�P) and (X� ,X
ℏ
�� ) = S(X,Xℏ) . Every 

quantum state X� × Xℏ
�� is thus the image by some S ∈ Sp(n) of a quantum state 

X × X� ⊂ �X × �P associated with the canonical Lagrangian frame. The action of 
Sp(n) on Quant0(n) is thus naturally defined by the formula

We have a similar definition for the action of Sp(n) on Quant(n) . We define the 
action of S� ∈ Sp(n) on the state X�(z0) × Xℏ

�� (z
�
0
) by

This can be rewritten, taking (28) into account,

X�(z0) = T(x0, 0)(B
n
X
(
√
ℏ) × 0) = Bn

X
(x0,

√
ℏ) × 0.

(Bn
X
(x0,

√
ℏ) × 0) × (0 × Bn

P
(p0,

√
ℏ)) ≡ Bn

X
(x0,

√
ℏ) × Bn

P
(p0,

√
ℏ).

�can(X(x0, 0) × Xℏ(0, p0)) = X(x0, 0)

�−1
can

(X(x0, 0)) = {X(x0, 0) × Xℏ(0, p0) ∶ p0 ∈ ℝ
n
p
}

�−1
can

(X(x0, 0)) ≡ X(x0, 0) ×E��(ℝn
p
).

(28)S�(X� × X�
�� ) = S�S(X × X�) ⊂ S�S�X × S�S�P.

(29)S�(X�(z0) × Xℏ
�� (z

�
0
)) = T(S�z0)SX� × T(S�z�

0
)(SX)ℏ

�� .
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Proposition 13 (i) The symplectic action

defined by (28) is transitive. In particular, for every state X� × Xℏ
�� there exists 

S ∈ Sp(n) such that

(that S is not unique: see Remark 7). (ii) The symplectic action

defined by (29) is also transitive, and there exists S ∈ Sp(n) such that

where x0 and p0 are defined by: (x0, 0) = S−1z0 and (0, p0) = S−1z�
0
.

Proof To prove part (i) it is sufficient to show that there exists S ∈ Sp(n) 
such that (32) holds. Let now S ∈ Sp(n) be such that (�,��) = S(�X ,�P) and 
(X� ,X

ℏ
�� ) = S(X,Xℏ) . There exists a symmetric positive definite matrix A such that 

ellipsoid X is A−1∕2(Bn
X
(
√
ℏ)) hence Xℏ = A1∕2(Bn

X
(
√
ℏ)) and

where MA1∕2 =

(
A1∕2 0

0 A−1∕2

)
∈ Sp(n) so that we have

which was to be proven. Part (ii) is proven in a similar way.   ◻

4.3  Quant0(n) as a Homogeneous Space

Proposition 13 leads a topological identification of Quant0(n) with the homogeneous 
space Sp(n)∕O(n) . We begin by noting that the “fiducial quantum state” 
Bn
X
(
√
ℏ) × Bn

P
(
√
ℏ) is invariant by the action of the subgroup O(n) of U(n) consist-

ing of all matrices MH =

(
H 0

0 H

)
 with H ∈ O(n,ℝ).

Remark 14 The quotient Sp(n)∕U(n) (which is “smaller” than Sp(n)∕O(n) ) can be 
identified with the set of Wigner transforms of Gaussian wavepackets [21, formula 
(8.12)]. This shows that Quant0(n) contains more information than the Gaussian 
wavepackets which we will study below.

(30)S�(X�(z0) × Xℏ
�� (z

�
0
)) = (S�SX)(S�z0) × (S�SXℏ)(S�z�

0
).

(31)Sp(n) × Quant0(n) ⟶ Quant0(n)

(32)X� × Xℏ
�� = S(Bn

X
(
√
ℏ) × Bn

P
(
√
ℏ))

(33)Sp(n) × Quant(n) ⟶ Quant(n)

(34)X�(z0) × Xℏ
�� (z

�
0
) = S(Bn

X
(x0,

√
ℏ) × Bn

P
(p0,

√
ℏ))

X × Xℏ = MA1∕2(Bn
X
(
√
ℏ) × Bn

P
(
√
ℏ))

