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Abstract
The central limit theorem has been found to apply to random vectors in complex 
Hilbert space. This amounts to sufficient reason to study the complex–valued Gauss-
ian, looking for relevance to quantum mechanics. Here we show that the Gaussian, 
with all terms fully complex, acting as a propagator, leads to Schrödinger’s non-rela-
tivistic equation including scalar and vector potentials, assuming only that the norm 
is conserved. No physical laws need to be postulated a priori. It thereby presents as 
a process of irregular motion analogous to the real random walk but executed under 
the rules of the complex number system. There is a standard view that Schröding-
er’s equation is deterministic, whereas wavefunction “collapse” is probabilistic (by 
Born’s rule)—we have now a demonstrated linkage to the central limit theorem, 
indicating a stochastic picture at the foundation of Schrödinger’s equation itself. It 
may be an example of Wheeler’s “It from bit” with “No underlying law”. Reasons 
for the primary role of � are open to discussion. The present derivation is compared 
with recent reconstructions of the quantum formalism, which have the aim of ration-
alizing its obscurities.

Keywords Time-dependent Schrödinger equation · Feynman action formula · 
Path integrals · Gaussian processes · Central limit theorem · Random walks · 
Foundational

1 Introduction

We are often reminded (e.g. Ref. [1]) that the Schrödinger equation was postulated 
empirically, being justified only post hoc by its agreement with quantum mechanical 
observations. This equation might appear less strange or arbitrary if it could be rea-
soned from something more basic.
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We take the Gaussian density function acting as a propagator, but instead of 
using it in the real number system � , we let it act in the complex number system 
� . Why � ? � has a more complete logic [2] (see Discussion, 3.1). This is such a 
general quality that in appealing to it, consistency would require us to make all 
terms complex, not just some arbitrary selection of variables. We do so. We will 
note reasons for preferring � rather than other division algebras (3.1).

The initial motivation for this model was to build a better understanding of 
Feynman’s path integral approach [3, 4]. One feels that Feynman’s action for-
mula, though mysterious in itself, must contain essential physical insight since it 
leads to Schrödinger’s equation, while his use of Gaussian integrals seems just a 
mathematical tool. Yet the Gaussian seems a good place to start, because the real 
Gaussian is familiar and well understood. So before going to the action formula, 
it is reasonable to prepare the ground by looking at (a) the Gaussian in � , then (b) 
the Gaussian in � , then (c) the complex Gaussian as a propagator, and then (d) 
the complex Gaussian propagator that is norm-conserving. One might guess that 
(d) could be a fairly complicated object. How close does (d) get us to Schröding-
er’s equation, before we even introduce Feynman’s action formula?

The surprising result is that the action formula is not needed at all. After devel-
oping the Gaussian as in (d) above, there will be no call on any information from 
physics (de Broglie relations; Newton’s laws, force fields, energy conservation, or 
classical action with or without Feynman’s arbitrary formulation; not even Gali-
lean kinematics). We reach Schrödinger’s equation (non-relativistic with scalar 
and vector potentials).

In effect we use the intuitively appealing path integral method with a more 
general starting point than usual. Further, we point out that it is essential for con-
sistency to calculate the normalization constant correct to first order in the time 
increment, not merely zero order as in Feynman [3, 4]. The need for any input of 
physical information is thereby removed.

Since the derivation depends only on the Gaussian, the physical content of 
Feynman’s action formula, and of the Schrödinger equation itself, is seen to 
reside in the Gaussian when the latter is closely considered. Taking this a step 
further, our focus on the Gaussian is given a strong rationale by the fact that the 
central limit theorem is known to apply to complex Hilbert space vectors (see 
Discussion, 3.1); the central limit theorem of course leads to Gaussians.

Thus Schrödinger’s equation and the physical laws that can be derived from it 
are mere reflections of laws concerning the behaviour of pure numbers within the 
complex number system. That is the central result of this article.

Derivation of these results is given in 2. In 3, the Discussion, we consider how 
to interpret them. The real Gaussian is well known to be associated with a ran-
dom walk in many manifestations. What does it mean if the Gaussian is complex 
instead of real? In 3.1 we suggest it may still be understood as a random pro-
cess, but one that is executed according to the rules of � instead of � . In 3.2 we 
add that this picture is consistent with the usual textbook teaching of quantum 
mechanics [1], including Born’s statistical interpretation (and is unlike the type 
of random walk described by Nelson and others). In 3.3 we compare with previ-
ous justifications (Schrödinger [5], Feynman [3, 4], Kac [6], Nelson [7], Jauch 
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[8] and others), and with modern reconstructions of quantum mechanics (3.3.1). 
Conclusions are summarised in 4.

2  Derivation

A preliminary overview of the subsections is as follows:
2.1 Real Gaussian We recall the form of the real Gaussian and its normalization 

constant.
2.2 A “convenient” complex Gaussian We want all the terms in the Gaussian to 

be complex in general, with the Gaussian acting to propagate another function � . 
However the general case gives rise to many possibilities that cannot be dealt with 
in a single concise manner. We therefore undertake a multi-part procedure. As a first 
stage we will arrive at the essential equations, including normalization, using the 
most “convenient” case for the composition of the Gaussian. This part of the deriva-
tion follows the path integral method [3, 4]. The other cases will be dealt with later 
(see 2.4).

2.3 Correction to first order in the time increment Feynman [3] and Feynman and 
Hibbs [4] calculated the normalization constant correct to zero order in the small 
time increment � , but in their working they take Taylor expansions up to first order 
in � . This seems inconsistent. To ensure consistency therefore, we make the normali-
zation constant correct to first order in � , so that it matches the level of approxima-
tions in the Taylor expansion.

2.4 Check alternatives With equations in hand for the “convenient” case, we 
check all the alternative cases for normalizability.

2.5 Schrödinger equation Finally we write the admissible (i.e. normalizable) 
equations for the propagator and the corresponding differential equation. The lat-
ter takes the form of the Schrödinger equation. No assumptions based on physical 
observations will have been made in the course of the derivation. (We have used 
symbols such as x and t for variables to foreshadow their later physical interpreta-
tion, but that is merely a convenient notation and does not imply any prior laws of 
physics relating to the variables.)

We now set this out in detail.

2.1  Real Gaussian

The general form of the Gaussian distribution for one variable is

where P is the density at the point x, the mean and variance are � and �2 respec-
tively, and K is the normalization constant [9].

