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Abstract
In studies where the outcome is a change-score, it is often debated whether or not the analysis should adjust for the baseline 
score. When the aim is to make causal inference, it has been argued that the two analyses (adjusted vs. unadjusted) target 
different causal parameters, which may both be relevant. However, these arguments are not applicable when the aim is to 
make predictions rather than to estimate causal effects. When the scores are measured with error, there have been attempts 
to quantify the bias resulting from adjustment for the (mis-)measured baseline score or lack thereof. However, these bias 
results have been derived under an unrealistically simple model, and assuming that the target parameter is the unadjusted 
(for the true baseline score) association, thus dismissing the adjusted association as a possibly relevant target parameter. In 
this paper we address these limitations. We argue that, even if the aim is to make predictions, there are two possibly relevant 
target parameters; one adjusted for the baseline score and one unadjusted. We consider both the simple case when there are 
no measurement errors, and the more complex case when the scores are measured with error. For the latter case, we consider 
a more realistic model than previous authors. Under this model we derive analytic expressions for the biases that arise when 
adjusting or not adjusting for the (mis-)measured baseline score, with respect to the two possible target parameters. Finally, 
we use these expressions to discuss when adjustment is warranted in change-score analyses.

Keywords Bias · Change-score analysis · Lord’s paradox · Measurement errors

Introduction

In many studies, the aim is to measure the change in a cer-
tain score between baseline and follow-up, and to assess 
how this change-score is associated with a certain covari-
ate measured at or before baseline. A prevailing source of 
debate is whether or not one should adjust for the baseline 
score in the analysis; see Glymour et al. [1] and the refer-
ences therein. In a recent review of change-score analyses 
in high impact psychology journals, Farmus et al. [2] found 
that 77% of the included studies had adjusted for the baseline 
score, whereas the remaining 23% had not. It has been noted 

that the two analyses may give very different results, and 
even give different signs of the observed association, which 
has sometimes been referred to as ‘Lord’s paradox’ [3].

Pearl [4] gave an explanation of this perceived paradox 
within the modern causal inference framework. He argued 
that the total causal effect of the covariate on the change-
score consists of two parts: a direct causal effect and an 
indirect causal effect mediated through the baseline score. 
These may have different signs, in which case the signs of 
the total and direct causal effects may also differ. He further 
argued that whether or not adjustment is warranted depends 
on the choice of target parameter. If the aim is to estimate the 
direct causal effect, then adjustment is necessary to block the 
mediating path through the baseline score. However, if the 
aim is to estimate the total causal effect, then adjustment is 
harmful since it removes the indirect part of the total effect. 
Glymour [5] distinguished further between the controlled 
and natural direct effects, and discussed when and how these 
can be estimated in change-score analyses.

Although the paper by Pearl [4] is illuminating, his 
arguments are not applicable to all change-score analyses. 
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In particular, if the aim is to find statistical predictors 
for the change-score, regardless of whether these have a 
causal effect on the change-score or not, then the distinc-
tion between ‘total’ and ‘direct’ effects is irrelevant for the 
research question at hand.

When the scores are measured with error, there have been 
some attempts in the literature to quantify and compare the 
bias resulting from adjustment for the baseline score or lack 
thereof. Eriksson and Häggström [6] and Farmus et al. [2] 
showed that, under a certain statistical model, adjustment for 
the (mis-)measured baseline score produces an association 
between a covariate and the (mis-)measured change-score, 
even if there is no unadjusted (for the true baseline score) 
association between the covariate and the true change-score. 
Although correct, this result has two important limitations. 
First, the statistical model that these authors used is rather 
restrictive, since it assumes that the true change-score is 
exactly zero for all individuals, and that there are no sys-
tematic errors in the measured scores. Second, these authors 
tacitly assumed that the target parameter is the unadjusted 
(for the true baseline score) association between the covari-
ate and the true change-score, thus dismissing the adjusted 
association as a valid and possibly relevant target parameter.

In this paper we will address these limitations. We argue 
that, even if the aim is to make predictions rather than to 
estimate causal effects, there are two possibly relevant tar-
get parameters; one adjusted for the baseline score and one 
unadjusted. We consider both the simple case when there are 
no measurement errors, and the more complex case when 
the baseline and follow-up scores are measured with error. 
For the latter case, we consider a less restrictive model than 
Eriksson and Häggström [6] and Farmus et al. [2], which 
allows for both changes in the true scores and systematic 
measurement errors. Under this model we derive analytic 
expressions for the biases that arise when adjusting or not 
adjusting for the (mis-)measured baseline score, with respect 
to the two possible target parameters. Finally, we use these 
expressions to discuss when adjustment is warranted in 
change-score analyses.