(X� ,X
ℏ
�� ) = SMA1∕2(Bn

X
(
√
ℏ) × Bn

P
(
√
ℏ))
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Let us state things in a more precise way. We first note that the “orthogonal sym-
plectic group” O(n) is the largest subgroup of Sp(n) such that

i.e. O(n) is the stabilizer (or isotropy subgroup) of the action of Sp(n) on 
Bn
X
(
√
ℏ) × Bn

P
(
√
ℏ) (we are identifying, as usual, Bn

X
(
√
�) × 0 ⊂ �X with Bn

X
(
√
ℏ) 

and 0 × Bn
X
(
√
�)× ⊂ �P with Bn

P
(
√
ℏ) . To see this it suffices to note that if 

S(Bn
X
(
√
ℏ)) = Bn

X
(
√
ℏ) and similarly S(Bn

P
(
√
ℏ)) = Bn

P
(
√
ℏ) then we must have, by 

homogeneity, S�X = �X and S�P = �P , hence we must have S =

(
H 0

0 H

)
 for some 

H ∈ O(n) . Since Sp(n) is a classical Lie group and O(n) is a closed subgroup it fol-
lows from the theory of homogeneous spaces that we have the identification

which allows to define a topology on Quant0(n) and hence a fiber bundle [25]

with projection

Remark 15 The complex structure rotation J ∶ (x, p) ⟼ (p,−x) also fixes the 
Lagrangian product of two same size balls, but does not belong to the group O(n). 
On the analytical level J plays the role of a Fourier transform.

5  Quant(n) and Gaussian Wavepackets

In this section we identify a subset of Quant(n) with the set of all Gaussian 
wavepackets.

5.1  John and Löwner Ellipsoids

There is a vast literature on the Löwner and John ellipsoids of a convex body; a 
classical reference is [6]. Let X be a convex body in any Euclidean space ℝn . The 
Löwner ellipsoid XLöwner of X is the unique ellipsoid in ℝn with minimum volume 
containing X and the John ellipsoid XJohn is the unique ellipsoid in ℝn with maximum 
volume contained in X. If A is an invertible linear mapping then

Not so surprisingly, if X is a centrally symmetric convex body, then XJohn and XLöwner 
are polar duals of each other in the following sense [5]:

S(Bn
X
(
√
ℏ) × Bn

P
(
√
ℏ)) = Bn

X
(
√
ℏ) × Bn

P
(
√
ℏ),

(35)Quant0(n) ≡ Sp(n)∕O(n)

F = (Sp(n), Quant0(n),�
Quant

0
,O(n))

�
Quant

0
∶ Sp(n) ⟶ Quant0(n).

(36)(A(X))Löwner = A(XLöwner), (A(X))John = A(XJohn)
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This property extends to Lagrangian polar duality. Let (�,��) be a Lagrangian frame 
and (X� ,X

ℏ
�� ) a dual pair of centered convex bodies. Then

The following particular case will be very important for what follows. We denote 
Bn
X
(R) (resp. Bn

P
(R) ) the ball |x| ≤ R (resp. |p| ≤ R ) in position (resp. momentum) 

space.

Proposition 16 The John ellipsoid of Bn
X
(R) × Bn

P
(R) is B2n(R) . In particular

Proof The inclusion

is obvious, and we cannot have

if R′ > R . Assume now that the John ellipsoid ΩJohn of Ω = Bn
X
(R) × Bn

P
(R) is 

defined by Ax2 + Bxp + Cp2 ≤ R2 where A,C > 0 and B are real n × n matrices. 
Since Ω is invariant by the transformation (x, p) ⟼ (p, x) so is ΩJohn and we must 
thus have A = C and B = BT . Similarly, Ω being invariant by the partial reflec-
tion (x, p) ⟼ (−x, p) we get B = 0 so ΩJohn is defined by Ax2 + Ap2 ≤ R2 . We 
next observe that Ω and hence ΩJohn are invariant under the symplectic transfor-
mations (x, p) ⟼ (Hx,HP) where H ∈ O(n,ℝ) so we must have AH = HA for all 
H ∈ O(n,ℝ) , but this is only possible if A = �In×n for some � ∈ ℝ . The John ellip-
soid is thus of the type B2n(R∕

√
�) for some � ≥ 1 and this concludes the proof in 

view of (40) since the case 𝜆 > R2 is excluded.   ◻

5.2  Gaussian Wavepackets and Their Wigner Transforms

Recall [14] that the Wigner transform of a square integrable function � on ℝn
x
 is 

defined by the absolutely convergent integral

The Wigner transform is a real function which can take negative values (except 
when � is a Gaussian). We recall the “marginal properties” of the Wigner transform: 
if both � and its Fourier transform

(37)(XJohn)
� = (X�)Löwner, (XLöwner)

� = (X�)John.