An equation in this form can represent a time-dependent process,

(1)P(x) =
1

K
exp−

(x − �)2

2�2
,
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where t is the time, u is the drift velocity, and D is the diffusion constant. The mean 
is now ut and the variance is Dt. Putting ∫ Pdx = 1 , where the integral is taken over 
all space, we have

A Gaussian in the form of Eq. 2 may be written as a propagator [10],

where at a point (x, t), Π dictates the step length � in the small time interval � . The 
drift u and the diffusivity D are allowed to vary with x and t. Acting at each point 
on a density function P(x, t), the propagator determines how the local density will 
change with time. K retains the same form as above, now written

2.2  A “convenient” Complex Gaussian

We intend to see what happens when all the parameters and variables in the Gaussian 
propagator are allowed to be complex. This makes for a complicated picture. It is con-
venient to start with one particular case, and to look at the alternatives later.

Specifically, we replace the real diffusivity D by the pure imaginary diffusivity iD 
(with D real). Also we keep D constant (no dependence on x or t). In this way Eq. 4 is 
replaced by

We remark that Eq. 4 has been justified using random variable theory [10], which 
applies only to real systems because of its axioms. In looking at the complex coun-
terpart, Eq.  6, we recognize that the same justification does not apply, but at this 
stage we are merely exploring an interesting equation. Justification in its own right 
will be discussed in 3.1.

Equation  6 is related to the propagator in Feynman’s path integral approach [3, 
4]. Taking up that approach, we calculate �(x, t + �) as the sum of contributions 
transferred from values of � situated nearby at a slightly earlier time, that is, from 
�(x + �, t) . Those transfers are calculated from the propagator Π(�, �;x + �, t) , hence

From Eqs. 6 and 7,

(2)P(x, t) =
1

K
exp−

(x − ut)2

2Dt
,

(3)K = [2�Dt]1∕2.

(4)Π(�, �;x, t) =
1

K
exp−

(� − u(x, t)�)2

2D(x, t)�
,

(5)K = [2�D(x, t)�]1∕2.

(6)Π(�, �;x, t) =
1

K
exp

i(� − u(x, t)�)2

2D�
.

(7)�(x, t + �) = ∫ Π(�, �;x + �, t)�(x + �, t)d�.
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To abbreviate some notation in Eq. 8, let

Using this notation in Eq. 8, the exponential term is given by

When � and � approach zero, we have �u+∕D → 0 and u2
+
�∕2D → 0 , given that u+ 

and D are finite (non-zero). Hence we may write Taylor expansions of the second 
and third exponentials on RHS in Eq. 11,

keeping terms only to second order in � and first order in � (as we will do through-
out, following Feynman [3] and Feynman and Hibbs [4]). From Eqs. 11, 12 and 13,

These authors [3, 4] point out that a term such as the exponential containing �2∕� 
on RHS of Eq.  8 oscillates rapidly with small � except near � = 0 , and the rapid 
oscillations would contribute little to the integration on � due to cancellations. Since 
appreciable contributions to the integral are then expected only for small � , Taylor 
expansion of �(x + �, t) is justified. Substituting Eq. 14 in Eq. 8 and making Taylor 
expansions of �(x, t + �) and �(x + �, t),

Recalling Eqs. 9, 10, with Taylor expansion for small �,

(8)�(x, t + �) = ∫
1

K
exp

i(� − u(x + �, t)�)2

2D�
�(x + �, t)d�.

(9)u = u(x, t),

(10)u+ = u(x + �, t).

(11)
exp

i(� − u+�)
2

2D�
= exp

i

2D�

(
�2 − 2�u+� + u2

+
�2
)

= exp
i�2

2D�
exp−

i�u+

D
exp

iu2
+
�

2D
.

(12)exp−
i�u+

D
= 1 −

i�u+

D
−

�2u2
+

2D2
,

(13)exp
iu2

+
�

2D
= 1 +

iu2
+
�

2D
,

(14)exp
i(� − u+�)

2

2D�
=

[
1 −

i�u+

D
−

�2u2
+

2D2
+

iu2
+
�

2D

]
exp

i�2

2D�
.

(15)
�(x, t) + �

��

�t
= ∫ d�

1

K

[
1 −

i�u+

D
−

�2u2
+

2D2
+

iu2
+
�

2D

](
exp

i�2

2D�

)

×

[
�(x, t) + �

��

�x
+

1

2
�2

�2�

�x2

]
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(Second order term is not shown as it will go to higher order when multiplied later.)
Using the integrals

we find that the two terms in Eq. 15 that involve u2
+
 , when expanded by Eq. 16, can-

cel each other (to first order in � ) upon integration,

The only other term in Eq. 15 that involves u+ is −i�u+∕D . Expanding again with 
Eq. 16,

With Eqs. 21 and 22, 15 becomes

(16)u+ = u(x + �, t) = u(x, t) + �
�u(x, t)

�x
+⋯ = u + �

�u

�x
+⋯ .

(17)∫
∞

−∞

exp
i�2

2D�
d� =(2�iD�)1∕2,

(18)∫
∞

−∞

� exp
i�2

2D�
d� =0,

(19)∫
∞

−∞

�2 exp
i�2

2D�
d� =(2�iD�)1∕2iD�,

(20)∫
∞

−∞

�4 exp
i�2

2D�
d� =(2�iD�)1∕2(−3)D2�2,

(21)

∫ d�

[
−
�2u2

+

2D2
+

iu2
+
�

2D

](
exp

i�2

2D�

)
= ∫ d�u2

+

[
−

�2

2D2
+

i�

2D

](
exp

i�2

2D�

)

= ∫ d�
(
u + �

�u

�x

)2
[
−

�2

2D2
+

i�

2D

]

×

(
exp

i�2

2D�

)

= 0.

(22)−
i�u+

D
= −

i�u

D
−

i�2

D

�u

�x
.



1 3

Foundations of Physics (2022) 52:50 Page 7 of 22 50

To evaluate the normalization factor K, we compare the leading �(x, t) terms on 
the two sides. On the left-hand side there is simply �(x, t) . On the right-hand side, 
�(x, t) is multiplied by the expression on the LHS of the following equation, which, 
from Eq. 17, is evaluated as

In order that both sides of Eq. 23 agree in the limit as � approaches zero, K must be 
chosen so that the expression in Eq. 24 equals 1; that is,

The equation is now correct to zero order in � . This is the normalization factor given 
in the classic path integral formulation [3, 4] using the foregoing justification.

But since we have been taking Taylor expansions to first order in � , as in Refs. [3] 
and [4], we should not be satisfied to have the normalization constant specified only 
to zero order in � . Consistency requires that we develop it to first order in �.

2.3  Correction to First Order in Time Increment

To do this, we insert into the normalization constant a first-order term in � , making 
it as general as possible. So we amend Eq. 25 to

where T is independent of � (otherwise the propagator is not Gaussian), but may 
be some complex function of x and t, and � is small. The choice of sign for T is 
arbitrary.