To illustrate our points we will use a recently published 
study by Tajik-Parvinchi et al [7]. We emphasize that, while 
our theoretical considerations are formulated in terms of our 
motivating example, our results and conclusions hold more 
generally in similar change-score studies.

Motivating example

Tajik-Parvinchi et al. [7] studied 55 children with autism, 
age 8–12 years. The parents were asked to score their child’s 
emotion regulation, before and after 10 weeks of treatment 
with cognitive behavior therapy (CBT). The change in emo-
tion regulation score was regressed on several pre-treatment 

covariates; here, we will focus on the child’s intellectual 
ability, which was identified as strongly associated with the 
change-score. In this analysis, Tajik-Parvinchi et al. [7] did 
not adjust for the baseline score, stating that such adjustment 
may ‘result in increased Type I errors’, with reference to 
Eriksson and Häggström [6] and Farmus et al. [2]

Tajik-Parvinchi et al. [7] clearly stated their aim as non-
causal: ‘The present study aimed to identify pre-treatment 
child characteristics... that predict treatment response’ 
(emphasis added). There are good reasons for this; it would 
be very difficult to estimate the causal effect, either total or 
direct, of intellectual ability on response to CBT in prac-
tice, since these would most likely be confounded by many 
unmeasured factors in most realistic settings. Furthermore, 
it is unclear what practical use one would have of knowing 
such causal effects, since it is hard to manipulate intellec-
tual ability by intervention. In contrast, it could be of great 
practical interest to learn whether intellectual ability predicts 
treatment response, since this information could be used to 
tailor the treatment to those for which it has highest chance 
of success.

We emphasize that, even though the association between 
intellectual ability and the change in emotion regulation 
score may be highly confounded, there may be substantially 
less confounding of the CBT treatment and the emotion 
regulation score. By comparing emotion regulation within 
the same individual, before and after treatment, all time-
stable confounders (e.g., sex, genetics) are automatically 
adjusted for [8, 9]. For pedagogical purposes, we argue as 
if the change-score in the study by Tajik-Parvinchi et al. [7] 
were an unbiased measure of the CBT treatment effect, but 
we note this causal interpretation may be violated by unad-
justed time-varying confounders, i.e., predictors of emotion 
regulation that have different distribution at baseline and 
follow-up.

A model for the change‑score

Let P be the covariate of interest (e.g. intellectual ability), 
let U0 and U1 be the true baseline score and follow-up score, 
respectively, and define the change-score

In his discussion of Lord’s paradox, Pearl [4] drew the causal 
diagram [10, 11] shown in Fig. 1, where P is assumed to 
have a causal effect on both U0 and U1 , and U0 is assumed 
to have a causal effect on U1 . The arrows from U0 and U1 to 
�U , labelled ‘-1’ and ‘+1’, respectively, indicate that �U 
is deterministically determined by U0 and U1 through the 
relation in (1).

(1)�U = U1 − U0.
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The causal diagram in Fig. 1 is an unrealistic representation 
of the study by Tajik-Parvinchi et al. [7], for several reasons. 
First, one can easily imagine that there is strong unmeasured 
confounding of both intellectual ability, baseline emotion regu-
lation and follow-up emotion regulation, which hampers causal 
effect estimation. Second, the direction of causality between 
intellectual ability and emotion regulation is questionable. 
Arguably, poor intellectual ability may lead to poor emotion 
regulation, but also the other way around. To address both 
these issues we will instead assume the path diagram [12] in 
Fig. 2, in which the bi-directed dashed arrows between P, U0 
and U1 represent associations that may be due to a causal influ-
ence in either direction, or common causes, or both.

We will assume that U0 and U1 are related to P through the 
linear models

where the error terms �0 and �1 are independent of P, and 
normally distributed with mean 0, variance s2 and correla-
tion r:

In this model, the difference a1 − a0 is the mean change-
score �U for subjects with intellectual ability P = 0 , and the 

(2)
U0 = a0 + b0P + �0

U1 = a1 + b1P + �1

(
�0
�1

)
∼ N

{(
0

0

)
,

(
s2 s2r

s2r s2

)}
.

difference b1 − b0 is the mean increase in change-score �U 
corresponding to one unit increase in intellectual ability P.