(38)((X�)John)
�
�� = (X�

�� )Löwner, ((X�)Löwner)
�
�� = (X�

�� )John.

(39)
�
Bn
X
(
√
ℏ) × Bn

P
(
√
ℏ)
�

John
= B2n(

√
ℏ).

(40)B2n(R) ⊂ Bn
X
(R) × Bn

P
(R)

B2n(R�) ⊂ Bn
X
(R) × Bn

P
(R)

(41)W�(x, p) =
(

1

2�ℏ

)n

∫ e
−

i

ℏ
py�(x +

1

2
y)�∗(x −

1

2
y)dny.
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are in L1(ℝn
x
) ∩ L2(ℝn

x
) then

These relations imply that

so that if � is normalized to one then the integral of W� over all of phase space is 
equal to one. These properties motivate the interpretation of the Wigner transform 
as a quasi-probability density.

A crucial fact is that the Wigner transform enjoys the property of symplectic 
covariance [11, 14], that is, we have for every S ∈ Sp(n),

where Ŝ is anyone of the two metaplectic operators covering S. This property is 
instrumental in proving the symplectic covariance of Weyl quantization, and implies 
that the metaplectic group acts transitively on the Gaussian wavepackets we define 
below.

Following our work in [12] we introduced in [13] the notion of “quantum 
blob”. Their properties were detailed in our Phys. Reps. paper [17] with F. Luef. 
A quantum blob is the image of a phase space ball B2n(z0,

√
ℏ) ∶ �z − z0� ≤

√
ℏ 

by some S ∈ Sp(n) . it can be viewed as the smallest phase space unit compatible 
with the uncertainty principle expressed in terms of variances and covariances 
(for a discussion of the relevance of the use of standard deviations to formulate 
the uncertainty relations see [20]). It turns out that there is a canonical corre-
spondence between quantum blobs and Gaussian wavepackets

and their displacements �AB,z0
= T̂(z0)�AB by the Heisenberg–Weyl operator T̂(z0) 

[11, 21]. In (46) A and B are real symmetric n × n matrices with A positive defi-
nite and � ∈ R an arbitrary constant phase; we will not care about the value of this 
phase factor since we will be dealing with the properties of the quantum states ��AB⟩ . 
When A = I (the identity), B = 0 , and � = 0 the function �AB reduces to the “fidu-
cial coherent state” (we are using the terminology in [21]):

�̂(p) = F�(p) =
(

1

2�ℏ

)n∕2

∫ e
−

1

ℏ
p⋅x�(x)dnx

(42)∫ W�(x, p)dnp = |�(x)|2

(43)∫ W�(x, p)dnx = |F�(p)|2.

(44)∫ W�(x, p)dnpdnx = ||�||L2

(45)W�(S−1z) = W(Ŝ�)(z)

(46)�AB(x) = ei�
(

1

�ℏ

)n∕4

(detA)1∕4e
−

1

2ℏ
(A+iB)x⋅x
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It turns out that every Gaussian wavepacket (46) can be obtained from the fiducial 
state by using metaplectic operators.

We will denote by Gauss(n) the set of all Gaussian wavepackets T̂(z0)�AB , 
and by Gauss0(n) the subset consisting of centered wavepackets. One shows [7, 
11], using the symplectic covariance formula (45), that the Wigner transform of 
T̂(z0)�AB is the phase space Gaussian

where G is the positive definite symmetric and symplectic 2n × 2n matrix

Let us denote by QB(n) the set of all quantum blobs S(B2n(z0,
√
ℏ)) , S ∈ Sp(n) and 

by QB0(n) the subset consisting of all centered quantum blobs S(B2n(
√
ℏ)) . Recall 

that Gauss(n) is the set of all Gaussian states T̂(z0)�AB.

Proposition 17 (i) There is a bijective correspondence Gauss(n) ⟷ QB(n) ; it is 
defined by

where T(z0) is the phase space translation z ⟼ z + z0 and SAB ∈ Sp(n) is defined by 
(48) and (49). (ii) The transitive action of Sp(n) on the set QB0(n) of centered quan-
tum blobs induces a transitive action of Mp(n) on Gauss0(n). More generally the 
transitive action of the inhomogeneous symplectic group ISp(n) on QB(n) induces a 
transitive action of IMp(n) on Gauss(n).