Resuming in the manner of the Feynman exposition [3, 4], we use Eq. 26 and 
substitute

(23)

�(x, t) + �
��

�t
= ∫ d�

1

K

[
1 −

i�u

D
−

i�2

D

�u

�x

](
exp

i�2

2D�

)

×

[
�(x, t) + �

��

�x
+

1

2
�2

�2�

�2x

]

= ∫ d��
1

K

[
1 −

i�u

D
−

i�2

D

�u

�x

]
exp

i�2

2D�

+
��

�x

1

K

[
� −

i�2u

D

]
exp

i�2

2D�

+
�2�

�x2
1

K

[
1

2
�2
]
exp

i�2

2D�
.

(24)
1

K ∫
∞

−∞

exp
i�2

2D�
d� =

1

K
(2�iD�)1∕2.

(25)K = (2�iD�)1∕2.

(26)K = (2�iD�)1∕2(1 + �T(x, t)),

(27)
1

K
= (2�iD�)−1∕2(1 − �T(x, t))
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into Eq. 6 for the propagator, which becomes

To develop the differential equation, we substitute Eq. 27 into Eq. 23. Included is a 
term involving u which will later yield the vector potential A. Feynman warned that 
caution must be used with the integral ∫ Adx , possibly due to the individual trajec-
tory of a single particle being undifferentiable (“like Brownian motion”), and intro-
duced the midpoint rule which allows the integral to correspond with the known 
physics [3]. However, a single particle trajectory is unlike a density function, and we 
treat the latter as well behaved (Riemann integrable).

We proceed then to the integrations in Eq. 23, using Eq. 27 for 1/K, and take from 
Eq. 19 that the �2 terms in the integrand produce iD� terms in the integral,

Dividing through by � , we get the differential equation

and its complex conjugate

We already have normalization at time zero. We also require that Eqs. (30, 31) con-
serve the norm over time,

To examine this, we expand the expression

(28)Π(�, �;x, t) = (2�iD�)−1∕2(1 − �T(x, t)) exp
i(� − u(x, t)�)2

2D�
.

(29)�
��

�t
=

(iD�)

2

�2�

�x2
− (iD�)

iu

D

��

�x
− (iD�)

i

D

�u

�x
� − �T� .

(30)��

�t
=

iD

2

�2�

�x2
+ u

��

�x
+

�u

�x
� − T� ,

(31)��∗

�t
= −

iD

2

�2�∗

�x2
+ u

��∗

�x
+

�u

�x
�∗ − T∗�∗.

(32)
d

dt ∫
∞

−∞

(�∗�)dx = 0.

(33)

d

dt ∫
∞

−∞

(�∗�)dx = ∫
∞

−∞

�

�t
(�∗�)dx = ∫

∞

−∞

(
�∗ ��

�t
+

��∗

�t
�

)
dx

= ∫
∞

−∞

�∗

(
iD

2

�2�

�x2
+ u

��

�x
+

�u

�x
� − T�

)
dx

+ ∫
∞

−∞

(
−
iD

2

�2�∗

�x2
+ u

��∗

�x
+

�u

�x
�∗ − T∗�∗

)
�dx

= ∫
∞

−∞

{
�∗ iD

2

�2�

�x2
−

iD

2

�2�∗

�x2
�

}

+

{
�∗u

��

�x
+ 2�∗ �u

�x
� +

��∗

�x
u�

}
+ {−�∗T� − �∗T∗�}dx
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where we used Eqs. 30, 31 in the second-last line, and rearranged terms for the last 
line.

Taking the first curly bracket on RHS of Eq. 33,

the definite integral being zero with square-integrable �.
The second curly bracket on RHS contains the derivative of the triple product, 

which we separate,

the quantity [�∗u�]∞
−∞

= 0 , again because � is square-integrable.
For the last two terms on RHS, we write the real and imaginary parts of T sepa-

rately, T = a + ib , T∗ = a − ib , with a and b real. Then

Since Eqs. 34, 35 and 36 must satisfy Eq. 32, we must have

and hence

for all x, t. There is no restriction on b(x, t) because it always cancels.
Thus T is not necessarily zero. ReT is zero only if u is constant. And T is deter-

mined only up to a phase factor.
To correct the normalization constant to first order in � , we substitute

(34)

∫
∞

−∞

{
�∗ iD

2

�2�

�x2
−

iD

2

�2�∗

�x2
�

}
dx =

iD

2 ∫
∞

−∞

�

�x

{
�∗ ��

�x
−

��∗

�x
�

}
dx

=
iD

2

[
�∗ ��

�x
−

��∗

�x
�

]∞

−∞

= 0,

(35)

∫
∞

−∞

�∗u
��

�x
+ �∗ �u

�x
� +

��∗

�x
u�dx + ∫

∞

−∞

�∗ �u

�x
�dx

= ∫
∞

−∞

�

�x
(�∗u�)dx + ∫

∞

−∞

�∗ �u

�x
�dx

=
[
�∗u�

]∞
−∞

+ ∫
∞

−∞

�∗ �u

�x
�dx

= ∫
∞

−∞

�∗ �u

�x
�dx,

(36)
∫

∞

−∞

−(�∗T� + �∗T∗�)dx = −∫
∞

−∞

�∗(a + ib + a − ib)�dx

= −∫
∞

−∞

�∗(2a)�dx.

(37)∫
∞

−∞

�∗ �u

�x
�dx − ∫

∞

−∞

�∗(2a)�dx = 0,

(38)a(x, t) =
1

2

�u(x, t)

�x
,
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into the propagator Eq. 28,

for small � . The differential equation 30 and its complex conjugate 31 become

It is noted that Eqs. 4 and 40 are precise counterparts, as each represents a Gaussian 
propagator for which the norm of the propagated function is conserved: the former 
conserves the norm in � , and the latter conserves the norm in the sense of �.

Feynman [3] did not discuss how to maintain constancy of the norm to first order 
in � (norm conservation over time), but did not need to, because in his approach 
the necessary information is carried in from observational evidence: that is, in the 
Lagrangian, which gives the scalar and vector potentials, and in the midpoint rule, 
shown after alternative rules are unsuccessfully tried, to ensure the integrations 
match the known physics. We found the correct formulation purely by normalizing 
the Gaussian-propagated system, without reference to observational physics.

2.4  Checking Alternatives

We have constructed the normalization constant when the Gaussian propagator 
Eq. 6 was restricted, by a “convenient” choice, to have real D and u, with D con-
stant. We now go back over the equations critical for normalization to see how they 
stand when those restrictions are relaxed in any way possible.