In their bias analyses, Eriksson and Häggström [6] and 
Farmus et al. [2] considered a special case of model (2) with 
a1 = a0 , b1 = b0 and r = 1 , so that U0 = U1 . This is an unre-
alistically simple model for the study by Tajik-Parvinchi et al. 
[7], since it implies that the emotion regulation score stays 
exactly constant across the 10 weeks follow-up for all children.

Possible target parameters

Consider the aim stated by Tajik-Parvinchi et al. [7]: ‘The 
present study aimed to identify pre-treatment child charac-
teristics... that predict treatment response’. With this aim in 
mind, a possible regression model of interest could be

where � is an error term. The coefficient �
P
 in this regression 

model is the mean increase in change-score �U correspond-
ing to one unit increase in the intellectual ability P. This 
coefficient addresses the question ‘how much can I expect 
the effect of CBT treatment to differ between two individuals 
who differ with one unit in intellectual ability?’ This may 
for instance be a relevant target parameter if the study will 
be used to guide decisions on who will receive the treat-
ment, in future situations where nothing is known about the 
potential treatment candidates except intellectual ability. A 
large positive value of �

P
 indicates that individuals with high 

intellectual ability are likely to benefit more from the treat-
ment than individuals with low intellectual ability. Using 
standard results for normal distributions (see “Appendix”) 
we can express �

P
 as

and we provide an analytic expression for the regression 
coefficient �0 in “Appendix”.

Now, suppose that, in the hypothetical future situation 
described above, the baseline score U0 would also be avail-
able for the treatment candidates. This may be a realistic sce-
nario, since potential treatment candidates may be screened 
or interviewed before treatment is initiated. It may then be 
relevant to consider (condition on) this information when 
deciding who will receive the treatment. To reflect this, we 
have to modify the regression model as

where we have super-indexed the parameters and error term 
with ‘ ∗ ’, to distinguish them from those in the regression 
model (3). The coefficient �∗

P
 in this regression model is the 

mean increase in change-score �U corresponding to one unit 
increase in intellectual ability P, at a fixed baseline score 

(3)�U = �0 + �
P
P + �,

�
P
= b1 − b0,

(4)�U = �∗
0
+ �∗

P
P + �∗

U0

U0 + �∗,

Fig. 1  Causal diagram by Pearl [4] for change-score studies

Fig. 2  Our assumed path diagram for the study by Tajik-Parvinchi 
et al. [7]
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U0 . This coefficient addresses the question ‘how much can I 
expect the effect of CBT treatment to differ between two indi-
viduals who differ with one unit in intellectual ability, but 
have the same baseline emotion regulation score?’ Using 
standard results for normal distributions (see “Appendix”) 
we can express �∗

P
 as

and we provide analytic expressions for the regression coef-
ficients �∗

0
 and �∗

U0

 in “Appendix”.
The distinction between the parameters �

P
 and �∗

P
 under the 

path diagram in Fig. 2 is analogous to the distinction between 
the total and direct effect of P on �U under the causal dia-
gram in Fig. 1. The difference between �

P
 and �∗

P
 depends on 

the correlation r. In the extreme (and unrealistic) case where 
r = 1 , �

P
 and �∗

P
 are equal, which means that the conditioning 

on baseline score U0 does not alter the amount of informa-
tion that intellectual ability P has about the change-score �U . 
Apart from this extreme case, �

P
 and �∗

P
 may be very differ-

ent, which means that the conditioning on baseline score may 
substantially alter the amount of information that intellectual 
ability has about the change-score. For instance, suppose that 
b0 = b1 = b . We then have that �

P
= 0 , which means that we 

cannot use intellectual ability alone to determine which of two 
potential candidates who would benefit more from the treat-
ment, without having additional information on the candidates. 
However if b is positive and r < 1 , then �∗

P
= b(1 − r) is posi-

tive as well. Thus, if we additionally know that the candidates 
have equal baseline score, then we may conclude that the can-
didate with higher intellectual ability is likely to benefit more 
from the treatment. This is not a ‘paradox’ but reflects the fact 
that the two parameters �

P
 and �∗

P
 answer different questions, 

which are both potentially relevant.
We end this section by noting that there are other, equiva-

lent, formulations of models (3) and (4). One such formulation 
is obtained by ‘moving’ the baseline score U0 to the right-hand 
side of the equations. Thus, model (3) becomes

and model (4) becomes

We note that the coefficient for U0 in model (5) is fixed to 1. 
In standard software (e.g., R and Stata), this can be enforced 
by letting U0 be an ‘offset’ in the model. Another equivalent 
formulation is obtained by expressing the dependency of the 
treatment effect on the covariate P as an interaction term in 
the model. Thus, model (3) can be formulated as

�∗
P
= b1 − b0r,

(5)U1 = �0 + �
P
P + U0 + �

(6)U1 = �∗
0
+ �∗

P
P + (�∗

U0

+ 1)U0 + �∗.

(7)U
x
= �0 + �1x + �2P + �3xP + �

x
.

Constructing U1 − U0 from the model in (7) gives the model 
in (3), with �0 = �1 , �P = �3 and � = �1 − �0 . Similarly, 
model (4) can be formulated as

Constructing U1 − U0 from the model in (8) gives the model 
in (4), with �∗

0
= �∗

1
 , �∗

P
= �∗

3
 , �∗

U0

= �∗
4
 and �∗ = �∗

1
− �∗

0
.

A model for measurement errors 
in the baseline score and follow‑up score

In the study by Tajik-Parvinchi et al. [7], the baseline and 
follow-up scores were obtained by asking the parents to rate 
their child’s emotional regulation. Clearly, the rated scores 
may be subject to measurement errors. To reflect this, we 
let U0 and U1 denote the true scores, and let T0 and T1 denote 
the measured scores. As before, �U = U1 − U0 is the true 
change-score, and we let �T = T1 − T0 be the measured 
change-score. We extend the path diagram in Fig. 2 as in 
Fig. 3, where we have bi-directed dashed arrows between 
U0 and T0 , between U1 and T1 , and between T0 and T1 . We 
expect, of course, that U0 and U1 are associated with T0 and 
T1 . However, this association may be due to both a causal 
effect and confounding. For instance, parents with high 
socio-economic status may tend to have children with high 
emotion regulation, and may also tend to report higher emo-
tion regulation score, irrespective of the true score. If so, 
then parental socio-economic status would confound the true 
and measured emotion regulation score.

(8)U
x
= �∗

0
+ �∗

1
x + �∗

2
P + �∗

3
xP + �∗

4
xU0 + �∗

x
.

Fig. 3  A path diagram illustrating the assumed relations between P, 
U0 , U1 , �U , T0 , T1 and �T
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We assume that T0 and T1 are related to U0 and U1 through 
the linear models

where the error terms e0 and e1 are independent of U0 and 
U1 , and normally distributed with mean 0, variance �2 and 
correlation �:

In this model, the intercepts c0 and c1 represent a systematic 
trend across individuals, unrelated to the value of the true 
score, to overestimate (for positive intercepts) or underes-
timate (for negative intercepts) the true score. The slopes 
d0 and d1 represent a systematic trend across individuals to 
either overestimate large true scores and underestimate true 
small scores (for slopes > 1 ), or the other way around (for 
slopes < 1 ). The error terms e0 and e1 represent errors that 
are non-systematic across individuals, but possibly system-
atic within individuals (if � ≠ 0 ). For instance, if some par-
ents tend to systematically score their children higher than 
other parents, irrespective of the true score, then we would 
have a positive correlation in these errors terms ( 𝜌 > 0 ). In 
the absence of measurement errors, we have that T0 = U0 
and T1 = U1 , i.e., that c0 = c1 = �2 = 0 and d0 = d1 = � = 1.

Eriksson and Häggström [6] and Farmus et al. [2] con-
sidered the special case of model (9) with c0 = c1 = 0 , 
d0 = d1 = 1 and � = 0 , thus excluding the possibility of sys-
tematic measurement errors. In the study by Tajik-Parvinchi 
et al. [7], emotion regulation was assessed through a standard-
ized assessment tool, which, according to the authors, has pre-
viously been evaluated and found to be fairly reliable. Thus, for 
this study it may be fairly reasonable to assume that there are 
little or no systematic trends in the measurement errors. How-
ever, with less refined assessment tools one can not exclude 
such systematic trends; hence, we consider both the general 
model in (9) and the special case of this model obtained by 
setting c0 = c1 = 0 , d0 = d1 = 1 and � = 0.