Proof (i) In view of the discussion above the Wigner transform associates to 
T̂(z0)�AB the phase space ellipsoid

where G = (SABS
T
AB
)−1 hence Q is the quantum blob T(z0)SAB(B2n(

√
ℏ)) . Let us show 

that, conversely, every quantum blob is is obtained from a unique state �T̂(z0)�AB⟩ . 
Let Q = T(z0)S(B

2n(
√
ℏ)) be a quantum blob, that is

To Q we associate the function � with Wigner transform

We have

(47)�0(x) = (�ℏ)−n∕4e−|x|
2∕2ℏ.

(48)W�AB(z) = (�ℏ)−ne
−
1

ℏ
G(z−z0)⋅(z−z0)

(49)G = (SABS
T
AB
)−1, SAB =

(
A−1∕2 0

−BA−1∕2 A1∕2

)
.

T̂(z0)�AB ⟶ T(z0)SAB(B
2n(

√
ℏ)).

Q = {z ∶ GAB(z − z0) ⋅ (z − z0) ≤ ℏ}

Q = {z ∶ G(z − z0) ⋅ (z − z0) ≤ ℏ},G = (SST )−1.

W�(z) = (�ℏ)−ne
−
1

ℏ
G(z−z0)⋅(z−z0).
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hence, by the symplectic covariance formula (45),

where Ŝ ∈ Mp(n) covers S. It follows that we have

that is

so that � = ei� T̂(z0)�A,B for some (uniquely defined) matrices A and B. (ii). see [11].  
 ◻

For a detailed study of the correspondence Gauss(n) ⟷ QB(n) see [13, 17].

5.3  Construction of a Quantum Gaussian Space

Consider first the very simple case where X is the ball Bn
X
(
√
ℏ) whose polar 

dual is Xℏ = Bn
P
(
√
ℏ) . The corresponding elliptic quantum state is the prod-

uct Bn
X
(
√
ℏ) × Bn

P
(
√
ℏ) . In view of Proposition 16 the John ellipsoid of this 

state is B2n(
√
ℏ) , and to the latter corresponds the fiducial coherent state 

�0(x) = (�ℏ)−n∕4e−|x|
2∕2ℏ . Slightly more generally, let U be a symplectic rota-

tion and define a Lagrangian frame (�,��) by � = U�X and �� = U�P . Identifying 
Bn
X
(
√
ℏ) with Bn

X
(
√
�) × 0 ⊂ �X the rotation U takes this set to U(Bn

X
(
√
�) × 0) ⊂ � 

and, similarly, U(Bn
P
(
√
�) × 0) ⊂ �� . The state Bn

X
(
√
ℏ) × Bn

P
(
√
ℏ) is replaced with 

U(Bn
X
(
√
ℏ) × Bn

P
(
√
ℏ)) whose John ellipsoid is, by rotational symmetry,

in view of the linear transformation property (36). The states Bn
X
(
√
ℏ) × Bn

P
(
√
ℏ and 

U(Bn
X
(
√
ℏ) × Bn

P
(
√
ℏ)) thus have the same John ellipsoid, and to both states thus cor-

responds the fiducial Gaussian wavepacket �0 . From the Wigner transform point of 
view, this property just reflects the rotational invariance of �0 : we have

Consider next the slightly more general case where X is the ellipsoid

with A = AT > 0 ; hence

W�(S(z + S−1z0)) = (�ℏ)−ne
−
1

ℏ
|z|2

= W�0(z)

W(Ŝ�)(z) = W�0(z − S−1z0) = W(T̂(S−1z0)�0)(z)

Ŝ�(x) = ei� T̂(S−1z0)�0(x)

�(x) = ei� ŜT̂(S−1z0)�0(x) = ei� T̂(z0)Ŝ�0(x)

�
U(Bn

X
(
√
ℏ) × Bn

P
(
√
ℏ))

�

John
= U(B2n(

√
ℏ)) = B2n(

√
ℏ)

W�0(Uz) = (�ℏ)−ne−
1

ℏ
Uz⋅Uz = (�ℏ)−ne−

1

ℏ
z⋅z = W�0(z).