Let us look at the terms in Eq. 33 with the stated variables being complex instead 
of real. Thus D is to be replaced by ReD + iImD, and D∗ by ReD − iImD. Also u 
is replaced by Reu + iImu, and u∗ by Reu − iImu; while T and T∗ remain as before. 
Then if we collect the terms comprising real components of these variables, the 
integrations come to zero, as they did before, for the real components only; but the 
corresponding terms with imaginary components would fail to cancel because of 
altered signs in the complex conjugate terms. Also if D is not constant with respect 
to x, D cannot be taken outside the integral sign for the integration over x. If any 
one or more of these modifications were to be made, residual terms would be left, 
involving � , its derivatives, their complex conjugates, and imaginary components 
of parameters, unable to be simplified as a general case and therefore not identically 
zero for all square-integrable � . In such cases, the norm would not be conserved. 

(39)T(x, t) =
1

2

�u(x, t)

�x
+ ib(x, t)

(40)

Π(�, �;x, t) = (2�iD�)−1∕2 exp−i�b(x, t) exp−
1

2
�
�u(x, t)

�x
exp

i(� − u(x, t)�)2

2D�

(41)��

�t
=

iD

2

�2�

�x2
+ u(x, t)

��

�x
+

1

2

�u(x, t)

�x
� − ib(x, t)� ,

(42)��∗

�t
= −

iD

2

�2�∗

�x2
+ u(x, t)

��∗

�x
+

1

2

�u(x, t)

�x
�∗ + ib(x, t)�∗.
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Could this be rectified by setting T to cancel the unwanted terms? No, because 
that would make T a function of � , which would mean that propagation is not by a 
Gaussian, therefore not admissible for the present discussion.

As for D, it must be constant in space, but there is nothing in our equations that 
says it must be constant in time. That is the only relaxation in the restrictions that we 
have reason to identify. We will comment further on this in 2.5.

Since our aim is to consider the Gaussian in a fully complex form, we must 
also consider how the independent variables (the space and time coordinates) are 
to be regarded when they too are written as complex numbers. Explicitly, each 
space and time coordinate would be represented by a complex plane instead of 
just an axis of real numbers. Usually we are only interested in Π and � over the 
real axes, so for most purposes the complex Gaussian is adequately represented 
with the space and time coordinates written as real, whilst keeping in mind that 
they could be treated as complex should that be needed.

2.5  Schrödinger Equation

A few notational changes will align the equations with standard usage. We 
substitute

which is equivalent to D = ℏ∕m implying Planck’s constant ℏ = 1 . Also our use of 
u has implied that it is the x component of the vector � ; we now denote this compo-
nent as ux with

This equation deals with x components; we may write similar equations for u and 
� components in the y and z directions in considering three dimensions. Finally we 
replace b by

where �� = A2
x
+ A2

y
+ A2

z
.

These substitutions make the Schrödinger equation a little more complicated, 
but are aligned with common usage, and it will turn out that the Hamiltonian is 
made simpler when written in terms of � instead of b. The substitutions imply 
no new conditions and no change in substantive meaning, because Ax is defined 
at Eq.  44 in terms of ux and D, which are given as input parameters from the 
beginning, at Eq. 6 ( ux is shown there as u); analogous input parameters uy and uz 
would define Ay and Az . The latitude enjoyed by b is now carried by �.

Incorporating these changes into Eqs. 41, 42,

(43)D = 1∕m,

(44)ux = AxD =
Ax

m
.

(45)b =
��

2m
+ �,
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We may write similar equations for components in the y and z directions, leading to

which is familiar as the Schrödinger equation [11] with � and � representing scalar 
and vector potentials, as may characterise an electromagnetic field. Formal generali-
sation of the Schrödinger equation to three dimensions using the path integral deri-
vation has been shown [12].

This is equivalent to the operator equation for the Hamiltonian,

The stochastic interpretation of � for a single particle, N = 1 , extends to multiple 
particles, N > 1 , so that |||�

(
�(1),… , �(N)

)|||
2

 is the probability density in configura-
tion space for particle 1 being at the position �(1) , particle 2 being at �(2),… , and 
particle N being at �(N) [13]. Working with these equations rapidly becomes more 
complicated and we do not pursue them here.

We remark in passing that the classical Gaussian, Eq.  4, permits asymmetry 
in that the steps may tend predominantly in a particular direction, as if steps are 
decided by a coin-toss using a coin with bias; net tendency is expressed by the vari-
able u(x,  t) in Eq. 4 which thus describes a flow or drift. With the same equation 
written as Eq. 6 for the complex case, u(x, t) again describes a net tendency or bias, 
but due to the algebra of complex functions the bias is manifested in Schrödinger’s 
equation not as simple flow, but as the vector potential �(�, t) , which is related to 
u(x, t) through Eq. 44.

So we see that the form of the Schrödinger equation 46 is consistent with a pro-
cess determined by a complex Gaussian propagator Eq. 6, with norm conservation.

We noted earlier that D, and hence m, could vary in time without violating norm 
conservation. This would however go against the conservation of mass, so the latter 
must be regarded as a separate law, not explained within the present non-relativis-
tic arguments. We follow common practice in writing m, not m(t), acknowledging 
that this implies that mass is constant in time, but is not here proven to be so. This 
remark also applies to previous derivations.

2.6  Remarks on Physical Interpretation

Having started with some “pure” mathematics (“pure” in the sense that it is not 
based on prior physical laws), we later asserted its physical interpretation. We now 
notice how the algebraic output can be connected with physical content.

Equation  41 is deduced as an algebraic consequence only of the properties of 
pure numbers, which may be complex, without saying or knowing what, if anything, 

(46)
��

�t
=

i

2m

�2�

�x2
+

Ax

m

��

�x
+

1

2m

(
�Ax

�x

)
� −

iA2
x

2m
� − i�� .

(47)
��

�t
=
(

i

2m
∇2 +

1

m
�.∇ +

1

2m
∇.� −

i

2m
�

2 − i�
)
� ,

(48)H =
1

2m
(� − �)2 + �.
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such numbers (referred to as amplitudes) represent in the physical world. The deri-
vation proceeds from a random walk postulate, without specifying what any of the 
mathematical variables correspond to in the physical world, and without postulating 
prior physical laws.

It is common for distributions of various properties across members of a pop-
ulation to be of Gaussian form. We are free to let the x axis represent any quan-
tity of interest. In the present case we take x, also y and z, as components of the 
� coordinate in space. Distributions can change in a time-dependent process. This 
frames a context for the meaning of other variables, starting with D. The units of 
D are length-squared per unit time, as is evident from dimensional consideration of 
Eqs. 41 and 42. So D describes the tendency to spread, arguably a physical attribute.