Estimation and bias

Possibly systematic measurement errors

In the presence of measurement errors, we cannot directly fit 
the regression model (3) or (4). We can, however, replace the 
true scores with the measured scores, thus fitting model

or

(9)
T0 = c0 + d0U0 + e0

T1 = c1 + d1U1 + e1

(
e0

e1

)
∼ N

{(
0

0

)
,

(
�2 �2�

�2� �2

)}
.

�T = �0 + �
P
P + �̃

To assess the bias in the coefficients �
P
 and �∗

P
 , with respect 

to the possible target parameters �
P
 and �∗

P
 , we use standard 

results for normal distributions (see “Appendix”), and obtain

and

We note that, if b0 = b1 = b , r = 1 , d0 = d1 = 1 and � = 0 , 
as assumed by Eriksson and Häggström [6] and Farmus et al. 
[2], then the coefficient �∗

P
 simplifies to b�2

�2+s2
 . This is identical 

to the expression in equation (6) by Eriksson and Häggström 
[6].

If we consider �
P
 as the target parameter, then, from the 

expressions above, we have the biases

and

for �
P
 and �∗

P
 , respectively. If we instead consider �∗

P
 as the 

target parameter, then we have the biases

and

for �
P
 and �∗

P
 , respectively.

These bias expressions are complex functions of the 
parameters in models (2) and (9), and there is no general 
hierarchy between the biases. As an example, Fig. 4 shows 
the biases of �

P
 (solid lines) and �∗

P
 (dashed lines) with 

respect to �
P
 (left panel) and �∗

P
 (right panel) as functions 

of d0 = d1 = d , for parameter values b0 = 0.4 , b1 = 0.8 , 
s2 = �2 = 1 , r = 0.7 and � = 0.2 . We observe that all biases 
are monotonically increasing in d, negative for d close to 0 
and positive for d close to 2. However, the switch from nega-
tive to positive bias occurs at different values of d for the four 
combinations of (�

P
, �∗

P
) and (�

P
, �∗

P
) . Thus, for some values 

of d, the biases of �
P
 and �∗

P
 have opposite signs, so that 

one of them underestimates the target parameter whereas 
the other overestimates it. Furthermore, for some values of 
d, the absolute bias of �

P
 is larger than the absolute bias of 

�∗
P
 , whereas for other values of d it is the other way around.

�T = �∗
0
+ �∗

P
P + �∗

T0
T0 + �̃∗.

�
P
= b1d1 − b0d0

�∗
P
= b1d1 − b0d0

�2� + d0d1s
2r

�2 + d
2

0
s2

.

(10)�
P
− �

P
= b1(d1 − 1) − b0(d0 − 1)

(11)�∗
P
− �

P
= b1(d1 − 1) − b0

�2(d0� − 1) + d
2

0
s2(d1r − 1)

�2 + d
2

0
s2

(12)�
P
− �∗

P
= b1(d1 − 1) − b0(d0 − r)

(13)�∗
P
− �∗

P
= b1(d1 − 1) − b0

�2(d0� − r) + d
2

0
s2r(d1 − 1)

�2 + d
2

0
s2
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This example shows that, regardless of whether �
P
 or �∗

P
 is 

the target parameter, the choice of whether or not one should 
adjust for the measured baseline score T0 is generally non-
trivial, and requires careful thinking about possible values 
of the model parameters.

Non‑systematic measurement errors

We proceed by considering the important special case when 
the measurement errors are not systematic, i.e., d0 = d1 = 1 
and � = 0 . As argued above, this may be a fairly reasonable 
model simplification for the study by Tajik-Parvinchi et al 
[7]. For this special case, the bias expressions in (10)–(13) 
simplify to

and

Since �
P
 has zero bias with respect to �

P
 , whereas �∗

P
 gener-

ally has non-zero bias, the conclusion is clear: If we consider 
�
P
 as the target parameter, and we are willing to assume that 

�
P
− �

P
= 0,

�∗
P
− �

P
= −b0

−�2 + s2(r − 1)

�2 + s2
,

�
P
− �∗

P
= −b0(1 − r)

�∗
P
− �∗

P
= b0r

�2∕s2

�2∕s2 + 1
.

the measurement errors are not systematic, then we should 
not adjust for the measured baseline score.