X = {x ∶ Ax ⋅ x ≤ ℏ} = A−1∕2(Bn
X
(
√
ℏ))
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and the corresponding quantum state is then

where MA1∕2 =

(
A1∕2 0

0 A−1∕2

)
 is a symplectic dilation. Using again (36) the John 

ellipsoid of this state is

and to the latter corresponds the function with Wigner transform

and hence, up to an irrelevant constant phase ei�,

These examples suggest that there is a deeper underlying structure relating elliptic 
quantum states to Gaussian wavefunctions. To study this relation we begin by defin-
ing an equivalence relation on Quant0(n) : We will say that two states X�1

× Xℏ
��
1

 and 
X�2

× Xℏ
��
2

 are unitarily equivalent and write

if there exists a symplectic rotation U ∈ U(n) such that (�1,�
�
1
) = U(�2,�

�
2
) and

Since U(n) is a group the relation U(n)
∼  enjoys the properties of reflexivity, symmetry, 

and transitivity, and is thus indeed an equivalence relation. We denote by ̃X� × Xℏ
�� 

the equivalence class of the state X� × Xℏ
�� for this relation and by Quant0(n)∕U(n) 

the set of all such equivalence classes. Recall (formula 35) that we have iden-
tified Quant0(n) with Sp(n)∕O(n) . Following result identifies Gauss0(n) with 
Quant0(n)∕U(n):

Proposition 18 There is a canonical identification

between the set of centered Gaussian wavepackets �AB and the equivalence 
classes ̃X� × Xℏ

�� of centered elliptic quantum states. More generally we have an 
identification

Xℏ = {p ∶ A−1p ⋅ p ≤ ℏ} = A1∕2(Bn
P
(
√
ℏ))

A−1∕2(Bn
X
(
√
ℏ)) × A1∕2(Bn

P
(
√
ℏ)) = MA1∕2(Bn

X
(
√
ℏ) × Bn

P
(
√
ℏ))

(X × Xℏ)John = MA1∕2(B2n(
√
ℏ))

W�(z) = (�ℏ)−n exp−
[
1

ℏ
(Ax ⋅ x + A−1p ⋅ p)

]

�(x) = �A,0(x) =
(

1

�ℏ

)n∕4

(detA)1∕4e
−

1

2ℏ
Ax⋅x

.

X�1
× Xℏ

��
1

U(n)
∼ X�2

× Xℏ
��
2

X�1
× Xℏ

��
1

= U(X�2
× Xℏ

��
2

).

(50)Gauss0(n) ≡ Quant0(n)∕U(n)
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Proof Let �A,B ∈ Gauss0(n) be a Gaussian wavepacket and

its Wigner transform. The ellipsoid {z ∶ Gz ⋅ z ≤ ℏ} is the quantum blob 
Q = S(B2n(

√
ℏ)) , and in view of Proposition 16 the latter is the John ellipsoid of the 

state

If S� ∈ Sp(n) is another symplectic matrix such that G = (S�(S�)T )−1 then S� = SU for 
some symplectic rotation U ∈ U(n) and hence S�(B2n(

√
ℏ)) = S(B2n(

√
ℏ)) so that Q 

is also the John ellipsoid of the state

Conversely, let X� × Xℏ
�� be a centered elliptic quantum state and choose S ∈ Sp(n) 

such that (�,��) = S(�X ,�P) and

(Proposition 13). In view of Proposition 16 the John ellipsoid of X� × Xℏ
�� is the 

quantum blob Q = S(B2n(
√
ℏ)) , hence to X� × Xℏ

�� corresponds the generalized 
Gaussian �AB with Wigner transform

We may replace X� × Xℏ
�� with

with U ∈ U(n) without altering G, hence W�AB (and thus �AB ) only depends on the 
equivalence class ̃X� × Xℏ

�� . The extension of (50) to formula (51) is straightforward.  
 ◻

6  Perspectives for a Generalization

So far we have been considering Lagrangian products of ellipsoids. The next— and 
fundamental!—step would be to generalize our constructions to products X × Xℏ (or, 
more generally, X� × Xℏ

�� ) where X or X� is not an ellipsoid, but an arbitrary convex 

(51)Gauss(n) ≡ Quant(n)∕U(n)

W�AB(z) = (�ℏ)−ne−
1

ℏ
Gz⋅z

,G = (SST )−1

X� × Xℏ
�� = S(Bn

X
(
√
ℏ) × Bn

P
(
√
ℏ)),

� = S�X ,�
� = S�P.