Classical diffusion is a good illustration. The equation for classical diffusion 
(physics) corresponds to the result of a Gaussian propagator, related by the cen-
tral limit theorem (“pure mathematics”) to a hypothetical process of random 
motion. The present approach has physical implications that are directly compa-
rable—though here the hypothetical random motion is not of classical particle 
concentrations but of amplitudes, while norm conservation in the appropriate 
sense ( � or � ) applies in both.

We wish to confirm in a specific way that the mathematical variables in Eqs. 41 
and 42 are suitable for the physical designations they are given in Eqs. 43–47.

Confirmation is easiest to see in the simpler case of no drift in the propagator, 
Eq. 40. With u = 0 , Eqs. 41 and 42 become

With replacement of D by 1/m, and of b by � , the equations conform immediately 
to Schrödinger’s equation (with ℏ = 1 ) when there is a scalar potential but no vector 
potential,

suggesting that the variables D and b demonstrate the same behaviour in relation to 
� as the Schrödinger-equation variables 1/m and �.

The correspondence is made more explicit in terms of Ehrenfest’s theorem. 
Ehrenfest’s theorem is derived from Schrödinger’s equation, and relates the time 
rates of change of the expectation values ⟨�⟩ and momentum ⟨�⟩ to force � which 
is assumed to arise from scalar potential. We sketch the proof given in Reference 
[14]. Consider first the time rate of change of ⟨x⟩,

(49)��

�t
=

iD

2

�2�

�x2
− ib(x, t)� ,

(50)��∗

�t
= −

iD

2

�2�∗

�x2
+ ib(x, t)�∗.

(51)��

�t
=

i

2m

�2�

�x2
− i�(x, t)� ,

(52)��∗

�t
= −

i

2m

�2�∗

�x2
+ i�(x, t)�∗,
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Using Schrödinger’s equation and its complex conjugate, and using Green’s first 
identity (twice), and the fact that the wavefunction vanishes at large distances, we 
obtain

Differentiating again with respect to time, using Schrödinger’s equation and its com-
plex conjugate, and Green’s second identity, we get

together with similar equations for the y− and z− components,

This is often described as the quantum counterpart of Newton’s “F=ma”.
If the same derivation as that which leads from Schrödinger’s equations 51 and 

52 to “F=ma” is applied to Eqs. 49 and 50, the result

corresponds to Eq.  56 but with the mathematical notation used above. On LHS 
of Eq.  57 we have the acceleration multiplied by a constant (D is constant, see 
Sect. 2.4); on RHS we have the gradient of the field b(�, t) . Given that the accelera-
tion is proportional to the gradient of a field, then the field in Eq. 57 corresponds to 
(or is) scalar potential, and the proportionality constant corresponds to (or is) mass. 
This again affirms that the mathematical notations 1/D and b play the same role as 
the physical notations m and � respectively.

(As an aside, it is interesting that tendency to spread—which D clearly repre-
sents—could be interpreted as the opposite of reluctance to spread, or inertia; and in 
fact D comes out as inversely proportional to mass.)

Next let us have ux ≠ 0 , so that Ax ≠ 0 ; and similarly for uy , uz and Ay , Az ; all 
these are now not equal to zero. Making the substitutions shown in Eqs. 44 and 45 
into Eqs. 41 and 42 and remembering replacement of D with 1/m, yields the equa-
tion with the same appearance as Schrödinger’s equation, Eq. 47, replicated here:

But up to this point, A has been defined by Eq. 44 in terms of u and D, so what is the 
meaning of � in Eq. 58? We see that when � ≠ 0 on RHS of Eq. 58, with m and � 

(53)
d

dt
⟨x⟩ = d

dt ∫ �∗(�, t)x�(�, t)d�.

(54)
d

dt
⟨x⟩ = −

i

m ∫ �∗ ��

�x
d�.

(55)m
d2

dt2
⟨x⟩ = −⟨��

�x
⟩,

(56)m
d2

dt2
⟨�⟩ = −⟨∇�⟩.

(57)1

D

d2

dt2
⟨�⟩ = −⟨∇b⟩,

(58)
d�

dt
=
(

i

2m
∇2 +

1

m
�.∇ +

1

2m
∇.� −

i

2m
�

� − i�
)
� .
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already identified, then ��∕�t on LHS will change in a way that depends on � , and 
consequently � and |�|2 will evolve exactly as if � is the vector potential.

One may conclude that the roles played by the mathematical variables (D, b 
and � ) are respectively suitable for the physical quantities (reciprocal mass, scalar 
potential and vector potential) that they are nominated to represent. Ultimately this 
is because the mathematical variables are in equations that have the same structure 
as Schrödinger’s equation.

The equations do not point out a cause for the potentials, but show what fields can 
be permitted while conserving the norm.

One is led to consider possible conceptual relevance for the foundations of quan-
tum mechanics. When the structure of Schrödinger’s equation is derived not from 
other physical laws but from a process of pure numbers, we are taken to another 
level that is perhaps more fundamental? See Foundational below.

3  Discussion

3.1  Complex Numbers and Comparison with Random Walk

It has been long known that algebraic solutions for higher-order equations (cubic 
and quartic) involve square roots of quantities that are inevitably negative for certain 
ranges of values of the coefficients [15]. If we refused to deal with such “impos-
sible” cases, there would be an artificial restriction on which situations we could 
consider, even when the solutions are in fact real and innocuous.

For this and similar reasons [2], it may be said that � has a more complete logic 
than � (as briefly suggested in the Introduction), which is of course borne out by the 
many applications of the complex number system.

In a Royal Society issue on the theme “Second quantum revolution: founda-
tional questions”, Cassinelli and Lahti [16] outlined an approach for an axiomatic 
reconstruction of quantum mechanics. Given that the basic structures of quantum 
mechanics are equally valid in each of the three cases of an infinite-dimensional Hil-
bert space over the real numbers, the complex numbers, or the quaternions, Cass-
inelli and Lahti argue that the real and quaternionic options both imply unnecessary 
complications when compared with the complex theory, and moreover that quaterni-
onic quantum mechanics suffers from being unable to describe compound systems. 
The conclusion is that quantum mechanics is to be formulated in a complex Hilbert 
space.

It is known that the central limit theorem is a property of infinite dimensional sep-
arable complex Hilbert spaces [17–19]. This is of particular relevance here because 
it supplies a rationale for our choosing to investigate complex Gaussian propagators 
in the first place (Eq. 6 et seq.).