For the target parameter �∗
P
 , the conclusion is less trivial. 

From the expressions above, it follows that �∗
P
 has smaller 

absolute bias than �
P
 , with respect to �∗

P
 , if

but has higher absolute bias otherwise. The left-hand side of 
this inequality decreases monotonically with the correlation 
r and with the variance ratio �2∕s2 . Thus, if r is small, or �2 

(14)1 −
r

1 − r
⋅

𝜎2∕s2

𝜎2∕s2 + 1
> 0,

Fig. 4  Biases of �
P
 (solid lines) and �∗

P
 (dashed lines) with respect to �

P
 (left panel) and �∗

P
 (right panel) as functions of d0 = d1 = d , for param-

eter values b0 = 0.4 , b1 = 0.8 , s2 = �2 = 1 , r = 0.7 and � = 0.2

Fig. 5  The left-hand side of the inequality in (14) as a function of r 
and �2∕s2



507Target parameters and bias in non-causal change-score analyses with measurement errors  

1 3

is small relative to s2 , then the parameter �∗
P
 is likely to have 

smaller bias than �
P
 , with respect to �∗

P
.

The contour plot in Fig. 5 shows the left-hand side of the 
inequality in (14) as a function of r and �2∕s2 . We observe 
that, unless �2∕s2 is close to 0, the contour lines are close to 
vertical, so that the left-hand side of the inequality depends 
mainly on r. Specifically, if �2∕s2 is larger than ∼ 0.5 , then �∗

P
 

has smaller absolute bias than �
P
 if r is smaller than ∼ 0.75 , 

independently of �2∕s2 . We thus reach the conclusion: if we 
consider �∗

P
 as the target parameter, and we are willing to 

assume that (a) the measurement errors are not systematic, 
(b) �2 is at least ∼ 50% of s2 , and (c) r is at most ∼ 0.75 , 
then we should adjust for the measured baseline score. We 
emphasize that a violation of the condition in (b) and/or in 
(c) does not imply that we should not adjust for the meas-
ured baseline score, but it implies that the threshold for r at 
which adjustment becomes beneficial depends on the value 
of �2∕s2 , as seen in the bottom part of Fig. 5.

Whether these assumptions are plausible or not is of 
course highly context dependent. We don’t have enough 
subject matter knowledge to firmly judge their plausibility 
for the study by Tajik-Parvinchi et al. [7]; however, we do 
suspect that even a standardized assessment tool for emotion 
regulation may give quite large (non-systematic) measure-
ment errors, and that emotion regulation may vary consider-
ably over 10 week periods within children with autism. If so, 
then one may tentatively guess that �2∕s2 was not close to 0 
and r was not close to 1 in the study by Tajik-Parvinchi et al. 
[7], in which case the authors would possibly have benefited 
from adjusting for the measured baseline score, had they 
been interested in the parameter �∗

P
.

Discussion

In this paper we have considered a non-causal change-score 
analysis. We have argued that, just like the causal analy-
sis by Pearl [4], a non-causal analysis may target two dif-
ferent parameters; one adjusted for the baseline score and 
one unadjusted. We have considered a general model that 
allows for systematic measurement errors in the baseline 
and follow-up scores, and under this model we have derived 
analytic expressions for the biases that arise if one adjusts 
or doesn’t adjust for the (mis-)measured baseline score, for 
each of the two target parameters.

We have shown that, if the measurement errors are 
thought to be non-systematic, then the choice between 
analyses (adjusting or not adjusting) depends in a rela-
tively straight-forward way on the choice of target 

parameter and on a small subset of the model parameters. 
If the measurement errors are thought to be systematic, 
then the choice between analyses is more difficult, and 
generally depends on all the model parameters in a com-
plex way. In this case we recommend the analyst to carry 
out a sensitivity analysis, by varying the model parameters 
over a grid of plausible values and computing the biases 
over this grid. At best, this sensitivity analysis reveals that 
the bias for one of the analysis is consistently smaller than 
the bias of the other analysis, which then lends support to 
the least biased analysis. Apart from guiding the choice of 
analysis, our results can also be used to correct for bias in 
the estimate obtained from the chosen analysis. This, how-
ever, also requires speculation about the model parameters, 
and would typically be presented as a sensitivity analysis 
over a grid, rather than as a single bias-corrected estimate.