X�1
× Xℏ

��
1

= S�(Bn
X
(
√
ℏ) × Bn

P
(
√
ℏ)),

�1 = SU�X ,�
�
1
= SU�P.

(52)X� × Xℏ
�� = S(Bn

X
(
√
ℏ) × Bn

P
(
√
ℏ))

W�AB(z) = (�ℏ)−ne−
1

ℏ
Gz⋅z

,G = (SST )−1.

X�1
× Xℏ

��
1

= S�U(Bn
X
(
√
ℏ) × Bn

P
(
√
ℏ)),�1 = SU�X ,�

�
1
= SU�P.
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set, leading to a non-Gaussian quantum state. It is clear why this problem has such 
an overwhelming importance since it opens the door to a general geometric theory 
of quantum states. This problem will be addressed in forthcoming work: let us just 
outline here some of the difficulties inherent to such an extension of our theory. So, 
we would like to construct a generalization of Quant(n) where the Lagrangian quan-
tum states are represented by arbitrary convex sets. The first mathematical difficulty 
that occurs is the determination of the point with respect to which the polar dual 
should be calculated. Let in fact X(x0) be an arbitrary convex body in �X = ℝ

n
x
 ; by 

definition its centroid (or barycenter) is

It is easily verified that if X is an ellipsoid, then the centroid coincides with its center 
in the usual sense. To define the polar dual of X(x0) one is tempted to use the same 
procedure as for ellipsoids and to define X(x0)ℏ as the dual of the centered convex 
body X = T(−x0)X(x0) . However this is not the good choice. Here is why: when 
we defined the polar of an ellipsoid by using a translation to make it centered at the 
origin it turns out that the Blaschke–Santaló product Voln(X(x0))Voln(Xℏ(x0)) attains 
the value (VolnBn(

√
ℏ)2 . The difficulty comes from the fact that in the general case 

of arbitrary convex body we need to choose the correct center with respect to which 
the polarity is defined since there is no privileged “center”; different choices may 
lead to polar duals with very different volumes (see Example 26). Santaló proved in 
[24] the following remarkable result: there exists a unique interior point xS of X (the 
“Santaló point of X”) such that the polar dual Xℏ(xS) = (X − xS)

ℏ has centroid p = 0 
and its volume Voln(Xℏ(xS)) is minimal for all possible interior points x0:

with equality if and only if X is an ellipsoid. We note that the practical determination 
of the Santaló point is in general difficult and one has to use ad hoc methods in each 
particular case. See [2] for a discussion of this issue.

Having in mind that the polar dual is calculated with respect to the Santaló point 
(not the centroid!) we can define the associated canonical Lagrangian quantum state 
exactly as follows let (�X ,�P) ∈ Lag2

0
(n) , be the canonical Lagrangian frame and 

X(xS) ∈ Conv(�) a convex body carried by �X and with Santaló point xS . The associ-
ated Lagrangian state is then

and we again have a fiber bundle structure

The study of the latter is less straightforward than in the case of ellipsoids, and will 
be done in a forthcoming work. We also notice that we can associate to every state 
an ellipsoid using the John ellipsoid method, but the role played by the latter is 
unclear (it is not quite obvious that it should be a quantum blob; if it were the case it 

(53)x0 =
1

Voln(X) ∫X

x1dx1 +⋯ + xndxn = 0.

(54)Voln(X)Voln(X
ℏ(xS)) ≤ (VolnB

n(
√
ℏ)2

X(xS) × (X(xS) − xS)
ℏ + p0) = X(xS) × Xℏ(p0)

� ∶ Quant0(n) ⟶ Conv(�).
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could correspond to the covariance matrix of the state). At this point one might want 
to use the theory of the Minkowski functional to give a geometric study; this leads 
us to consider difficult non-linear problems. All this is also related to the powerful 
notion of symplectic capacity, which we discussed in [16] following the ideas in 
[2–4] All these questions are fascinating ad answers might lead to a geometric refor-
mulation of quantum mechanics where the notion of polar duality in a sense replaces 
the usual uncertainty principle. We will come back with answers in a near future.
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