Concerning the assumption of norm conservation, we remark that a fundamental 
law of motion may indeed be required to conserve the norm, since otherwise the 
system would either collapse or explode in short order.
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When irregular motion is calculated using ordinary numbers � , the random-walk 
equation (Eq. 4) is the known result [10]. As a new result, we have made the compa-
rable calculation in complex numbers � , leading to Schrödinger’s equation.

(It may avoid possible misunderstanding to note that a random walk in � is some-
times described as though it has two degrees of freedom in the Argand diagram, 
with steps in the real direction being independent of steps in the imaginary direc-
tion. That picture does not respect the one-dimensional character of a complex num-
ber, so it is not appropriate for our discussion.)

3.2  Born Postulate

The continuous density functions, whether real or complex, progress determinis-
tically in time. Use of the term “random” then needs to be justified. This is clear 
in the real case (the classic random walk), given that the equations have been 
deduced from random variable theory [10]. But the axioms of random variable 
theory are defined so as to be inapplicable to complex values, so the statistical 
interpretation is not so immediate. However, in the complex case, having arrived 
at the Schrödinger equation, we find that |�|2 does after all have a statistical inter-
pretation, representing probabilities for experimental outcomes.

Originally postulated by Born to account for quantum mechanical observa-
tions [11], this interpretation was later presented as a theorem within axiomatic 
approaches [20–23]. Further, it has been argued as the only consistent way to 
interpret complex amplitudes [24, 25].

It is worthwhile to note the essentials of the latter arguments [24, 25]. The crux 
is the consistency requirement that if a probability amplitude can be computed in 
two different ways, the two answers must agree. This requirement leads to the 
usual sum and product rules for quantum probability amplitudes. Then, using a 
rationale that involves no probabilities, there follows a proof of Born’s statistical 
postulate.

These investigations [20–25] tend to remove the Born rule as a separate axiom 
of quantum mechanics.

Does the present approach to Schrödinger’s equation help to explain the Born 
rule? The short answer is no.

The derivation of Schrödinger’s equation (in Sect.  2) does not depend on 
assuming the Born rule, and the derivation of the Born rule [24, 25] does not 
depend on assuming Schrödinger’s equation. That is, the two proofs are sepa-
rate and logically independent; neither explains the other. However there are 
two respects in which relationships are worth noting. For one thing, they share 
a common approach in which amplitudes (rather than states or observables) have 
the primary role. Secondly, there is evidence of dynamic emergence in the two 
cases—the present derivation finds that Schrödinger’s equation emerges from 
underlying irregular displacements of amplitudes (Sect. 2), and a computer study 
[26] demonstrates the Born probabilities being approached asymptotically from 
non-equilibrium values (this study is however limited to the de Broglie-Bohm 
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theory). Thus the Schrödinger time-evolution of a wavefunction, and the Born 
probabilities upon measurement (at least in the pilot wave theory), can both be 
pictured dynamically, in analogy to statistical mechanics.

The measurement problem: Does the present account of Schrödinger’s equa-
tion help to understand how a continuously evolving superposition of many pos-
sible values suddenly yields a single value on measurement? Again, the short 
answer is no. There are differing ideas as to how the measurement discontinu-
ity occurs or appears to occur (wavefunction collapse, many-worlds, pilot wave 
theory, among others), but in each case the Schrödinger evolution is supposed 
to occur before the measured result takes over. The backstory here proposed for 
Schrödinger’s equation is therefore compatible with any of the ideas for the sub-
sequent measurement, but does not help us to decide between those alternatives.

The derivation suggests that Schrödinger evolution of the wavefunction and 
collapse of the wavefunction are two separate processes. One is randomness in � , 
and the other is randomness in |�|2 . It is not obvious that either could predict the 
other.

3.3  Compare with Previous Justifications of Schrödinger’s Equation

Previous approaches to Schrödinger’s equation have started with considerable 
information taken from observational physics.

Thus Schrödinger [5] drew on the conservation of energy, the de Broglie rela-
tions and Hamilton’s analogy between waves and particles to construct wave-
functions. Feynman [3] used the Lagrangian to express action and develop path 
integrals. In both arguments a very large amount of physical knowledge is encom-
passed in these inputs.

In contrast we did not use any physical information as input: the physical con-
tent here appears entirely as output, after purely algebraic examination of the 
complex Gaussian propagator.

There is also a distinction with the use of complex numbers. Both Schrödinger 
[5] and Feynman [3, 4] introduced complex phase factors in the wavefunctions 
and path integrals arbitrarily, giving no a priori justification for doing so. We 
overcome that arbitrariness by allowing all the variables to be complex, and then 
recovering the Schrödinger equation by taking norm conservation into account. It 
can be claimed that the holistic use of � is not arbitrary, but can be justified by its 
more symmetrical and complete logic, and by critical consideration of the divi-
sion algebras (see 3.1).

Further to the primary sources [3, 5], we single out three classic contributions 
of different kinds [6–8].

Kac [6] recognized that the diffusion equation is related to the Schrödinger 
equation by analytic continuation in the time variable. However he did not say 
why complex numbers should be used at all—apart from empirical success—or 
why time should be the variable distinguished in this way.

Nelson [7] attempted to reformulate quantum mechanics in terms of real statis-
tical processes. Nelson was aware that an unsatisfactory feature of the model was 
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its predication on continuous trajectories for the particles. Nelson also assumed 
Newtonian mechanics as given. Neither of those features is assumed here.

In a group-theoretic approach, Jauch [8] put forward as a theorem of unitary 
operators that Galilean kinematics constrains the Hamiltonian to take the stand-
ard form Eq. 48. A difficulty with this has been pointed out more recently. Brown 
and Holland [27] showed that it depends on a seemingly innocuous but nontrivial 
assumption at one particular group-theoretic step. They maintain that unless a 
satisfactory a priori justification is provided for this step, the foundation of the 
Jauch theorem is obscure; other derivations made along the same lines are open 
to the same question ([27] and references therein).

The present derivation (Sect. 2) is distinct from that of Jauch in that it does not 
make use of group theory, and does not assume Galilean kinematics; hence it is 
not open to the Brown and Holland criticism [27]. Rather the system is treated in 
one frame of reference only, finding the Schrödinger equation and Hamiltonian 
for that frame. For another frame of reference, one would repeat the calculations 
using coordinates for that frame, and find the comparable results. The derivation 
requires no transformation of coordinates between different reference frames.

More generally, regarding the complex Hilbert space formalism, Mackey [28] 
indicated that it rests on postulates that have never had prior justification: its use was 
“arbitrary ...based on the practical consideration that it was known to work”.