We have focused on observational studies, in which the 
baseline score will generally be associated with the covari-
ate of interest. In trials where the covariate is randomized, 
such associations will disappear, asymptotically. This 
implies that the coefficient b0 in model (2) is 0, so that the 
coefficients �

P
 and �∗

P
 in models (3) and (4), respectively, 

are both equal to b1 . Hence, in large randomized controlled 
trials the adjusted and unadjusted (for the baseline score) 
analyses will give similar results. However, in small ran-
domzied trials the covariate may be associated with the 
baseline score by pure chance. In such cases, the adjusted 
and unadjusted analyses may give different results, and 
the choice between these may be determined by the same 
considerations as those outlined in our paper.

The analysis of change-scores is common in several 
branches of science, including epidemiology, medicine and 
social science. In such studies, Eriksson and Häggström 
[6] and Farmus et al. [2] strongly advised against adjust-
ment for the baseline score, unequivocally labeling the 
adjusted analysis as ‘biased’. We have argued that the 
degree of bias depends, among other things, on the choice 
of target parameter, and thus that the advice to not adjust 
for the baseline score cannot be used as a blanket rule for 
all studies. We thus hope that our paper may help applied 
researchers to appreciate the importance of clearly speci-
fying the target parameter, and to think carefully about the 
appropriate analysis for that parameter.

Appendix: Supplementary derivations

We have that
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By analogous derivations we have that

Using standard rules for normal distributions we have that

and

E(U0|P) =E(a0 + b0P + �0|P)
= a0 + b0P + E(�0|P)
=a0 + b0P

E(T0|P) =E(c0 + d0U0 + e0|P)
=E{c0 + d0(a0 + b0P + �0) + e0|P}
= c0 + a0d0 + b0d0P + E(d0�0 + e0|P)
= c0 + a0d0 + b0d0P

Var(U0|P) =Var(a0 + b0P + �0|P)
=Var(�0|P)
= s

2

Var(T0|P) =E{Var(T0|U0,P)|P}
+ Var{E(T0|U0,P)|P}

=E{Var(c0 + d0U0 + e0|U0,P)|P}
+ Var{E(c0 + d0U0 + e0|U0,P)|P}

=E{Var(e0|U0,P)|P}
+ Var{c0 + d0U0 + E(e0|U0,P)|P}

=E{Var(e0|U0,P)|P} + d
2

0
Var(U0|P)

=E(�2|P) + Var(a0 + b0P + �0|P)
= �2 + d

2

0
Var(�0|P)

= �2 + d
2

0
s
2

Cov(U0,U1|P) =Cov(a0 + b0P + �0, a1 + b1P + �1|P)
=Cov(�0, �1|P)
= s

2
r

Cov(T0, T1|P) =Cov(c0 + d0U0 + e0, c1 + d1U1 + e1|P)
= d0d1Cov(U0,U1|P) + Cov(e0, e1|P)
= d0d1Cov(a0 + b0P + �0, a1

+ b1P + �1|P) + �2�

= d0d1Cov(�0, �1|P) + �2�

= d0d1s
2
r + �2�

E(U1|P) =a1 + b1P

E(T1|P) =c1 + a1d1 + b1d1P

Var(T1|P) =�2 + d1s
2

E(�U|P,U0) =E(U1|P,U0) − U0

=E(U1|P) +
Cov(U0,U1|P)
Var(U0|P)

{U0 − E(U0|P)} − U0

Using the above relations we finally have that

and
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E(�T|P, T0) =E(T1|P, T0) − T0

=E(T1|P) +
Cov(T1, T0|P)
Var(T0|P)

{T0 − E(T0|P)} − T0.

E(�U|P) = (a1 − a0) + (b1 − b0)P,

E(�U|P,U0) =a1 − a0r + (b1 − b0r)P + (r − 1)U0,

E(�T|P) = (c1 + a1d1) − (c0 + a0d0) + (b1d1 − b0d0)P,

E(�T|P, T0) =c1 + a1d1 − (c0 + a0d0)
�2� + d0d1s

2r

�2 + d
2

0
s2

+

(
b1d1 − b0d0

�2� + d0d1s
2r

�2 + d
2

0
s2

)
P

+

(
�2� + d0d1s

2r

�2 + d
2

0
s2

− 1

)
T0.
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