Another interesting mathematical approach is that of Schleich et al. [29] in which 
complex functions are used as shorthand to combine two coupled real-valued equa-
tions into a single equation.Though convenient, this reason for using � seems less 
than a fundamental one.In comparison, we prefer to justify � as a more complete 
system of logic than � . Also Schleich et al. introduced a good deal of physics in 
their assumptions, whereas by placing � as a basis, we did not need any prior physi-
cal assumptions.

In general, second order partial differential equations are characteristic of many 
different physical processes, so an equation of that form might reasonably be sug-
gested as a possible basis for Schrödinger’s equation. However, there would be no 
advance in our understanding unless explained by a specific underlying process, as 
is offered by the present treatment.

In summary, reliance on prior physical assumptions in some form, and the arbi-
trary and partial use of � , are consistent characteristics of previous approaches to 
the Schrödinger equation ([30] and references therein), which are avoided in the pre-
sent approach.

3.3.1  Modern Reconstructions

Because the axioms of the quantum mechanical formalism appear physically 
obscure and difficult to interpret, there were early reconstructions of quantum theory 
based on different sets of axioms. Many of these are referenced in Hardy [31], but 
they do not completely relieve the obscurities. Hardy reopened the debate [32] with 
the aim of finding axioms that have more direct physical or informational meaning. 
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Examples are those of Hardy [32, 33], Rovelli [34], Clifton et al. [35], Rohrlich [36], 
Chiribella [37], Goyal [38], Spekkens [39].

The change from interpreting quantum mechanics to reconstructions of it has 
been described by Grinbaum [40] as a paradigm shift.

All the reconstructions rest on assumptions. Arguably the present assumptions 
are few in number, of a general nature and relatively simple: they consist of a Gauss-
ian propagator, and norm conservation in �.

Randomness has been seen as a puzzle to which the many worlds interpretation 
[41] may provide a resolution. As the present treatment deals with Gaussian func-
tions, which occur by virtue of the central limit theorem, randomness is implied, but 
it is indifferent as to possible sources of randomness.

3.4  Foundational

It is proposed that the Schrödinger equation is not, so to speak, a “brute-force” 
Law that controls all particles as though by decree, but rather is an emergent con-
sequence of a dynamic process based on numbers without prior physical law. At the 
underlying level, amplitudes are irregularly displaced as time moves forward, with 
Schrödinger’s equation emerging in a system of pure numbers as a stochastic result.

This leads to the wider question of a general basis in pure numbers without 
deeper physical law. What then for the basis of the numbers themselves? Penrose 
[42] suggests that numbers have a Platonic existence, independent of time, space and 
any particular physics. Another line of thinking is that the numbers require a “mind” 
or “computer” to give them context. On a simple reading, the computer would need 
to operate in the physics of another universe — unless, avoiding infinite regress, the 
computer lies within a self-referential closed loop of information with no underlying 
law, as Wheeler envisaged [43]. The present result could qualify as an initial step in 
a loop of this kind. (Possibilities for the remainder of the loop are not here consid-
ered: e.g. Wheeler’s eye-looking-back?)

The utility of mathematics for describing the physical world may be a natural 
consequence of the universe actually being a mathematical structure, which we are 
“uncovering bit by bit” [44]. The present workup of an important equation may be a 
part of that.

4  Conclusion

The Introduction recalled that quantum mechanical equations have always appeared 
“strange”. Prompted by the “strangeness”, we sought a reasoned basis for Schröding-
er’s equation that did not start from other physical laws but from something more 
fundamental. It emerged that Schrödinger’s equation including the terms of the 
Hamiltonian, and Feynman’s action formula used in the path integral method, follow 
from the central limit theorem applied to random vectors in complex Hilbert space. 



 Foundations of Physics (2022) 52:50

1 3

50 Page 20 of 22

Ultimate dependence on truths of pure numbers, rather than pre-existing physical 
law, would seem a desirable step towards a more reasoned description of quantum 
mechanics, which is empirically correct but appears deeply mysterious.

More precisely, it is concluded that the content of Schrödinger’s equation is 
equivalent to propagation by a generalized Gaussian function, normalized in the 
sense of � with the norm conserved in time. The key role of the Gaussian is attrib-
uted to the central limit theorem, which extends to random vectors in infinite-dimen-
sional separable complex Hilbert spaces (3.1).

At a small-scale level, what is it that is random? In a real system of dye molecules 
diffusing in a liquid, it is individual dye molecules that move randomly. The pro-
cess examined here is that complex-valued amplitudes (or small fractions of them) 
undergo random displacements, leading to Schrödinger’s equation. We see this 
directly in Eq. 7, where the Gaussian propagator (recalling that the Gaussian results 
from the central limit theorem) is applied to the complex-valued amplitudes �.

No physical laws need to be postulated a priori (such as the Lagrangian or other 
Newtonian constructs including the action formula; Galilean kinematics; or the de 
Broglie relations or equivalent). Since we did not need to start with physical laws, 
the Schrödinger equation represents a consequence only of the properties of pure 
numbers (though we worked fully in the complex number system to elicit this).

The equivalence of Schrödinger’s wave-mechanics with the non-commutative 
algebra of Heisenberg’s matrix mechanics is well known. Dirac [45] reconciled the 
two approaches in a unified theory of linear operators on a vector space. The math-
ematical operators correspond to dynamical variables, thus linking the mathematics 
with physical observables. The present derivation addresses the Schrödinger equa-
tion at an underlying origin, and does not detract from its incorporation into the 
framework providing physical significance.

A standard teaching is that the wavefunction evolves deterministically under 
Schrödinger’s equation, until the moment of measurement when it undergoes 
“collapse”according to the Born probabilities. However the central limit theorem 
implies a random process underlying the Schrödinger equation itself, counter to the 
essentially deterministic view of the wavefunction.

The present derivation is more than merely another mathematical route to the 
Schrödinger evolution equation, for it exhibits an underlying process, in a picture 
that resembles statistical mechanics.

Author Contributions Sole author only

Funding Information No funding received

Data Availability Statement Not applicable

Declarations 

Conflicts of interest/Competing interests None

Code availability Not applicable



1 3

Foundations of Physics (2022) 52:50 Page 21 of 22 50

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visithttp:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

 1. Serway, R.A., Moses, C.J., Moyer, C.A.: Modern Physics. Saunders, New York (1989)
 2. Stewart, I., Tall, D.: Complex Analysis: The Hitchhiker’s Guide to the Plane. Cambridge University Press, 

Cambridge (1983)
 3. Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 

(1948)
 4. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (2005)
 5. Schrödinger, E.: Quantisation as a problem of proper values (Part IV). In: (Schrödinger, E. (ed.) Collected 

Papers on Wave Mechanics, pp. 102–123. Blackie, London (English translation, 1928)
 6. Kac, M.: On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65, 1–13 (1949)
 7. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–

1085 (1966)
 8. Jauch, J.M.: Foundations of Quantum Mechanics. Addison-Wesley, Boston (1968)
 9. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (2007)
 10. Gillespie, D.T.: Markov Processes: An Introduction for Physical Scientists. Academic Press, London 

(1992)
 11. Schiff, L.I.: Quantum Mechanics. McGraw-Hill, New York (1968)
 12. Schulman, L.S.: Techniques and Applications of Path Integration. Dover Publications, New York 

(2005)
 13. Ballentine, L.E.: Quantum Mechanics. A Modern Development. World Scientific, London (2008)
 14. Bransden, B.H., Joachain, C.J.: Introduction to Quantum Mechanics. Longman, London (1997)
 15. Stillwell, J.: Mathematics and Its History, 3rd edn. Springer, Heidelberg (2010)
 16. Cassinelli, G., Lahti, P.: Quantum mechanics: why complex Hilbert space? In: Jaeger, G., Khrennikov, 

A., Perinotti, P. (eds) Theme issue. Second quantum revolution: foundational questions. Phil. Trans. R. 
Soc. A 375, 20160393 (2017)

 17. Dedecker, J., Merlèvede, F.: The conditional central limit theorem in Hilbert spaces. Stoch. Process. 
Their Appl. 108, 229–262 (2003)

 18. Hoffman-Jorgensen, J., Pisier, G.: The law of large numbers and the central limit theorem in Banach 
spaces. Ann. Probab. 4, 587–599 (1976)

 19. Jain, N.C.: Central limit theorem and related questions in Banach spaces, pp. 55–65. Proc. Symposium 
in Pure Mathematics, American Mathematical Society XXXI (1977)

 20. Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6, 885–93 (1957)
 21. Finkelstein, D.: The logic of quantum physics. Trans. N. Y. Acad. Sci. 25, 621–37 (1962)
 22. Hartle, J.B.: Quantum mechanics of individual systems. Am. J. Phys. 36, 704–12 (1968)
 23. Graham, N.: The measurement of relative frequency. In: DeWitt, B.S., Graham, N. (eds.) The Many-

Worlds Interpretation of Quantum Mechanics, pp. 229–253. Princeton University Press, Princeton 
(1973)

 24. Caticha, A.: Consistency, amplitudes and probabilities in quantum theory. Phys. Rev. A. 57, 1572–82 
(1998)

 25. Tikochinsky, Y.: Feynman rules for probability amplitudes. Int. J. Theor. Phys. 27, 543–549 (1998)
 26. Valentini, A., Westman, H..: Dynamical origin of quantum probabilities. Proc. R. Soc. A. 461, 253–272 

(2005)
 27. Brown, H.R., Holland, P.R.: The Galilean covariance of quantum mechanics in the case of external 

fields. Am. J. Phys. 67, 204–214 (1999)
 28. Mackey, G.W.: Unitary Group Representations in Physics, Probability and Number Theorpy, p. 194. 

Addison-Wesley, Boston (1989)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Foundations of Physics (2022) 52:50

1 3

50 Page 22 of 22

 29. Schleich, W.P., Greenberger, D.M., Kobe, D.H., Scully, M.O.: Schrödinger equation revisited. PNAS. 
110, 5374–5379 (2013)

 30. Skorobogatov, G.A., Svertilov, S.I.: Quantum mechanics can be formulated as a non-Markovian sto-
chastic process. Phys. Rev. A. 58, 3426–3432 (1998)

 31. Hardy, L.: Reconstructing quantum theory. arXiv: 13031 538v1 [quant-ph] (2013)
 32. Hardy, L.: Quantum theory from five reasonable axioms. arXiv: quant- ph/ 01010 12v4 (2001)
 33. Hardy, L.: Reformulating and reconstructing quantum theory. arXiv: 11042 066v3 [quant-ph] (2011)
 34. Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637–1678 (1996)
 35. Clifton, R., Bub, J., Halvorson, H.: Characterizing quantum theory in terms of information theoretic 

constraints. Found. Phys. 33, 1561–1591 (2003)
 36. Rohrlich, D.: Three attempts at two axioms for quantum mechanics. arXiv: 10115 322v3 [quant-ph] 

(2010)
 37. Chiribella, G., D’Ariano, G. M.,Perinotti,P.: Informational derivation of quantum theory. arXiv: 10116 

451v3 [quant-ph](2011)
 38. Goyal, P.: Information physics-towards a new conception of physical reality. Information 3, 567–594 

(2012)
 39. Spekkens, R.: In defense of the epistemic view of quantum states: a toy theory. Manuscript at arXiv: 

quant- ph/ 04010 52v2 (2005)
 40. Grinbaum, A.: Reconstruction of quantum theory. Br. J. Philos. Sci. 58, 387–408 (2007)
 41. Vaidman, L.: Quantum theory and determinism. Quant. Stud. 1, 5–38 (2014)
 42. Penrose, R.: The Road to Reality. Vintage, London (2005)
 43. Wheeler, J. A.: Information, Physics, Quantum: The Search For Links. In: Proceedings of 3rd Interna-

tional Symposium Foundations of Quantum Mechanics, Tokyo, pp. 354–368 (1989)
 44. Tegmark, M.: The mathematical universe. Found. Phys. 38, 101–150 (2008)
 45. Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon, Oxford (1958)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

http://arxiv.org/abs/13031538v1
http://arxiv.org/abs/quant-ph/0101012v4
http://arxiv.org/abs/11042066v3
http://arxiv.org/abs/10115322v3
http://arxiv.org/abs/10116451v3
http://arxiv.org/abs/10116451v3
http://arxiv.org/abs/quant-ph/0401052v2
http://arxiv.org/abs/quant-ph/0401052v2

	Schrödinger’s Equation as a Consequence of the Central Limit Theorem Without Assuming Prior Physical Laws
	Abstract
	1 Introduction
	2 Derivation
	2.1 Real Gaussian
	2.2 A “convenient” Complex Gaussian
	2.3 Correction to First Order in Time Increment
	2.4 Checking Alternatives
	2.5 Schrödinger Equation
	2.6 Remarks on Physical Interpretation

	3 Discussion
	3.1 Complex Numbers and Comparison with Random Walk
	3.2 Born Postulate
	3.3 Compare with Previous Justifications of Schrödinger’s Equation
	3.3.1 Modern Reconstructions

	3.4 Foundational

	4 Conclusion
	References




